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Introduction

What is double-beta-decay and 
neutrinoless-double-beta-decay?

Why we are interested in neutrinoless-
double-beta-decay?

How we simulate this process?



Introduction
Double beta decay is kind of 
nuclear decay with emission 
of two e- instead of one for 
normal beta decay.

The existence  is due to 
nuclear pairing which makes 
the separation energy larger 
for even-even nuclei 



Introduction
Double beta decay is kind of 
nuclear decay with emission 
of two e- instead of one for 
normal beta decay.

The existence  is due to 
nuclear pairing which makes 
the separation energy larger 
for even-even nuclei 



Introduction

From SM we know that this process can 
happen(Thesis: Maria Goeppert-Mayer 1935 Goettingen)

Instead of two successive β decay
(A,Z) (A,Z+1) (A,Z+2)

e − e −
C C
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But there are also some hypothesis that 
neutrino is Majorana particle, so it is 
also possible for process like

Lepton Flavor violation;massive neutrino
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Introduction

But there are also some hypothesis that 
neutrino is Majorana particle, so it is 
also possible for process like

Lepton Flavor violation;massive neutrino

ν=νC

mν≠0

(A,Z) (A,Z+1) (A,Z+2)

e − e −



Introduction

Examples for non-supersymmetric models; J. Phys. G. 24;2139

Example for R-parity violated supersymmetric models; Phys. Lett. 
B352,1 
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Introduction
The neutrinoless double beta decay 
probability from Fermi Golden-rule

Incorporating above emission Hamiltonians

T = dEk (ν)∫
f Ĥ k k Ĥ i

E
i0+

− (Ek (e1
− ) + Ek (ν) + EKern (k))k

∑

T = Mm mν + Mθ tgϑ + MWR < (
M1

M 2

)2 > +MSUSY ′λ111
2 + MVR <

mp

mVR

> +...
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f Ĥ k k Ĥ i
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ω =
2π

T 2 ρ f ≤ 4.4 ×10

−33[sec−1]128 Te

Leading term, I will talk about later
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QRPA and RQRPA(Tue) results with errors from basis size,exp. errors 

of two-neutrino decay, axial coupling constant and short-range correlations 

Graphs  by S. Schoenert
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Introduction
QRPA and RQRPA(Tue) results with errors from basis size,exp. errors 

of two-neutrino decay, axial coupling constant and short-range correlations 

IBM-2: S and D nucleon p  and n pairs with 
SDI mapped on the s and d boson Graphs  by S. Schoenert
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Relative angular momentum
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Shell model basis:1f5/2,2p3/2,2p1/2,1g9/2

SM+spin-orbit: 1f5/2,2p3/2,2p1/2,1g9/2,1f7/2,1g7/2

1f5/2,2p3/2,2p1/2,1g9/2,1f7/2,1g7/2,1d5/2,1d3/2,2s1/2

Relative angular momentum
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Introduction
Renormalized QRPA 0νββ  Half Lives calculated in TUE with the Bonn 
CD force and Jastrow correlations for  quenched gA = 1.00; errors 

from 2νββ experiments for <mν> = 50 meV  

Nuclei half  life (year)

76Ge->76Se (1.10   0.13)  1027

82Se->82Kr (3.50   0.42)  1026

100Mo->100Ru (3.33   0.45)  1026

128Te->128Xe (7.35   1.00)  1027

150Nd->150Sm (3.55   0.50)  1025

± ×
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Seems the best experiment candidate , But strongly deformed



Simulation of NME

Detailed decay width one intermediate Virtual 
light Majorana neutrino

With:
 

Γ0ν = 2π R0ν
spin
∑∫∫

2
δ (ε1 + ε2 + EF − EI )

d p


1

(2π )3
d p


2

(2π )3

(A,Z) (A,Z+1) (A,Z+2)

e − e −
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Detailed decay width one intermediate Virtual 
light Majorana neutrino

With:
 

Γ0ν = 2π R0ν
spin
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2
δ (ε1 + ε2 + EF − EI )

d p
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(2π )3
d p
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(2π )3

 

R0ν =
1
2
(G cosθC

2
)2 dx



∫
s
∑

M
∑

i=1

2n

∑ dy


×
dk


(2π )3
f Ji

ν+ (y) M∫ M Ji
µ+ (x) i 1− P(e1,e2 )[ ]

×
ep2 s '2 (y


)γ ν (1− γ 5 )Niks (y


)ep1s '1 (x


)γ µ (1− γ 5 )Niks (x


)

ε1 +ω + EM − EI

(A,Z) (A,Z+1) (A,Z+2)

e − e −
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Calculation of NME

And we can get the expression as 
1 /T1/2

0ν = G0ν M 0ν
2 mν ee

2
mν ee

= Uej
2mj

j
∑

phase space integration NME

M 0ν = Ci f OJ Mi
Mi ,i,J
∑ H (r12 ) i,J Mi OJ i

H(r12)--loop integration over neutrino momentum 
as a function of distance between two nucleon 



Nuclear reorientation methodNuclear reorientation method BE2 transition probabilityBE2 transition probability Relativistic mean 
field theory        deformation             Quad. mom.  Q(b) deformation             Quad. mom.  Q(b)

Relativistic mean 
field theory        

+0.367(86) -2.00(51) 0.2848(21) 5.258(38) 0.221

+0.230(30) -1.32(19) 0.1931(22) 3.684(41) 0.176

Why Deformation
            has 60 protons and 90 neutrons, for heavy nuclei,experiments 
have suggested that it is heavily deformed

In the second column, deformation is formulated by

But we tried another way by calculating            with deformed wave 
function

150Nd

β2 β2 β2

150Nd
150Sm

β2 =
π
5
Qp

Zrc
2

Q20
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Why Deformation
            has 60 protons and 90 neutrons, for heavy nuclei,experiments 
have suggested that it is heavily deformed

In the second column, deformation is formulated by

But we tried another way by calculating            with deformed wave 
function

150Nd

β2 β2 β2

150Nd
150Sm

β2 =
π
5
Qp

Zrc
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Q20

0.183

0.114
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wave function obtained by solution of Schroedinger Equation with 
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Ground states
So from now on we will work in deformed basis and using deformed 
wave function obtained by solution of Schroedinger Equation with 
deformed Woods-Saxon potential, the single particle wave can be 
written as

τρτ = [
Ndnz
∑ bNnzΩτ

(+ ) NdnzΛτ ,Ωτ = Λτ +1 / 2 Σ = 1 / 2

+bNnzΩτ

(− ) NdnzΛτ +1,Ωτ = Λτ +1−1 / 2 Σ = −1 / 2 ]

Deformed Harmonic Oscillator w.f. Basis spin w.f. basis

Expansion Coefficient



Ground states

As we all know, nuclear pairing plays important role in nuclei, so the 
initial and final ground states can be described as:

Quasi-particle operator is defined as

u and v are BCS coefficients which can be derived from the BCS 
equation, these coefficients determine the structure of the initial and 
final ground states 

0 = αρτ
vaccum

ρτ
∏

 

α †
ρτ

αρτ

⎛

⎝
⎜

⎞

⎠
⎟ =

uρτ
vρτ

−vρτ uρτ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

c†ρτ
cρτ

⎛

⎝
⎜

⎞

⎠
⎟



Intermediate states
The intermediate states are constructed using 
pn-QRPA formalism, by exciting a quasi-
neutron to a quasi-proton

The phonon operator can be defined as 

Intermediate states in lab system defined as
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i
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The intermediate states are constructed using 
pn-QRPA formalism, by exciting a quasi-
neutron to a quasi-proton

The phonon operator can be defined as 

Intermediate states in lab system defined as
 

QK
m † = (Xi,K

m Ai
†(K π ) −Yi,K

m Ai (K
π ))

i
∑

 
A†i (K

π ) = αρp
† αρn

† (Ωn − Ωp = K ,π pπ n = π )

JM (K ),m =
3

16π 2 [DMK
J (ϕ,θ,ψ )QK

m † + (−1)J +K DM −K
J (ϕ,θ,ψ )Q−K

m †] RPA (K ≠ 0)

JM (K ),m =
3
8π 2 DMK

J (ϕ,θ,ψ )QK
m † RPA (K = 0)



QRPA Formalism

Using variational method we can get the 
QRPA(Quasi-particle Random Phase 
Approximation)equation

With                                                                                     
 

A(K ) B(K )
−B(K ) −A(K )

⎛

⎝
⎜

⎞

⎠
⎟
XK

m

YK
m

⎛

⎝⎜
⎞

⎠⎟
=ωK

m XK
m

YK
m

⎛

⎝⎜
⎞

⎠⎟

  

A ij (K ) = RPA [Ai ,[H ,Aj
†]] RPA

Bij (K ) = RPA [Ai ,[H , Aj ]] RPA



QRPA Formalism

The Hamiltonian has the form

                                                         (single particle energy)

                                                                 (residual two-body interaction)

H = H0 + H int
H0 = ερτ

cρτ
† cρτ

τ ,ρτ
∑

H int =
1
2

Vpnp 'n 'cp
†cn
†cn 'cp '

pnp 'n '
∑
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H0 = ερτ

cρτ
† cρτ

τ ,ρτ
∑

H int =
1
2

Vpnp 'n 'cp
†cn
†cn 'cp '

pnp 'n '
∑

  

A p1n1p2n2
(K ) = (Ep1

+ En1
)δ p1p2

δn1n2 + gpp[Vp1 n1p2 n2
up1un1up2un2 +Vp1n1 p2n2 vp1vn1vp2 vn2 ]

−gph[Vp2n1p1n2
up1vn1up2 vn2 +Vp1n2 p2n1

vp1un1vp2un2 ]

  

B p1n1p2n2
(K ) = −gpp[Vp2 n2 p1 n1

vp1vn1up2un2 +Vp1n1 p2n2up1un1vp2 vn2 ]
−gph[Vp2n1p1n2

vp1un1up2 vn2 +Vp1n2 p2n1
up1vn1vp2un2 ]
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                                   (Bethe-Goldstein Equation)

From spherical basis to deformed basis

G = V +V
Q

W − H0 + iε
G

 

Vp n, p ' n ' = −2 Fpηpnηn
JK Fp 'ηp 'n 'ηn '

JK G(ηpηnηp 'ηn ' , J )
ηp 'ηn '
∑

ηpηn
∑

J
∑

 

Vpn, p 'n ' = 2 Fpηp nηn
JK ' Fp 'ηp ' n 'ηn '

JK ' G(ηpηnηp 'ηn ' , J )
ηp 'ηn '
∑

ηpηn
∑

J
∑

Bare nucleon-nucleon force Projection operator



Choice of Parameters

Particle-hole 

strength(gph=1.16)

particle-particle 

strength(gpp=1.11)



Calculation of 0νNME
Final Expression of the nuclear matrix element
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Conclusion & Outlook

The determination of the nuclear matrix element of double beta decay 
is as important as the measurement of the half lives to get the mass 
scale of the neutrino

We have developed the pn-QRPA method which is suitable for the 
calculation of NME and extended it to the deformed case with the 
realistic residual interaction. We now have the QRPA solution in hand.

The last step left is to transform available result from the spherical 
case to the deformed one and get more accurate value for heavy 
nuclei



Thank you !


