

# Optical Properties of the Double Chooz scintillators

Christoph Aberle, MPIK Heidelberg

SFB meeting July 09-10, 2009

### Outline



- Introduction: Double Chooz detector
- Scintillator requirements
- Measurements of the optical properties
  - Light Yield measurements and Model
  - Time profile measurements
  - α quenching
  - Low energy electron quenching
- Summary
- Outlook

## The Double Chooz detector





Christoph Aberle, MPIK Heidelberg

# How does a scintillator work?





## Scintillator Characteristics



- Efficient neutron capture → Gd , solubility of Gd
- Optical and chemical stability on a timescale of years
- Material compatibility
- Radiochemical purity
- High light yield (photons/MeV) in the Target (→ energy resolution)
- Same light yield in Target and γ catcher
- Same density in Target and γ catcher (and the other volumina)
- Time probability density function (pdf) for scintillator emission can be tuned (→ pulse shape discrimination)
- Determination of alpha quenching and low energy electron quenching (→ alpha background and energy scale)

## **Choice of components**

#### **Solvents**

- High transparency and light yield
- Material compatibility with the acrylic tanks
- Flexibility to adjust light yield, density and time pdf
- $\rightarrow$  PXE/Dodecane mixture
- Solutes: Wavelength shifters (Fluors)
  - Sufficient overlap of absorption spectra of acceptor (e.g. primary fluor) and emission spectrum of donor (e.g. solvent molecule)
  - $\rightarrow$  effective energy transfer and wavelength shift to more transparent region
  - High quantum efficiency and purity  $\rightarrow$  PPO and bis-MSB
  - Solutes: Gadolinium-complex
    - Stability (data for 4.5 years)
    - Radiochemical/optical purity
    - High solubility
    - $\rightarrow$  Betadiketones



PXE



![](_page_5_Picture_19.jpeg)

## Light Yield Measurements and Modeling

![](_page_6_Figure_1.jpeg)

- Measurement of Light Yield for different scintillator compositions → fit data to determine the energy transfer time constants used in the model
- Model predictions used to optimize the composition and match the LY of Gamma Catcher and Target scintillator

C.Buck, F.X. Hartmann, D.Motta. S.Schönert, CPL, 435 (2007) 252 – 256, C. Aberle: Diplomarbeit (2008)

![](_page_6_Figure_5.jpeg)

## **Time profile**

- The time pdf for light emission can be measured directly
  - PMT 1 : hundreds of photons/event → Start
  - PMT 2 : << 1 photon/event → Stop</p>
  - Coincidence of PMT1 and PMT2
  - t(Stop)-t(Start)-distribution = time pdf
- With the light yield model we are able to understand differences in the time pdfs for different scintillator compositions (the energy transfer paths have different time constants).
- → Possible Application: pulse shape analysis in Double Chooz to distinguish between events in the Target and events in the GC

C. Aberle: Diplomarbeit (2008)

![](_page_7_Picture_11.jpeg)

![](_page_7_Figure_12.jpeg)

![](_page_7_Picture_13.jpeg)

## α quenching: Motivation

![](_page_8_Picture_1.jpeg)

- Light Yield is lower for  $\alpha$  -particles than for e<sup>-</sup>
- Reason: dE/dx higher for  $\alpha \rightarrow$  ionisation density is higher  $\rightarrow$  more quenching processes
- Definition of the quenching factor:  $QF=E(\alpha)/E(e^{-})$  at  $LY(\alpha) = LY(e^{-})$
- The  $\alpha\,$  quenching factors of the scintillators determine the visible energy of  $\alpha\,$  -background in Double Chooz
- Example: QF=10 at 5 MeV
- $\rightarrow$  5 MeV  $\alpha$  create as much light as electrons with 500 keV
- We measure the LY for electrons and  $\alpha$  particles.

## α quenching: Setup

 $\gamma$  sources

•Compton scattering dominant. Scattered e<sup>-</sup> excites scintillator.

•PMT 1 measures signal and opens coincidence gate

•If the photon is backscattered with 180° it can be detected by the Nal-PMT2 system

Coincidence → scattering angle = 180°
→ Fixed energy of e<sup>-</sup> and corresponding LY in PMT1

![](_page_9_Picture_6.jpeg)

![](_page_9_Picture_7.jpeg)

#### July 10, 2009

# α quenching: Sources

- $\alpha$  source #1:
  - <sup>222</sup>Rn emanating from Uranium salt is purged through PPO powder
  - <sup>222</sup>Rn decays within days to <sup>210</sup>Pb (0.5 years to grow in <sup>210</sup>Pb ( $t_{1/2}$ =22.3 y)) which is in equilibrium with <sup>210</sup>Po (5.3 MeV  $\alpha$  )
- → PPO is dissolved in the scintillator, the  $\alpha$  decay inside the scintillator
- $\alpha$  source #2:
  - Emanating <sup>222</sup>Rn from a Radium solution (25.6 Bq) is purged with N<sub>2</sub> directly through the scintillator
  - $^{222}$ Rn decays inside the scintillator to  $^{210}$ Pb via  $^{218}$ Po and  $^{214}$ Po emitting three  $\alpha$  (5.5 MeV, 6.0 MeV and 7.7 MeV).

![](_page_10_Figure_10.jpeg)

![](_page_10_Picture_11.jpeg)

### α quenching: Results

![](_page_11_Picture_1.jpeg)

| Scintillator   | QF(5.3 MeV) | QF(5.5 MeV) | QF(6.0 MeV) | QF(7.7 MeV) |
|----------------|-------------|-------------|-------------|-------------|
| Target         | 13.3 ± 0.3  | 12.7 ± 0.4  | 11.9 ± 0.4  | 9.8 ± 0.5   |
| GC (5 g PPO/I) | 15.4 ± 0.5  | 14.4 ± 0.3  | 13.7 ± 0.3  | 11.1 ± 0.3  |
| GC (2 g PPO/I) | 17.4 ± 0.5  | 16.2 ± 0.4  | 15.3 ± 0.4  | 12.6 ± 0.4  |
| Veto           | 13.7 ± 0.5  | 13.0 ± 0.4  | 12.2 ± 0.4  | 10.0 ± 0.4  |

Example: 7.7 MeV  $\alpha$  in Target <-> 786 keV e<sup>-</sup>

# Low energy electron quenching: Motivation

Max-Rlanck-Institut für Kernshysik

- dE/dx is high for slow electrons
- → high ionisation density and increased quenching expected
- We measure the light yield for low energy electrons directly
- Use γ source: Compton scattering with small scattering angles → e<sup>-</sup> with low energies excite the scintillator

![](_page_12_Figure_6.jpeg)

 Germanium detector used to measure the energy of the scattered γ precisely, energy of electrons not determined by angle but by energy deposition in the Ge crystal

Why is this important for Double Chooz?

"gamma quenching": e.g.: e<sup>+</sup> => 2 x 511 keV gammas lead to energy deposition via multiple Compton scattering with low energy recoil electrons => visible energy of e<sup>+</sup> smaller than e<sup>-</sup> with equivalent energy

=> Energy scale of prompt events ("spectral analysis")

# Low energy electron quenching: Setup

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

- Coincidence set up between Ge detector and PMT attached to the liquid scintillator
- Compton scattering angle from 0° to 50°
- → Scattered e<sup>-</sup> with energies 8-200 keV

$$(E_{e} = 662 \text{ keV} - E_{Ge})$$

Work done together with Stefan Wagner and Stefan Schönert

# Low energy electron quenching: Data

![](_page_14_Picture_1.jpeg)

Calibration of Ge detector (± 0.5 % resolution)

Scatter plot: each point represents one event with energy depositions in the liquid scintillator and the Ge detector Cut the interesting region in 80 energy bins (Ge): Calculate Ee-=662 kev-E(Ge) for each bin Analyse the light yield in the liquid scintillator for each bin

![](_page_14_Figure_5.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Picture_1.jpeg)

Fit with Birks model:

 $dL/dx = \frac{S_0^* dE/dx}{1 + kB^* dE/dx}$ 

- dE/dx calculated with Berger-Seltzer equation
- Program written to do the χ<sup>2</sup> fit numerically with small steps dx

![](_page_18_Figure_6.jpeg)

### Preliminary Result: kB=0.0145 ± 0.0020 cm/MeV (PC+PPO scintillator)

### Summary

![](_page_19_Picture_1.jpeg)

- The scintillators for Double Chooz have to meet several requirements at the same time
- Suitable components have been chosen
- Lab measurements/models to optimize the compositions
  - LY measurements  $\rightarrow$  optimize the Target LY
    - → match Target and GC light yield
  - Measurement of time pdf of light emission
     → pulse shape discrimination
- Alpha quenching  $\rightarrow$  study alpha background
- Low energy electron quenching  $\rightarrow$  energy scale
- Microphysics of the scintillator studied

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

- Low energy electron quenching for the Double Chooz scintillators
- Adjust kB in the Double Chooz simulation software
- New lab measurements planned, e.g. neutron capture on Gd
- Simulation of detector response with respect to scintillator properties
- Work on Double Chooz Data Analysis