Dark Matter at the LHC

In search for the invisible ...

Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik

International Summer School on Astroparticle Physics Heidelberg, Mai 2019

DM Production at the LHC

The Large Hadron Collider

The Large Hadron Collider

The Large Hadron Collider

LHC Cross Sections and Event Rates

ATLAS Event with 25 pileup vertices

[√s = 13 TeV; 2016 Data]

 $H \rightarrow ZZ \rightarrow ee \mu\mu$ candidate event

Missing Energy Signatures

Assumption: Dark Matter thermally produced in early Universe

Requires weak interaction between DM and SM particles

Candidates: WIMPs [Weakly Interacting Massiv Particles]

Missing Energy Signatures

Assumption: Dark Matter thermally produced in early Universe

Requires weak interaction between DM and SM particles

Candidates: WIMPs [Weakly Interacting Massiv Particles]

Missing Energi

Assumpt Dark M produc Requi betwe

Candia [Weakly In

ATLAS Monjet-Search

 E_{T}^{miss}

ATLAS Monjet-Search

 $E_{\text{T}}^{\text{miss}}$

DM-Signal

Depends on Mass of DM-particle Mass of Mediator Couplings

ATLAS Monjet-Search

 $q = 0.25 [g_q]$ $g_{DM} = 1.00 [g_X]$

 m_A : Mediator mass m_X : DM mass

Dijet Resonance Searches

Dijet Resonance Searches

Dijet Resonance Searches

Dijet searches at high energy

q

q

 $2 \rightarrow 2$ processes well described by QCD ...

A

Q

 \overline{q}

Any deviation from SM implies new physics ...

e.g.

quantum black holes	> 8.7 Te∖
excited quarks	> 5.6 TeV
neavy SM-like W'	> 2.9 TeV
excited W* bosons	> 3.3 TeV
eptophobic Z'	
contact interactions	

• • •

Dijet searches at high energy

q

A

q

 $2 \rightarrow 2$ processes well described by QCD ...

Any deviation from SM implies new physics ...

e.g.

quantum black holes excited quarks heavy SM-like W'

> 8.7 TeV > 6.7 TeV > 2.9 TeV q

 \overline{q}

> 3.3 TeV

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0

DM Mass [TeV]

Mediator Mass [TeV]

[courtesy Hanno Meyer zu Theenhausen]

[courtesy Hanno Meyer zu Theenhausen]

[[]courtesy Hanno Meyer zu Theenhausen]

[[]courtesy Hanno Meyer zu Theenhausen]

[[]courtesy Hanno Meyer zu Theenhausen]

Same as offline	Modified from offline for TLA	Not possible for TLA

	Same as offline	Modified from offline for TLA	Not possible for TLA
--	-----------------	-------------------------------	----------------------

	Same as offline	Modified from offline for TLA	Not possible for TLA
--	-----------------	-------------------------------	----------------------

Same as offline	Modified from offline for TLA	Not possible for TLA

TLA Analysis Results

Dijet searches at low energy

Trigger Object Level Analysis [aka TLA]

Measure:

Dijet mass spectrum from 400 to 1000 GeV

Search for localized excess using BumpHunter

Analysis requires dedicated jet calibration ...

Dijet Resonance Searches a [EXOTICS/ATLAS_DarkMatter_Summary/ATLAS_DarkMatter_Summary_201807.pdf] 1.6 Dijet DM Mass [TeV] ATLAS Preliminary July 2018 √s = 13 TeV, 37.0 fb⁻¹ Phys. Rev. D 96, 052004 (2017) 1.4 **Dijet TLA** 2.7.D.N.N.255.T.N.B.dill 2.7.D.N.N.255.T.N.B.dill 0.12 Thermal Relic Sch - 0.12 **v**s = 13 TeV, 29.3 fb⁻¹ arXiv:1804.03496 1.2 Dijet + ISR **√**s = 13 TeV, 15.5 fb⁻¹ ATLAS-CONF-2016-070 $E_{T}^{miss} + \gamma$ Ø Ň 0.8 **v**s = 13 TeV, 36.1 fb⁻¹ Eur. Phys. J. C 77 (2017) 393 E^{miss}+jet 0.6 Dijet **v**s = 13 TeV, 36.1 fb⁻¹ JHEP 1801 (2018) 126 $E_{T}^{miss}+Z$ 0.4 √s = 13 TeV, 36.1 fb⁻¹ PLB 776 (2017) 318 Axial-vector mediator, Dirac DM E_{T}^{miss} +V 0.2 $g_{a} = 0.25, g_{I} = 0, g_{DM} = 1$ SS IV √s = 13 TeV, 36.1 fb⁻¹ All limits at 95% Cl ATLAS-CONF-2018-005 1.5 0.5 3.5 2 2.5 3 1 0

Mediator Mass [TeV]

Q

$$\mathcal{L}_{\text{vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q$$

$$\mathcal{L}_{\text{axial-vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma_5 q$$

[from arXiv:1603.04156]

LHC Recommendation on DM Search Presentation

$$\begin{split} \Gamma_{\text{vector}}^{\chi\bar{\chi}} &= \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 - 4z_{\text{DM}}\right)^{1/2} \left(1 + 2z_{\text{DM}}\right) \\ \Gamma_{\text{vector}}^{q\bar{q}} &= \frac{g_q^2 M_{\text{med}}}{4\pi} \left(1 - 4z_q\right)^{1/2} \left(1 + 2z_q\right) \\ \Gamma_{\text{axial-vector}}^{\chi\bar{\chi}} &= \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 - 4z_{\text{DM}}\right)^{3/2} \\ \Gamma_{\text{axial-vector}}^{q\bar{q}} &= \frac{g_q^2 M_{\text{med}}}{4\pi} \left(1 - 4z_q\right)^{3/2} \end{split}$$

Partial decay widths

with $z_{{\rm DM},q}=m_{{\rm DM},q}^2/M_{\rm med}^2$

Comparing with Direct Searches

LHC DM Production

Direct Detection

Comparing with Direct Searches

LHC DM Searches $\sigma_{\chi N}^{\rm SI} = \frac{f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm mod}^4}$ $f(g_q) = 3g_q$ $\sigma_{\chi N}^{\rm SD} = \frac{3f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm mod}^4}$ $f^{p,n}(g_q) = \Delta_u^{(p,n)} g_u + \Delta_d^{(p,n)} g_d + \Delta_s^{(p,n)} g_s$ $f(g_q) = 0.32g_q$

Direct Detection

$$\frac{d\sigma^{\rm SI}}{dq^2} = \frac{\sigma_{\chi N}^{\rm SI}}{2\mu_N^2 v^2} A^2$$

$$\frac{d\sigma^{\rm SD}}{dq^2} = \frac{\sigma_{\chi N}^{\rm SD}}{3\mu_N^2 v^2} \frac{\pi}{2J+1} S_N(q)$$

$\sigma^{SI}_{VN}\sigma^{SD}_{VN}$: χ-nucleon cross section
V	: WIMP velocity
μ _{nχ,N}	: reduced WIMP-nucleus mass
g q,DM	: couplings to quarks, DM
M _{Med}	: Mediator mass
Δ_{q}	: quark spin-content
J	: total angular momentum
SN	: axial-vector structure factor

 $g_q = 0.25$ $g_{lep} = 0.00$ $g_{DM} = 1.00$

DM Simplified Model Exclusion

DM Simplified Model Exclusion

 $g_q = 0.10$ $g_{lep} = 0.01/0.10$ $g_{DM} = 1.00$

 $g_q = 0.25$ $g_{lep} = 0.00$ $g_{DM} = 1.00$

DM Simplified Model Exclusion

Mono-Higgs DM Search

Maybe DM-Production not simple ... with the Higgs playing a special role

Interesting signatures:

Invisible Higgs Mono-Higgs

Mono-Higgs:

Directly probes DM production mechanism ...

Search for: $H(\rightarrow bb,\gamma\gamma) + E_{T,miss}$

Mono-Higgs DM Search

Signature:

Missing Energy Jets with tagged b-Quarks Dijet mass $m_{bb} = m_{Higgs}$

Potentially expect: Highly boosted Higgs

Investigate boosted topologies ...

Mono-Higgs DM Search

Higgs-to-Invisible Searches

2HDM with Pseudo-Scalar Mediator

enhancement possible

2HDM with Pseudo-Scalar Mediator

courtesy Mike Williams (via F.L. Redi)

Dark Photon Search @ LHCb

LIGURA X. EVAMPIA MINING IN- 1-1- distributions with HE results averials for promotilize can

Dark Photon Search @ LHCb

Dark Photon Search @ LHCb

PhD Comics Dark Matters - A Tales from the Road Comic

JORGE CHAM @ 2011