< □ > < @ > < 注 > < 注 > ... 注

Confronting Flavor Symmetries and extended Scalar Sectors with Lepton Flavor Violation Phenomenology

Adisorn Adulpravitchai Max-Planck-Institut für Kernphysik

in collaboration with M. Lindner and A. Merle arXiv:0907.xxxx [hep-ph]

10 July 2009 SFB Tr 27 Meeting, Project C1, Heidelberg

< □ > < @ > < 注 > < 注 > ... 注

Motivation

Our Logic

Constraining one particular model

Conclusions

(ロ) (同) (E) (E) (E)

Interplay between the extended Standard Models

- There are different way to extend the Standard Models
- Extend scalar sectors (additional Higgs doublets, ...)
- Impose Flavor symmetries (to explain the neutrino masses and mixings)

• ...

Conclusions

Interplay between the extended Standard Models

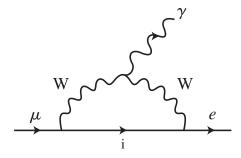


Figure: LFV-diagram in SM (Bo He, T. P. Cheng and Ling-Fong Li ,02)

The Branching ratio is extremely small ($\lesssim 10^{-45}$). However, extension of the SM generically violate Lepton Flavor. \Rightarrow larger Branching ratio is possible

(ロ) (同) (E) (E) (E)

Interplay between the extended Standard Models

- more scalars ⇒ Lepton Flavor Violation (LFV) processes (which are quite strongly constrained)
- in general, the 3×3 yukawa coupling matrices hold a lot of freedom in their 18 parameters \Rightarrow the models cannot be easily ruled out by LFV constraint
- impose more structure on the yukawa coupling matrices via flavor symmetries $(SM \times G_f) \Rightarrow$ reduce the free parameters in the yukawa coupling matrices \Rightarrow the LFV constraint becomes stronger and might be possible to rule out some models

Motivation	Our Logic	Constraining one particular model	Conclusions
		Our Logic	

1. impose a flavor symmetry and decouple the flavons \Rightarrow effective low energy model with a scalar sector that is slightly extended compared to the SM

(ロ) (四) (三) (三) (三) (三) (○) (○)

Our Logic

- 1. impose a flavor symmetry and decouple the flavons \Rightarrow effective low energy model with a scalar sector that is slightly extended compared to the SM
- 2. fit the model to neutrino data \Rightarrow allow us to extract certain ranges for the model parameters

< □ > < @ > < 注 > < 注 > ... 注

Our Logic

- 1. impose a flavor symmetry and decouple the flavons \Rightarrow effective low energy model with a scalar sector that is slightly extended compared to the SM
- 2. fit the model to neutrino data \Rightarrow allow us to extract certain ranges for the model parameters
- 3. additional scalars compared to the SM \Rightarrow mediate LFV-processes \Rightarrow the branching ratios can be predicted using the fitted parameter values

Our Logic

- 1. impose a flavor symmetry and decouple the flavons \Rightarrow effective low energy model with a scalar sector that is slightly extended compared to the SM
- 2. fit the model to neutrino data \Rightarrow allow us to extract certain ranges for the model parameters
- 3. additional scalars compared to the SM \Rightarrow mediate LFV-processes \Rightarrow the branching ratios can be predicted using the fitted parameter values
- if this prediction does not fit with present (future) LFV-bounds ⇒ we are (will be) able to exclude the particular flavor symmetry imposed (in a certain scenario)

Constraining one particular model: The Ma-model

The basic ingredients apart from the SM are:

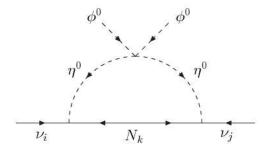
- 3 heavy right-handed (Majorana) neutrinos N_k , which are singlets under SU(2) and have no hypercharge
- a second Higgs doublet η with SM-like quantum numbers that does not obtain a VEV
- an additional Z_2 -parity under which all SM-particles are even, while N_k as well as η are odd

(E. Ma ,06)

(日) (同) (E) (E) (E)

Features of the Ma-model

• radiatively generated neutrino masses \Rightarrow naturally small



- stable Dark Matter candidates due to the Z_2 -parity
- apart from these points, it is essentially an oridinaly THDM

(E. Ma ,08)

∃ >

・ロン ・日ン ・ヨン・

・ロト ・四ト ・ヨト ・ヨト - ヨ

Flavor Symmetry Models we use

• A_4 -model which predicts the tri-bimaximal mixing $(\theta_{13} = 0, \theta_{23} = \pi/4, \tan \theta_{12} = 1/\sqrt{2}).$

• D_4 -model which predicts the $\mu - \tau$ symmetry $(\theta_{13} = 0, \theta_{23} = \pi/4)$, where θ_{12} is determined by parameters in the neutrino mass matrix.

<ロ> (四) (四) (三) (三) (三)

The A_4 -model (model 1)

Field	$l_{1,2,3}$	e_1^c	e_2^c	e_3^c	$N_{1,2,3}$	ϕ	η	φ_S	φ_T	χ
A_4	<u>3</u>	<u>1</u>	<u>1</u> ″	<u>1</u> ′	<u>3</u>	1	1	<u>3</u>	<u>3</u>	1
Z_4^{aux}	i	i	i	i	-1	1	1	i	-1	i

$$\begin{aligned} \mathcal{L}_{l} &= y_{1}^{e} \frac{\phi}{\Lambda} (l_{1} \varphi_{T1} + l_{2} \varphi_{T3} + l_{3} \varphi_{T2}) e_{1}^{c} + y_{2}^{e} \frac{\phi}{\Lambda} (l_{3} \varphi_{T3} \\ &+ l_{1} \varphi_{T2} + l_{2} \varphi_{T1}) e_{2}^{c} + y_{3}^{e} \frac{\phi}{\Lambda} (l_{2} \varphi_{T2} + l_{1} \varphi_{T3} + l_{3} \varphi_{T1}) e_{1}^{c} \\ &+ \frac{\eta}{\Lambda} \Big[y_{1} [(2l_{1}N_{1} - l_{2}N_{3} - l_{3}N_{2}) \varphi_{S1} \\ &+ (2l_{3}N_{3} - l_{1}N_{2} - l_{2}N_{1}) \varphi_{S3} + (2l_{2}N_{2} - l_{1}N_{3} - l_{3}N_{1}) \varphi_{S2}] \\ &+ y_{2} (l_{1}N_{1} + l_{2}N_{3} + l_{3}N_{2}) \chi \Big] + M (N_{1}N_{1} + N_{2}N_{3} + N_{3}N_{2}). \end{aligned}$$

•

The A_4 -model (model 1)

The right-handed neutrino masses are degenerate, $M_{1,2,3} = M$. The Yukawa coupling reads

$$h = \begin{pmatrix} -a & -a & 2a+b \\ b-a & 2a & -a \\ 2a & b-a & -a \end{pmatrix}$$

 \Rightarrow three free parameters (a, b, M) to fit all observables:

$$\Delta m_{\odot}^2 = (b^4 - (3a+b)^4)\Lambda_{1,2,3}^2, \ \Delta m_A^2 = -24ab(9a^2+b^2)\Lambda_{1,2,3}^2,$$
$$\tan \theta_{12} = \frac{1}{\sqrt{2}}, \ \theta_{13} = 0, \ \text{and} \ \theta_{23} = \frac{\pi}{4}.$$

<ロ> (四) (四) (三) (三) (三)

The D_4 -model (model 2)

Field	l_1	$l_{2,3}$	e_1^c	$e_{2,3}^{c}$	N_1	N_2	N_3	ϕ	η	φ_e	χ_e	φ_{ν}	$\psi_{1,2}$
$\begin{array}{c} D_4\\ Z_2^{\mathrm{aux}}\end{array}$	<u>1</u> <u>1</u>	2 1	<u>1</u> 1	2 1	<u>1</u> 3 -1	<u>1</u> 2 -1	$\frac{1}{-1}$	$\frac{1_{1}}{1}$	$\frac{1_{1}}{1}$	1 <u>3</u> 1	$\frac{1_{4}}{1}$	<u>1</u> 3 -1	<u>2</u> −1

$$\mathcal{L}_{l} = l_{1}e_{1}^{c}\frac{\phi}{\Lambda^{2}}(y_{1}^{e}\varphi_{e}^{2} + y_{2}^{e}\chi_{e}^{2} + y_{3}^{e}\varphi_{\nu}^{2} + 2y_{4}^{e}\psi_{1}\psi_{2})$$

$$+ y_{5}^{e}(l_{2}e_{2}^{c} + l_{3}e_{3}^{c})\frac{\phi}{\Lambda}\varphi_{e} + y_{6}^{e}(l_{2}e_{2}^{c} - l_{3}e_{3}^{c})\frac{\phi}{\Lambda}\chi_{e}$$

$$+ y_{1}l_{1}N_{1}\frac{\eta}{\Lambda}\varphi_{\nu} + y_{2}(l_{2}\psi_{1} + l_{3}\psi_{2})N_{1}\frac{\eta}{\Lambda}$$

$$+ y_{3}(l_{2}\psi_{2} - l_{3}\psi_{1})N_{2}\frac{\eta}{\Lambda} + y_{4}(l_{2}\psi_{1} - l_{3}\psi_{2})N_{3}\frac{\eta}{\Lambda}$$

$$+ \frac{1}{2}M_{1}N_{1}N_{1} + \frac{1}{2}M_{2}N_{2}N_{2} + \frac{1}{2}M_{3}N_{3}N_{3}.$$

The D_4 -model (model 2)

The right-handed neutrino masses are M_1, M_2, M_3 . The Yukawa coupling matrix can be written as

$$h = \begin{pmatrix} a & 0 & 0 \\ b & -c & d \\ -b & -c & d \end{pmatrix}$$

 \Rightarrow seven free parameters $(a, b, c, d, M_1, M_2, M_3)$ to fit all neutrino observables:

$$\Delta m_{\odot}^2 = (a^2 + 2b^2)^2 \Lambda_1^2, \ \Delta m_A^2 = 4(c^2 \Lambda_2 + d^2 \Lambda_3)^2,$$
$$\tan \theta_{12} = \frac{a}{\sqrt{2}b}, \ \theta_{13} = 0, \ \text{and} \ \theta_{23} = \frac{\pi}{4}.$$

The four benchmark scenarios for the scalar sector

In the form $(m_1, m_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5)$:

- $\alpha: \quad (100 i {\rm GeV}, 75 {\rm GeV}, 0.24, 0.10, 0.10, -0.15, -0.10)$
- $\beta: \qquad (100 i {\rm GeV}, 98.5 {\rm GeV}, 0.24, 0.30, 0.09, -0.18, -0.11)$
- $\gamma: \quad (100i {\rm GeV}, 950 {\rm GeV}, 0.24, 0.50, 0.02, -0.12, -0.10)$
- $\delta: \quad (100 i {\rm GeV}, 550 {\rm GeV}, 0.24, 0.30, 0.02, -0.05, -0.01)$

These four scenarios are consistent with:

- collider experiments (direct searches @ LEP) $m(h^0) > 112.9$ GeV and $m(H^{\pm}) > 78.6$ GeV, both at 95% confidence level.
- lightest scalar as the Dark Matter candidate (H^0) from WMAP-data
- ρ parameter
- W- and Z-boson decay widths
- consistency and perturbativity of the scalar sector

The χ^2 -fit for Scenario α with Model 1

The minimization of the χ^2 -function then yields the following best-fit values for the three parameters:

$$a = 0.0189, b = -0.691, M = 2.42 \cdot 10^6 \text{ GeV}.$$

For the above parameters, this yields in the form $\frac{+1\sigma,+3\sigma}{-1\sigma,-3\sigma}$:

$$\begin{array}{rcl} a: & \begin{array}{c} +0.0003, +0.0009 \\ -0.0003, -0.0009, \end{array} \\ b: & \begin{array}{c} +0.003, +0.009 \\ -0.003, -0.009, \end{array} \\ M: & \begin{array}{c} +0.02, +0.05 \\ -0.02, -0.05 \end{array} \cdot 10^6 \ {\rm GeV}. \end{array}$$

Conclusions

イロト イポト イヨト イヨト 二日

LFV Diagram in this model

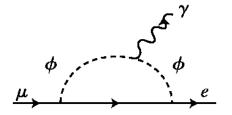


Figure: LFV diagram in Ma-model (Bo He, T. P. Cheng and Ling-Fong Li ,02)

<ロ> (四) (四) (三) (三) (三)

LFV-experiments

Experiment	Status	Process	BR-Limit		
MEGA	Past	$\mu \to e \gamma$	$1.2 \cdot 10^{-11}$		
MEG	Future	$\mu \to e\gamma$	$1.0 \cdot 10^{-13}$		
BELLE	Past	$ au o \mu \gamma$	$4.5 \cdot 10^{-8}$		
Babar	Past	$\tau \to e \gamma$	$1.1 \cdot 10^{-7}$		
MECO	Cancelled	$\mu Al \rightarrow eAl$	$2.0 \cdot 10^{-17}$		
SINDRUM II	Past	$\mu \mathrm{Ti} \to e \mathrm{Ti}$	$6.1 \cdot 10^{-13}$		
PRISM/PRIME	Future	$\mu \mathrm{Ti} \to e \mathrm{Ti}$	$5.0 \cdot 10^{-19}$		
SINDRUM II	Past	$\mu Au \rightarrow eAu$	$7.0 \cdot 10^{-13}$		
SINDRUM II	Past	$\mu \mathrm{Pb} \rightarrow e \mathrm{Pb}$	$4.6 \cdot 10^{-11}$		

Our Results

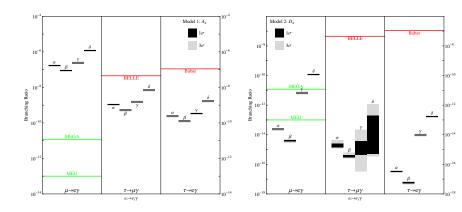


Figure: The numerical results of our analysis for Model 1 and 2

イロト イヨト イヨト イヨト

Э

- models with an extended scalar sectors and discrete flavour symmetries can easily get into trouble with LFV-bounds
- we have shown that with the Ma-model (with A_4 and D_4 symmetry)
- models with a lot of structure can easily be excluded
- models with many parameters can at least be strongly constrained, if not excluded as well
- these considerations are not restricted to Ma-like models, but should also be correct in a much wider class of theories

(日) (同) (E) (E) (E)