modern cosmology

cosmic microwave background and gravitational lensing

Björn Malte Schäfer

Fakultät für Physik und Astronomie, Universität Hejdelberg

```
May 16, 2019
```

outline

gravitational light deflection

2 cosmic shear

8 lensing

- 4 int. Sachs-Wolfe effect
- 6 Rees-Sciama effect

6 summary

Björn Malte Schäfer

gravitational lensing: overview

- gravitational light deflection: test of general relativity (1919)
- strong lensing: giant luminous arcs in clusters of galaxies
- weak lensing: correlated distortion of background galaxy images
- multiply imaged quasars and time delays
- lensed light curves of bulge stars and search of MACHOs
- lensing of the microwave background (2007)

weak perturbations of the metric

- consider Minkowski-line element, weakly perturbed by static gravitational potential $\boldsymbol{\Phi}$

$$(ds)^{2} = \left(1 + \frac{2}{c^{2}}\Phi\right)c^{2}dt^{2} - \left(1 - \frac{2}{c^{2}}\Phi\right)d\vec{x}^{2}$$
 (1)

 on a geodesic, the line element vanishes: derive effective index of refraction n

$$\frac{d|\vec{x}|}{dt} = c' = \frac{c}{n} \text{ with } n = 1 - \frac{2}{c^2}\Phi$$
 (2)

• Fermat's principle: photon minimises run time $\int |d\vec{x}| n$

$$\delta \int_{x_i}^{x_f} ds \sqrt{\frac{d\vec{x}^2}{ds^2}} n(\vec{x}(s)) = 0, \qquad (3)$$

for parameterisation x(s) of trajectory with $\left|d\vec{x}/ds\right|=1$

Björn Malte Schäfer

lens equation

• carry out the variation yields $(\nabla_{\perp} = \nabla - \vec{e}(\vec{e}\nabla))$:

$$abla n - \vec{e}(\vec{e}\nabla n) - n\frac{d\vec{e}}{ds} = 0 \rightarrow \frac{d\vec{e}}{ds} = \nabla_{\perp} \ln n \simeq -\frac{2}{c^2} \nabla_{\perp} \Phi$$
 (4)

- deflection $\hat{a} = \vec{e}_f \vec{e}_i = -\frac{2}{c^2} \int ds \nabla_{\perp} \Phi$
- read off lens equation, use deflection angle â:

$$\vec{\eta} = \frac{D_s}{D_l}\vec{\xi} - D_{ls}\hat{a} \rightarrow \vec{\beta} = \vec{\theta} - \frac{D_{ls}}{D_s}\hat{a}(\vec{\theta}) = \vec{\theta} - \vec{a}$$
(5)

Björn Malte Schäfer

approximations

• formally:
$$\hat{a} = \vec{e}_f - \vec{e}_i = -\frac{2}{c^2} \int ds \nabla_{\perp} \Phi$$

- nonlinear integral: the deflection determines the path on which one needs to carry out the integration
- Born-approximation: integration along a fiducial straight ray instead of actual photon geodesic
- if the travel path (of order c/H_0)) is large compared to the size of the lens, then the gravitational interaction can be taken to be instantaneous \rightarrow thin-lens approximation
- in this case: project the surface mass density Σ

$$\Sigma(\vec{b}) = \int dz \,\rho(\vec{b},z) \tag{6}$$

modern cosmology

• deflection is the superposition of all surface density elements

$$\hat{\alpha}(\vec{b}) = \frac{4G}{c^2} \int d^2b' \ \Sigma(\vec{b}') \frac{\vec{b} - \vec{b}'}{|\vec{b} - \vec{b}'|^2}$$

Björn Malte Schäfer

lens mapping and the mapping Jacobian

- lens equation $\vec{\beta} = \vec{\theta} \vec{\alpha}(\vec{\theta})$ relates true position $\vec{\theta}$ to observed position β with mapping field a
- if mapping a = $\nabla_\perp \psi$ is not constant across galaxy image \to distorsion of observed shape
- describe with Jacobian-matrix J

$$\mathbf{J} = \frac{\partial \vec{\beta}}{\partial \vec{\Theta}} = \left(\delta_{ij} - \frac{\partial^2 \boldsymbol{\psi}(\vec{\Theta})}{\partial \Theta_i \partial \Theta_j} \right)$$
(8)

decompose A = id – J in terms of Pauli-matrices:

$$A = \sum_{\alpha} a_{\alpha} \sigma_{\alpha} = \kappa \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \gamma_{+} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \gamma_{\times} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
(9)

- coefficients: κ (convergence), $\gamma_{\scriptscriptstyle +}$ and $\gamma_{\scriptscriptstyle \times}$ (shear)
- combine shear coefficients to complex shear $\gamma=\gamma_++i\gamma_\times$ (spin 2)

Björn Malte Schäfer

image distortions

- deflection not observable, actual position of a galaxy is unknown
- with assumptions on galaxy ellipticity, the shearing is observable
- bending of an image (flexion) is a new lensing method

question

why is there no rotation of a galaxy image in lensing?

Björn Malte Schäfer

mass reconstructions

- convergence \propto local surface mass density Σ of a lens
- but: it is not directly observable \rightarrow is it possible to infer κ and the mass map from the observation of gravitational shear?
- write down derivative relations in Fourier space

$$\kappa = -\frac{1}{2}(k_x^2 + k_y^2)\psi \quad \gamma_+ = -\frac{1}{2}(k_x^2 - k_y^2)\psi \quad \gamma_\times = -k_x k_y \psi$$
 (10)

combine into single equation

$$\begin{pmatrix} \mathbf{Y}_{+} \\ \mathbf{Y}_{\times} \end{pmatrix} = \frac{1}{\mathbf{k}^{2}} \begin{pmatrix} \mathbf{k}_{\mathbf{x}}^{2} - \mathbf{x}_{\mathbf{y}}^{2} \\ 2\mathbf{k}_{\mathbf{x}}\mathbf{k}_{\mathbf{y}} \end{pmatrix} \mathbf{\kappa}$$
 (11)

• operator is **orthogonal**: $A^2 = id$

$$\left[\frac{1}{k^2}\begin{pmatrix}k_x^2-k_y^2\\2k_xk_y\end{pmatrix}\right]^2 = 1$$
 (12)

Björn Malte Schäfer

example: cluster profiles

numerical cluster reconstructions, source: J. Merten

• inversion $\kappa = \frac{1}{k^2} \left[(k_x^2 - k_y^2) \gamma_+ + 2k_x k_y \gamma_\times \right]$ yields estimate of map Σ

question

derive the reconstruction operator in real space and formulate the inversion as an integration, identify the Green-functionern cosmology

weak cosmic shear

source: S. Colombi

- lensing on the large-scale structure: fluctuation statistics of the lensing signal reflects the fluctuation statistics of the density field
- neighboring galaxies have correlated deformations because the light rays cross similar, correlated tidal fields

Björn Malte Schäfer

gravitational light deflection

(cosmic shear)

tidal fields and their effect on light rays

 distance x of a gravitationally deflected light ray relative to a fiducial straight line is

$$\frac{d^2 x}{d\chi^2} = -\frac{2}{c^2} \nabla_{\perp} \Phi$$
 (13)

solution (flat universes)

$$\mathbf{x} = \mathbf{x}\mathbf{\theta} - \frac{2}{c^2} \int d\mathbf{x}' (\mathbf{x} - \mathbf{x}') \nabla_{\perp} \Phi(\mathbf{x}'\mathbf{\theta})$$
(14)

deflection angle

$$a = \frac{\chi \theta - x}{\chi} = \frac{2}{c^2} \int d\chi' \, \frac{\chi - \chi'}{\chi} \nabla_{\perp} \Phi(\chi' \theta)$$
(15)

• convergence, with $\nabla_{\theta} = \chi \nabla_{x}$

$$\kappa = \frac{1}{2} \text{diva} = \frac{1}{c^2} \int d\chi' (\chi - \chi') \frac{\chi'}{\chi} \Delta \Phi(\chi' \theta)$$
 (16)

Björn Malte Schäfer

tidal fields and their effect on light rays

• relate to density field with (comoving) Poisson-equation

$$\Delta \Phi = \frac{3H_0^2 \Omega_m}{2a} \delta \tag{17}$$

• final result:

$$\kappa = \int d\chi' W(\chi,\chi')\delta \quad \text{with} \quad W(\chi,\chi') = \frac{3}{2} \left(\frac{H_0}{c}\right)^2 \frac{\Omega_m}{a} (\chi - \chi') \frac{\chi'}{\chi}$$
(18)

• fluctuations in κ reflect fluctuations in δ in a linear way

cosmic shear

gravitational shear of a galaxy measures the integrated matter density along the line of sight, weighted by $W(\chi)$

Björn Malte Schäfer

ray-tracing simulations of weak lensing

Björn Malte Schäfer

simulated shear field on an n-body simulation

- Gadget-simulated, side length 100 Mpc/h, 40 planes
- clusters of galaxies produce characteristic pattern in shear field

Björn Malte Schäfer

Limber-equation

- original title: Limber (1953), The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field
- relate 3d-power spectrum P(k) to observed 2d-power spectrum $C(\ell)$
- define correlation function $C(\theta) = \langle g(\vec{\theta}_1)g(\vec{\theta}_2) \rangle$ of quantity g, which measures fluctuations in density field $g(\vec{\theta}) = \int d\chi W(\chi) \delta(\chi \vec{\theta}, \chi)$
- assume that weighting function $q(\boldsymbol{\chi})$ does not vary much compared to fluctuation scale:

$$C(\theta) = \int d\mathbf{x} W(\mathbf{x})^2 \int d(\Delta \mathbf{x}) \,\xi \left(\sqrt{(\mathbf{x}\theta)^2 + \Delta^2 \mathbf{x}}, \mathbf{x} \right)$$
(19)

• correlation function $C(\theta)$ can be Fourier-transformed to yield angular power spectrum $C(\ell)$:

shear power spectra

source: Bartelmann & Schneider, physics reports 340 (2001)

- use Limber's equation to link the shear power spectrum to the dark matter power spectrum
- cosmology: redshift weightings $W(\chi),$ growth $D_+(a(\chi)),$ normalisation reflects σ_8

Björn Malte Schäfer

shear in apertures

source: Bartelmann & Schneider, physics reports 340 (2001)

- improve constraint on $\sigma_8 \colon \textit{C}(\ell)$ should be determined by a small range of k-modes
- average γ in an aperture of size $\theta {:}~ \langle |\gamma|^2 \rangle (\theta) {:}~ product$ in $\ell\text{-space}$

$$\langle |\mathbf{y}|^2 \rangle(\mathbf{\Theta}) = 2\pi \int_0^\infty d\ell \ell C_{\mathbf{y}}(\ell) \left[\frac{\mathbf{J}_1(\mathbf{\Theta}\ell)}{\pi \mathbf{\Theta}\ell} \right]^2$$
 (21)

Björn Malte Schäfer

parameter estimates from weak cosmic shear

joint constraint on $\boldsymbol{\varOmega}_{EDE}$ and $w_0,$ source: L. Hollenstein

- lensing is a powerful method for determining parameters
- even complicated dark energy models can be investigated

Björn Malte Schäfer

future lensing surveys

EUCLID

- coverage ~ half of the sky, going to unit redshift
- precision determination of cosmological parameters, statistical errors $\sim 10^{-3\ldots-4}$
- challenge: systematics control

(cosmic shear)

measurements of galaxy shapes

- observe distorsion in the shape of lensed galaxies
- measure second moments of brightness distribution

$$Q_{ij} = \frac{\int d^2 \theta I(\vec{\theta})(\theta_i - \bar{\theta}_i)(\theta_j - \bar{\theta}_j)}{\int d^2 \theta I(\vec{\theta})}$$
(22)

• define complex ellipticity (spin 2):

$$\epsilon = \frac{Q_{xx} - Q_{yy} + 2iQ_{xy}}{Q_{xx} + Q_{yy} + 2\sqrt{Q_{xx}Q_{yy} - Q_{xy}^2}}$$
(23)

mapping of complex ellipticity by a Jacobian with reduced shear g(θ) = γ(θ)/[1 - κ(θ)]:

$$\epsilon = \frac{\epsilon' + g}{1 + g^* \epsilon'} \text{ for } \left|g\right| \le 1, \ \epsilon = \frac{1 + (\epsilon')^* g}{(\epsilon')^* - g'} \text{ for } \left|g\right| > 1 \tag{24}$$

Björn Malte Schäfer

galaxy shapes with shapelets

shapelet base functions B_{ij}, source: P. Melchior

 decomposition into a set of basis functions based on the quantum mechanical harmonic oscillator: Hermite polynomials

Björn Malte Schäfer

lensing of the cosmic microwave background

(lensing)

sky-map of the deflection angle, source: C. Carbone

- weird (non-Gaussian) patterns in the deflection field
- measurement of lensing at high redshift, in temperature and polarisation

Björn Malte Schäfer

parameter estimates from CMB lensing

- lensing wipes out structures in the CMB (compare to frosted glass)
- amplitudes of the CMB spectrum decreases, non-Gaussianitites in the CMB are generated

Björn Melt policification correlations more stronaly affected. B-models smology

microlensing and MACHOs

lensina

source: C. Alcock

- compact massive objects (historical dark matter candidates) orbit the Milky Way
- observe a large number of bulge stars or stars in the LMC
- find lensed light curves, very typical signature

Björn Malte Schäfer

time delay measurements with quasars

lensing

source: universe review

- image appears if the variation of the gravitational time delay is zero
- time delays between different images differ by days
- geometry of the lens can be determined, including the distance

Björn Malte Schäfer

(lensing)

strong lensing and Einstein-rings

Einstein ring around an elliptical galaxy, source: SLACS survey

 perfect alignment of source and lens give rise to Einstein rings

Björn Malte Schäfer

integrated Sachs-Wolfe effect

- gravitational interaction of CMB photons with time-varying potentials
- sensitive to the growth of structures
- secondary anisotropy in the CMB, large angular scales

Björn Malte Schäfer

iSW-derivation

- grav. interaction of CMB photons with time-evolving potentials
- temperature perturbation τ , conformal time η

$$\tau = \frac{\Delta T}{T_{CMB}} = -\frac{2}{c^2} \int d\eta \, \frac{\partial \Phi}{\partial \eta} = \frac{2}{c^3} \int d\chi \, a^2 H(a) \frac{\partial \Phi}{\partial a}$$

- reformulation:
 - use comoving distance χ as a distance measure: $d\chi = -cd\eta$
 - scale factor a as a time variable:

$$\frac{d}{d\eta} = a^2 H(a) \frac{d}{da}$$

generate potential from density field with comoving Poisson equation

$$\Delta \Phi = \frac{3H^2\Omega_m}{2a} \delta \rightarrow \frac{\Phi}{c^2} = \frac{3\Omega_m}{2a} \frac{\Delta^{-1}\delta}{d_H^2}$$

 $_{Bj{\rm orn}}$ Maltischlfeeffect measures $d/da(D_{+}/a)$

iSW sky map

- iSW-induced temperature fluctuations on large scales
- need to be separated from the primary CMB fluctuations

cross correlation techique

- iSW-perturbation have the same spectrum as the CMB
- use a tracer (i.e. galaxy density) which marks the potential wells
- cross-correlation between the CMB and the tracer

 $\langle (T_{iSW} + T_{CMB}) \gamma_{tracer} \rangle = \langle T_{iSW} \gamma_{tracer} \rangle$

- tracer is uncorrelated with primary CMB
- tracer picks out iSW-perturbations
- tracer density: redshift distribution p(z), bias b

$$\gamma = \int d\chi \, p(z) \frac{dz}{d\chi} b \; D_+ \; \delta$$

• careful: iSW-effect measures φ , but tracers follow $\delta \rightarrow \delta$ different scales

Björn Malte Schäfer

modern cosmoloav

iSW-spectra

• line of sight expressions, $\varphi = \Delta^{-1} \delta / d_{H}^{2}$, $d_{H} = c / H_{0}$

$$\begin{split} \tau &= \frac{3\Omega_m}{c} \int dx \, a^2 H(a) \frac{d}{da} \frac{D_+}{a} \, \varphi = \int dx \, W_\tau(x) \varphi \\ \gamma &= \int dx \, p(z) \frac{dz}{dx} D_+ b \, \delta = \int dx \, W_\gamma(x) \delta \end{split}$$

- Limber-equation: project 3d spectrum to 2d spectrum, flat-sky approximation
- angular power spectra: fluctuation on angular scale $\ell=\pi/\Delta \Theta$

$$\begin{split} \mathcal{C}_{\tau\tau}(\ell) &= \int d\chi \; \frac{W_{\tau}^2(\chi)}{\chi^2} \; \frac{P(k)}{(d_H k)^4} \bigg|_{k=\ell/\chi} \\ \mathcal{C}_{\tau\gamma}(\ell) &= \int d\chi \; \frac{W_{\tau}(\chi)W_{\gamma}(\chi)}{\chi^2} \; \frac{P(k)}{(d_H k)^2} \bigg|_{k=\ell/\chi} \end{split}$$

• Poisson-equation in Fourier-space: $\Delta \Phi \propto \delta \rightarrow (-k^2) \Phi \propto \delta$ Biorn Malte Schöfer moder

lensing

(int. Sachs-Wolfe effect)

iSW-spectra

- most signal at low l, cosmic variance limitations
- easy to remember:
 - $C_{\tau\gamma}(\ell) \propto \ell^{-2}$ $C_{\tau\tau}(\ell) \propto \ell^{-4}$

Björn Malte Schäfer

modern cosmoloav

Rees-Sciama effect sun

which redshift contributes most to iSW?

lensing

rewrite line of sight integral τ

$$\tau=\frac{3H_0^2}{c^3}\int_0^{\chi_H}dx\,a^2H(a)\,\frac{dQ}{da}\,\Delta^{-1}\delta,$$

- special redshift: $\Omega_m(z) = \Omega_{DE}(z)$
- less negative eos-parameter w \rightarrow signal from higher redshift

Björn Malte Schäfer

parameter sensitivity

$$C_{\tau\gamma}(\ell) = \frac{3\Omega_m}{c} \int \frac{dx}{\chi^2} \left[D_+ bp(z) \frac{dz}{dx} \right] \left[a^2 H(a) \frac{d}{da} \frac{D_+}{a} \right] \frac{P(k)}{(d_H k)^2} \bigg|_{k = \ell/\chi}$$

- prefers intermediate values for Ω_m
- signature for dark energy:
 - SCDM: $D_+(a) = a$, $\rightarrow d/da(D_+/a)$ vanishes
- σ₈ is completely degenerate with bias b
 - external prior on σ₈
 - combination of $C_{\tau\gamma}(\ell)$ with $C_{\gamma\gamma}(\ell)$
- minor dependency on n_s and h (via shape parameter)
- sensitivity to w, from growth and cosmology
- compare to lensing: very similar, $\propto D_{\scriptscriptstyle +}/a$

Björn Malte Schäfer

parameter sensitivity

- logarithmic derivatives of the spectrum
- parallel curves \rightarrow degeneracies

Björn Malte Schäfer

Rees-Sciama effect summa

parameter constraints

- ideal measurment
- CMB priors on Ω_m , σ_8 , n_s and h
- 10% accuracy on $arOmega_{
 m DE}$, 20% accuracy on w

Björn Malte Schäfer

constraints: covariance

- cross correlation technique: $C_{\tau\gamma}(\ell)$ does not CMB-fluctuations
 - tracer is uncorrelated with CMB
- primary CMB fluctuations enter as correlation noise!

$$\text{cov}[\mathcal{C}_{\text{TY}}] = \frac{2}{2\ell + 1} \frac{1}{f_{sky}} \left[\tilde{\mathcal{C}}_{\text{TY}}^2(\ell) + \tilde{\mathcal{C}}_{\text{YY}}(\ell) \tilde{\mathcal{C}}_{\text{TT}}(\ell) \right]$$

- $\tilde{C}_{\tau\gamma}(\ell) = C_{\tau\gamma}(\ell)$, cross correlation!
- $\tilde{\mathcal{L}}_{\gamma\gamma}(\ell) = \mathcal{L}_{\gamma\gamma}(\ell) + \mathcal{L}_{Poisson}(\ell)$, Poissonian error
- $\tilde{C}_{\tau\tau}(\ell) = C_{\tau\tau}(\ell) + C_{CMB}(\ell) + C_{noise}(\ell)$, primary CMB
- cosmic variance: important, highest amplitudes at low ℓ
- iSW-effect much weaker (10 σ) than gravitational lensing (> 100 σ)
- weaker constraints, but
 - useful for degeneracy breaking

Björn Malte Schäfer

Rees-Sciama effect s

application: coupled fluids

lensing

- recent flurry in the literature: coupled DM/DE
- construct cosmologies with very similar growth functions
- iSW-effect can still distinguish them!
- other field: modified gravity theories, DGP-gravity

Björn Malte Schäfer

iSW-effect: pros and cons

- maps structure growth, compares D₊ to a
- signature of dark energy, vanishes in SCDM
- sensitivity for non-standard Poisson equation \rightarrow DE/CDM coupling or modified gravity
- weak constraints (CMB noise), total significance $\simeq 10\sigma$

lensing

- can access information hidden to geometrical probes, gravitational
- analogy to lensing:
 - lensing $\kappa \propto \int d\chi D_+/a\delta$
 - iSW-effect $\tau \propto \int dx d(D_+/a)/da\varphi$
- strongest for intermediate Ω_m: coupling vs. growth
- uncertainties related to bias
 - bias decreases with time: db/da < 0, different for every tracer

 scale dependence b(k), different for every tracer Björn Malte Schäfer

modern cosmoloav

Rees-Sciama effect

- RS-effect: iSW-effect from nonlinear structures
- distinction a bit artificial (similar to kin. Sunyaev-Zeldovich-effect vs. Ostriker-Vishniac-effect)
- two different approaches in perturbation theory
 - perturbed density field, solve for potential

$$\delta(a) = D_{+}(a)\delta^{(1)} + D_{+}^{2}(a)\delta^{(2)} + \dots$$

• continuity equation: velocity-density products, get Φ

 $\dot{\delta} = -div(\delta\vec{v}) \rightarrow \text{Poisson-equation}$

- first approach: 2nd order, second approach: 1st order
- both involve computation of 4-point correlation functions

Björn Malte Schäfer

iSW-effect vs. RS-effect

- perturbation: $\delta(a) = D_+ \delta^{(1)} + D_+^2 \delta^{(2)} + \dots$
 - first order

$$\tau^{(1)} = \frac{3\Omega_m}{c} \int_0^{x_H} dx \, a^2 H(a) \; \frac{d}{da} \left(\frac{D_+}{a} \right) \; \frac{\Delta^{-1}}{d_H^2} \delta^{(1)}$$

second order

$$\tau^{(2)}=\frac{3\varOmega_m}{c}\int_0^{x_H}dx\,a^2H(a)\;\frac{d}{da}\!\left(\frac{D_+^2}{a}\right)\;\frac{\Delta^{-1}}{d_H^2}\delta^{(2)}$$

- dark energy sensitivity:
 - linear iSW-effect:
 vanishes in SCDM, D₊ = a, nonzero in DE cosmologies
 - nonlinear iSW-effect: largest in SCDM, smaller in DE

Björn Malte Schäfer

time evolution of source terms

- individual time-evolution for first- and second order fields
- plotted for ACDM with $\Omega_m = 0.25$

Björn Malte Schäfer

modern cosmology

summa

(Rees-Sciama effect)

summa

iSW bispectrum – non-Gaussian signature

- angular equilateral bispectra between galaxy overdensity and iSW-effect, $\langle \tau^q \gamma^{3-q}\rangle,\,q=0,1,2$
- perturbation theory for galaxy density and iSW-effect

Björn Malte Schäfer

time evolution of bispectra

- time evolution of mixed spectra $\langle \tau^n \gamma^{3-n} \rangle$
- non-Gaussianity of late-time structure formation

Björn Malte Schäfer

configuration dependence

- configuration dependence $R_{\ell_3}(\ell_1, \ell_2) \propto \sqrt{\frac{B(\ell_1, \ell_2, \ell_3)}{B(\ell_3, \ell_3, \ell_3)}}$
- ϕ peaks on larger scales than δ

Björn Malte Schäfer

measurability of the iSW-bispectrum

- bispectrum covariance, with Gaussian approximation
- max. signal to noise: 0.6, for PLANCK vs. DUNE
- push to $\ell\simeq 10^4$ for 3 significance

Björn Malte Schäfer

modern cosmology

summa

gravitomagnetic potentials

- change of photon energy in time-variable potential wells: $\tau = \frac{\Delta T}{T} = -\frac{2}{c^3} \int d\chi \, \frac{\partial \Phi}{\partial \eta} \text{ with conformal time } \eta$
- connection to gravitomagnetic potentials: continuity $\frac{\partial}{\partial n} \Phi = -G \int d^3 r' \frac{\dot{\rho}(\vec{r}')}{|\vec{r} - \vec{r}'|} = +G \int d^3 r' \frac{\nabla' \vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|}$
- integration by parts (ignore boundary terms) $\ldots = -G \int d^3 r' j(\vec{r}') \cdot \nabla' \frac{1}{|\vec{r} - \vec{r}'|}$
- use identity $\nabla' \left(\frac{1}{|\vec{r} \vec{r}'|} \right) = -\nabla \left(\frac{1}{|\vec{r} \vec{r}'|} \right)$, pull out ∇ : ... = $-\nabla \left(-\int d^3 r' \frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|} \right) \rightarrow \tau = \frac{2}{c^3} \int d\chi \ div \vec{A}$
- interpretation: iSW-effect is due to
 1. formation of objects: p > 0 → Φ > 0, or equivalently
 - 2. converging matter streams: $div_{\vec{J}} < 0 \rightarrow div\vec{A} < 0$
- \vec{A} is called gravitomagnetic potential, sourced by \vec{j}

Björn Malte Schäfer

summa

analogies: RS-effect and lensing

• Φ conserves energy $|\vec{k}|$, rotates direction \vec{k}/k

Björn Malt Aschdoes not influence K/k, but stretches wave lengthodern cosmology

(Rees-Sciama effect

summa

RS-effect: visual impression

credit: V.Springel (MPA), Millenium simulation

- non-Gaussian fluctuations, sharp features in the temperature field
- fluctuatios on small scales, structure formation activity

Björn Malte Schäfer

summary: Friedmann-Lemaître cosmologies

- dynamic world models based on general relativity
- Robertson-Walker line element as a solution to the field equation
- Copernican principle: homogeneous and isotropic metric
- homogeneous fluids, with a certain pressure density relation, parameterised by $w=p/\rho$
 - radiation (w = +1/3)
 - (dark) matter (w = 0)
 - curvature (w = -1/3)
 - cosmological constant (w = -1)
- Hubble parameter H_0 defines the critical density $\rho_{crit}=3H_0^2/(8\pi G)$
- distance definitions become ambiguous
- geometrical probes constrain the model parameters to a few percent, in particular $\Omega_k < 0.01$

Björn Malte Schäfer

modern cosmology

summa

summa

summary: random fields and spectra

- inflation: epoch of rapid accelerated expansion of the early universe
- Hubble expansion dominated by a fluid with very negative w
 - drives curvature towards zero \rightarrow flatness problem
 - grows observable universe from a small volume \rightarrow horizon problem
- fluctuations in the energy density of the inflaton field couple gravitationally to the other fluids
- fluctuations are Gaussian and have a finite correlation length
 - characterisation with a correlation function $\xi(r)$
 - homogeneous fluctuations: spectrum P(k)
- inflationary fluctuations can be observed as temperature anisotropies in the CMB
- shape of the spectrum: inflation gives $P(k)\propto k^{n_s}$, changed by transfer function T(k) in the Meszaros effect, normalised by

Björn Malte Schäfer

(summa

summary: structure formation

- cosmic structures and the large-scale distribution of galaxies form by gravitational instability of inflationary perturbation
 - continuity equation
 - Euler equation
 - Poisson equation
- linearisation for small amplitudes: homogeneous growth, described by $\mathsf{D}_+(a),$ conservation of Gaussianity of initial conditions
- nonlinear growth is inhomogeneous and destroys Gaussianity by mode coupling
- three basic difficulties
 - nonlinearities in the continuity and Euler-equation
 - collisionlessness of dark matter
 - non-extensivity of gravity
- galaxy formation: gravitational collapse, Jeans argument

Björn Malt Balafedensity: predicted from P(k) with Press-Schechter

summary: standard model ACDM

- ACDM is a flat, accelerating Friedmann-Lemaître cosmology with dark matter and a cosmological constant
- ACDM has 7 parameters, and is in remarkable agreement with observations, both of geometrical and growth probes

1
$$\Omega_m = 0.25$$
, low density, required by supernova observations
2 $\Omega_b = 0.04$, small value, good measurement from CMB
3 $\Omega_{\Lambda} = 0.75$, flatness from CMB, $\Omega_m + \Omega_{\Lambda} = 1$
4 $w = -1$, cosmological constant, no dynamic dark energy
5 $\sigma_8 = 0.8$, low value (compared to history), largest uncertainty
6 $n_s = 0.96$, predicted by inflation to be ≤ 1
7 $h = 0.72$, sets expansion time scale, or age/size of the universe

up to now, there is no theoretical understanding of Λ

summary: open questions in cosmology

- precision determination of cosmological parameters and verification of the standard model
- Gaussianity of initial conditions and constraints on the inflationary model, tensor excitations and gravitational waves
- quantification of the nonlinearly evolved cosmic density field
- substructure of dark matter haloes and an explanation of their kinematical structure
- biasing of galaxies and relations between host halo properties and member galaxies
- distinguishing between cosmological constant, dark energy or modified gravity
- tidal interactions of haloes with the large-scale structure