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expansion history of the universe

expansion history of the universe
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Planck-scale
• at a = 0, z = ∞ the metric diverges, and H(a) becomes infinite
• description of general relativity breaks down, quantum
effects become important

• relevant scales:
• quantum mechanics: de Broglie-wave length: λQM =

2πℏ
mc

• general relativity: Schwarzschild radius: rs = 2Gm
c2

• setting λQM = rs defines the Planck mass

mP =

√
ℏc
G ≃ 10

19GeV/c2 (1)

question
how would you define the corresponding Planck length and
the Planck time? what are their numerical values?
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flatness problem
• construct a universe with matter w = 0 and curvature
w = −1/3

• Hubble function
H2(a)
H2
0
=
Ωm

a3
+
ΩK

a2
(2)

• density parameter associated with curvature

ΩK(a)
ΩK

=
H2
0

a3(1+w)H2(a)
=

H2
0

a2H2(a)
(3)

• ΩK increases always and was smaller in the past

ΩK(a) =
(
1 + Ωm

ΩK

1
a

)−1
≃ ΩK

Ωm
a (4)

• we know (from CMB observations) that curvature is very
small today, typical limits are ΩK < 0.01 → even smaller in
the past
• at recombination ΩK ≃ 10−5
• at big bang nucleosynthesis ΩK ≃ 10−12
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horizon problem
• horizon size: light travel distance during the age of the
universe

χH = c
∫ da

a2H(a)
(5)

• assume Ωm = 1, integrate from amin = arec . . . amax = 1

χH = 2
c
H0

√
Ωmarec = 175

√
ΩmMpc/h (6)

• comoving size of a volume around a point at recombination
inside which all points are in causal contact

• angular diameter distance from us to the recombination shell:

drec ≃ 2
c
H0

arec ≃ 5Mpc/h (7)

• angular size of the particle horizon at recombination:
θrec ≃ 2◦

• points in the CMB separated by more than 2◦ have never
been in causal contact → why is the CMB so uniform if
there is no possibility of heat exchange?
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inflation: phenomenology
• curvature ΩK ∝ to the comoving Hubble radius c/(aH(a))
• if by some mechanism, c/(aH) could decrease, it would drive
ΩK towards 0 and solve the fine-tuning required by the
flatness problem

• shrinking comoving Hubble radius:
d
dt

( c
aH

)
= −c ä

ȧ2
< 0→ ä > 0→ q < 0 (8)

• equivalent to the notion of accelerated expansion
• accelerated expansion can be generated by a dominating fluid
with sufficiently negative equation of state w = −1/3

• horizon problem: fast expansion in inflationary era makes
the universe grow from a small, causally connected region

question
what’s the relation between deceleration q and equation of
state w?
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inflaton-driven expansion
• analogous to dark energy, one postulates an inflaton field φ,
with a small kinetic and a large potential energy, for having a
sufficiently negative equation of state for accelerated
expansion

• pressure and energy density of a homogeneous scalar field

p = φ̇2

2 − V(φ), ρ = φ̇2

2 + V(φ) (9)

• Friedmann equation

H2(a) =
8πG
3

 φ̇22 + V(φ)
 (10)

• continuity equation

φ̈ + 3Hφ̇ = −dV
dφ

(11)
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slow roll conditions
• inflation can only take place if φ̇2 ≪ V(φ)

• inflation needs to keep going for a sufficiently long time:

d
dt

φ̇2 ≪ d
dt

V(φ)→ φ̈ ≪ d
dφ

V(φ) (12)

• in this regime, the Friedmann and continuity equations
simplify:

H2 =
8πG
3 V(φ), 3Hφ̇ = − d

dφ
V(φ) (13)

• conditions are fulfilled if

1
24πG

(
V′
V

)2
≡ ε ≪ 1, 1

8πG

(
V′′
V

)
≡ η ≪ 1 (14)

• ε and η are called slow-roll parameters
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stopping inflation
• flatness problem: shrinkage by ≃ 1030 ≃ exp(60) → 60
e-folds

• due to the slow-roll conditions, the energy density of the
inflaton field is almost constant

• all other fluid densities drop by huge amounts, ρm by 1090, ργ
by 10120

• eventually, the slow roll conditions are not valid anymore, the
effective equation of state becomes less negative,
acclerated expansion stops

• but energy is stored in φ as kinetic energy φ̇2

• reheating: couple φ to other particle fields, and generate
particles from the inflaton’s kinetic energy

• how exactly reheating occurs, is largely unknown
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generation of fluctuations
• fluctuations of the inflation field can perturb the
distribution of all other fluids

• mean fluctuation amplitude is related to the variance of φ
• fluctuations in φ perturb the metric, and all other fluids feel
a perturbed potential

• relevant quantity √
⟨δΦ2⟩ ≃ H2

V (15)

which is approximately constant during slow-roll
• Poisson-equation in Fourier-space k2Φ(k) = −δ(k)
• variance of density perturbations:∣∣∣δ(k)

∣∣∣2 ∝ k4 ∣∣∣δΦ∣∣∣2 ∝ k3P(k) (16)

• defines spectrum P(k) of the initial fluctuations, P(k) ∝ kn
with n ≃ 1

• fluctuations are Gaussian, because of the central limit
theorem
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random fields

• random process → probability density p(δ)dδ of event δ
• alternatively: all moments ⟨δn⟩ =

∫
dδ δnp(δ)

• in cosmology:
• random events are values of the density field δ
• outcomes for δ(x⃗) form a statistical ensemble at fixed x⃗
• ergodic random processes:
one realisation is consistent with p(δ)dδ

• special case: Gaussian random field
• only variance relevant
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characteristic function φ(t)

• for a continuous pdf, all moments need to be known for
reconstructing the pdf

• reconstruction via characteristic function φ(t) (Fourier
transform)

φ(t) =
∫

dxp(x) exp(itx) =
∫

dxp(x)
∑
n

(itx)n

n!
=

∑
n
⟨xn⟩p

(it)n

n!
(17)

with moments ⟨xn⟩ =
∫
dxxnp(x)

• Gaussian pdf is special:
• all moments exist! (counter example: Cauchy pdf)
• all odd moments vanish
• all even moments are expressible as products of the variance
• σ is enough to statistically reconstruct the pdf
• pdf can be differentiated arbitrarily often (Hermite
polynomials)

• funky notation: φ(t) = ⟨exp(itx)⟩ modern cosmologyBjörn Malte Schäfer
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cosmic microwave background
• inflation has generated perturbations in the distribution of
matter

• the hot baryon plasma feels fluctuations in the distribution
of (dark) matter by gravity

• at the point of (re)combination:
• hydrogen atoms are formed
• photons can propagate freely

• perturbations can be observed by two effects:
• plasma was not at rest, but flowing towards a potential well →
Doppler-shift in photon temperature, depending to direction
of motion

• plasma was residing in a potential well → gravitational redshift
• between the end of inflation and the release of the CMB, the
density field was growth homogeneously → all statistical
properties of the density field are conserved

• testing of inflationary scenarios is possible in CMB
observations
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formation of hydrogen: (re)combination

• temperature of the fluids drops during Hubble expansion
• eventually, the temperature is sufficiently low to allow the
formation of hydrogen atoms

• but: high photon density (remember ηB = 109) can easily
reionise hydrogen

• Hubble-expansion does not cool photons fast enough between
recombination and reionisation

• neat trick: recombination takes place by a 2-photon process

question
at what temperature would the hydrogen atoms form if they
could recombine directly? what redshift would that be?
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CMB motion dipole
• the most important structure on the microwave sky is a
dipole

• CMB dipole is interpreted as a relative motion of the earth
• CMB dispole has an amplitude of 10−3K, and the peculiar
velocity is β = 371km/s · c

T(θ) = T0
(1 + β cos θ) (18)

question
is the Planck-spectrum of the CMB photons conserved in a
Lorentz-boost?

question
would it be possible to distinguish between a motion dipole
and an intrinsic CMB dipole?
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CMB dipole

source: COBE
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subtraction of motion dipole: primary
anisotropies

source: PLANCK simulation
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CMB angular spectrum
• analysis of fluctuations on a sphere: decomposition in Yℓm

T(θ) =
∑
ℓ

∑
m
tℓmYℓm(θ) ↔ tℓm =

∫
dΩ T(θ)Y∗ℓm(θ) (19)

• spherical harmonics are an orthonormal basis system
• average fluctuation variance on a scale ℓ ≃ π/θ

C(ℓ) = ⟨|tℓm|2⟩ (20)

• averaging ⟨. . .⟩ is a hypothetical ensemble average. in reality,
one computes an estimate of the variance,

C(ℓ) ≃ 1
2ℓ + 1

m=+ℓ∑
m=−ℓ
|tℓm|2 (21)
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parameter sensitivity of the CMB spectrum

source: WMAP
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features in the CMB spectrum
• predicting the spectrum C(ℓ) is very complicated
• perturbations in the CMB photons n ∝ T3, u ∝ T4,
p = u/3 ∝ T4:

δn
n0
= 3δTT ≡ Θ,

δu
u0
= 4Θ =

δp
p0

(22)

• continuity and Euler equations:

ṅ = n0divυ = 0, υ̇ = −c2
∇p

u0 + p0
+ ∇δΦ (23)

• use u0 + p0 = 4/3u0 = 4p0
• combine both equations

Θ̈ − c2
3 ΔΘ + 1

3ΔδΦ = 0 (24)

• identify two mechanisms:
• oscillations may occur, and photons experience Doppler shifts
• photons feel fluctations in the potential: Sachs-Wolfe effect
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parameter sensitivity of the CMB spectrum

source: Wayne Hu
modern cosmologyBjörn Malte Schäfer
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secondary CMB anisotropies

• CMB photons can do interactions in the cosmic large-scale
structure on their way to us

• two types of interaction: Compton-collisions and
gravitational

• consequence: secondary anisotropies
• study of secondaries is very interesting: observation of the
growth of structures possible, and precision determination
of cosmological parameters

• all effects are in general important on small angular scales
below a degree
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thermal Sunyaev-Zel’dovich effect
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thermal SZ sky map CMB spectrum distortion

• Compton-interaction of CMB photons with thermal electrons
in clusters of galaxies

• characteristic redistribution of photons in energy spectrum
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kinetic Sunyaev-Zel’dovich/Ostriker-Vishniac
effect
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• Compton-interaction of CMB photons with electrons in bulk
flows

• increase/decrease in CMB temperature according to
direction of motion modern cosmologyBjörn Malte Schäfer
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CMB lensing

source: A. Lewis, A. Challinor

• gravitational deflection of CMB photons on potentials in the
cosmic large-scale structure

• CMB spots get distorted, and their fluctuation statistics is
changed, in particular the polarisation
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integrated Sachs-Wolfe effect

source: B. Barreiro

• gravitational interaction of photons with time-evolving
potentials

• higher-order effect on photon geodesics in general relativity
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inflationary fluctuations in the CMB

source: WMAP
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random processes
• inflation generates fluctuations in the distribution of matter

• fluctuations can be seen in the cosmic microwave background
• seed fluctuations for the large-scale distribution of galaxies
• amplified by self-gravity

• cosmology is a statistical subject
• fluctuations form a Gaussian random field
• random processes: specify

• probability density p(x)dx
• covariance, in the case of multivariate processes p(x⃗)dx⃗

• measurement of p(x)dx by determining moments
⟨xn⟩ =

∫
dx xnp(x)

• cosmology: random process describes the fluctuations of the
overdensity

δ = ρ − ρ̄
ρ̄ (25)

with the mean density ρ̄ = Ωmρcrit modern cosmologyBjörn Malte Schäfer
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double pendulum
• simple example of a random process
• double pendulum is a chaotic system, dynamics depends very
sensitively on tiny changes in the initial condition

• random process: imagine you want to know the distribution of
φ one minute after starting
• move to initial conditions and let go
• wait 1 minute and measure φ (one realisation)
• repeat experiment → distribution p(φ)dφ (ensemble of
realisations)

• 2 more types of data
• distributions and moments of more than one observable
• moments of observables across different times

question
write down the Lagrangian, perform variation and derive the
equation of motion! show that there is a nonlinearity
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double pendulum: ergodicity and homogeneity

ergodicity
with time, the dynamics generates values for the
observables with the same probability as in the statistical
ensemble, p(φ(t))dt ∝ p(φ)dφ

• time averaging = ensemble averaging, for measuring moments

homogeneity
statistical properties are invariant under time-shifts Δt
p(φ(t))dφ = p(φ(t +Δt))dφ

• necessary condition for ergodicity
• double pendulum: not applicable if there is dissipation
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Gaussian random fields in cosmology
• fluctuations in the density field are a Gaussian random
process → sufficient to measure the variance
• ergodicity: postulated (theorem by Adler)
• volume averages are equivalent to ensemble averages

⟨δn⟩ = 1
V

∫
V
d3x δn(x⃗)p(δ(x⃗)) (26)

• homogeneity: statistical properties independent of position x⃗
p(δ(x⃗)) ∝ p(δ(x⃗ +Δx⃗)) (27)

• the density field is a 3d random field → isotropy
p(δ(x⃗)) = p(δ(Rx⃗)), for all rotation matrices R (28)

• finite correlation length: amplitudes of δ at two positions x⃗1
and x⃗2 are not independent:
• covariance needed for Gaussian distribution p(δ(x⃗1), δ(x⃗2))
• measurement of cross variance/covariance ⟨δ(x⃗1)δ(x⃗2)⟩
• ⟨δ(x⃗1)δ(x⃗2)⟩ is called correlation function ξ
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Gaussian random field

isodensity surfaces, threshold 2.5σ, shading ∼ local
curvature, CDM power spectrum, smoothed on

8 Mpc/h-scales
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statistics: correlation function and spectrum

finite correlation length zero correlation length

correlation function
quantification of fluctuations: correlation function
ξ(⃗r) = ⟨δ(x⃗1)δ(x⃗2)⟩, r⃗ = x⃗2 − x⃗1 for Gaussian, homogeneous
fluctuations, ξ(⃗r) = ξ(r) for isotropic fields
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statistics: correlation function and spectrum
• Fourier transform of the density field

δ(x⃗) =
∫ d3k

(2π)3
δ(k⃗) exp(ik⃗x⃗)↔ δ(k⃗) =

∫
d3x δ(x⃗) exp(−ik⃗x⃗)

(29)
• variance ⟨δ(k⃗1)δ∗(k⃗2)⟩: use homogeneity x⃗2 = x⃗1 + r⃗ and
d3x2 = d3r

⟨δ(k⃗1)δ∗(k⃗2)⟩ =
∫

d3r ⟨δ(x⃗1)δ(x⃗1 + r⃗)⟩ exp(−ik⃗2r⃗)(2π)3δD(k⃗1 − k⃗2)

(30)

• definition spectrum P(k⃗) =
∫
d3r ⟨δ(x⃗1)δ(x⃗1 + r⃗)⟩ exp(−ik⃗r⃗)

• spectrum P(k⃗) is the Fourier transform of the correlation
function ξ(⃗r)

• homogeneous fields: Fourier modes are mutually uncorrelated
• isotropic fields: P(k⃗) = P(k)

question

show that the unit of the spectrum P(k) is L3! what’s the
relation between ξ(r) and P(k) in an isotropic field?
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Gaussianity and the characteristic function
• for a continuous pdf, all moments need to be known for
reconstructing the pdf

• reconstruction via characteristic function φ(t) (Fourier
transform)

φ(t) =
∫

dxp(x) exp(itx) =
∫

dxp(x)
∑
n

(itx)n

n!
=

∑
n
⟨xn⟩p

(it)n

n!

with moments ⟨xn⟩ =
∫
dxxnp(x)

• Gaussian pdf is special:
• all moments exist! (counter example: Cauchy pdf)
• all even moments are expressible as products of the variance
• σ is enough to statistically reconstruct the pdf
• pdf can be differentiated arbitrarily often (Hermite
polynomials)

question

show that for a Gaussian pdf ⟨x2n⟩ ∝ ⟨x2⟩n. what’s φ(t)?modern cosmologyBjörn Malte Schäfer
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moment generating function
• variance σ2 characterises a Gaussian pdf completely
• ⟨x2n⟩ ∝ ⟨x2⟩n, but what is the constant of proportionality?
• look at the moment generating function

M(t) =
∫

dxp(x) exp(tx) = ⟨exp(tx)⟩p =
∑
n
⟨xn⟩p

tn
n!

• M(t) is the Laplace transform of pdf p(x), and φ(t) is the
Fourier transform

• nth derivative at t = 0 gives moment ⟨xn⟩p:
M′(t) = ⟨xexp(tx)⟩p = ⟨x⟩p

question
compute ⟨xn⟩, n = 2,3,4,5,6 for a Gaussian directly (by
induction) and with the moment generating function M(t)

modern cosmologyBjörn Malte Schäfer
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homegeneity and isotropy in ξ(r)

independent on direction

realisation 1 realisation 2 realisation 3 realisation 4

ho
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fluctuations
independent of position
depend only on scale

fluctuations

isotropy and homogeneity in an ensemble

• homogeneity: a measurement of ⟨δ(x⃗)δ(x⃗ + r⃗)⟩ is independent
of x⃗, if one averages over ensembles

• isotropy: a measurement of ⟨δ(x⃗)δ(x⃗ + r⃗)⟩ does not depend on
the direction of r⃗, in the ensemble averaging

modern cosmologyBjörn Malte Schäfer



inflation random processes CMB secondary anisotropies random processes large-scale structure CDM spectrum structure formation

why correlation functions?

a proof for climate change and global warming

please be careful: we measure the correlation function
because it characterises the random process generating a
realisation of the density field, not because there is a badly
understood mechanism relating amplitudes at different
points!
(PS: don’t extrapolate to 2009)

modern cosmologyBjörn Malte Schäfer



inflation random processes CMB secondary anisotropies random processes large-scale structure CDM spectrum structure formation

tests of Gaussianity

Gaussianity
all moments needed for reconstructing the probability
density

• data is finite: only a limited number of estimators are
available

• classical counter example: Cauchy-distribution

p(x)dx ∝ dx
x2 + a2

(31)

→ all even moments are infinite
• genus statistics: peak density, length of isocontours
• independency of Fourier modes

modern cosmologyBjörn Malte Schäfer
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tests of Gaussianity: axis of evil

CMB axis of evil: multipole alignment

• CMB-sky: weird (unprobable) alignment between low
multipoles
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weak and strong Gaussianity

• differentiate weak and strong Gaussianity
• strong Gaussianity: Gaussian distributed amplitudes of
Fourier modes
• implies Gaussian amplitude distribution in real space
• argumentation: via cumulants

• weak Gaussianity: central limit theorem
• assume independent Fourier modes, but arbitrary amplitude
distribution in Fourier space

• Fourier transform: many elementary waves contribute to
amplitude at a given point

• central limit theorem: sum over a large number of independent
random numbers is Gaussian distributed

• field in real space is approximately Gaussian, even though the
Fourier modes can be arbitrarily distributed

modern cosmologyBjörn Malte Schäfer
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the cosmic web (Millenium simulation)
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CDM spectrum P(k) and the transfer function T(k)
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• ansatz for the CDM power spectrum: P(k) = knsT(k)2

• small scales suppressed by radiation driven expansion →
Meszaros-effect

• asymptotics: P(k) ∝ k on large scales, and ∝ k−3 on small scales
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Meszaros effect 1
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Meszaros effect 2
• perturbation grows ∝ a2 outside horizon in the
radiation-dominated era (really difficult to understand, need
covariant perturbation theory)

• when entering the horizon, fast radiation driven expansion
keeps perturbation from growing, dynamical time-scale
tdyn ≫ tHubble = 1/H(a)

• all perturbations start growing at the time of
matter-radiation equality (z ≃ 7000, ΩM(z) = ΩR(z)), growth
∝ a

• size of the perturbation corresponds to scale factor of the
universe at horizon entry

• total suppression is ∝ k−2, power spectrum ∝ k−4

• exact solution of the problem: numerical solution for
transfer function T(k), with shape parameter Γ, which
reflects the matter density

modern cosmologyBjörn Malte Schäfer
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CDM shape parameter Γ
• exact shape of T(k) follows from Boltzmann codes
• express wave-vector k in units of the shape parameter:

q ≡
k/Mpc−1h

Γ (32)

• Bardeen-fitting formula for low-Ωm cosmologies

T(q) =
ln(1 + eq)

eq ×
[
1 + aq + (bq)2 + (cq)3 + (dq)4

]− 1
4 ,

• to good approximation Γ = Ωmh
• small Γ → skewed to left, big Γ → skewed to right

question
verify the asymptotic behaviour of T(q) for q ≪ 1 and q ≫ 1
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observational constraints on P(k)

data for P(k) from observational probes

• many observational channels are sensitive to P(k)

• amazing agreement for the shape

modern cosmologyBjörn Malte Schäfer
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normalisation of the spectrum: σ8
• CDM power spectrum P(k) needs to be normalised
• observations: fluctuations in the galaxy counts on
8 Mpc/h-scales are approximately constant and ≃ 1 (Peebles)

• introduced filter function W(x⃗)

• convolve density field δ(x⃗) with filter function W(x⃗) in real
space → multiply density field δ(k⃗) with filter function W(k⃗)
in Fourier space

• convention: σ8, R = 8 Mpc/h

σ28 =
1

2π2

∫ ∞

0
dk k2P(k)W2(kR) (33)

with a spherical top-hat filter W(kR)

• least accurate cosmological parameter, discrepancy between
WMAP, lensing and clusters

modern cosmologyBjörn Malte Schäfer



inflation random processes CMB secondary anisotropies random processes large-scale structure CDM spectrum structure formation

lensing and CMB constraints on σ8

constraints on Ωm and σ8

• some tension between best-fit values
• possibly related to measurement of galaxy shapes in lensing

modern cosmologyBjörn Malte Schäfer



inflation random processes CMB secondary anisotropies random processes large-scale structure CDM spectrum structure formation

cosmological standard model

cosmology + structure formation are described by:
• dark energy density Ωφ
• cold dark matter density Ωm

• baryon density Ωb

• dark energy density equation of state parameter w
• Hubble parameter h
• primordial slope of the CDM spectrum ns, from inflation
• normalisation of the CDM spectrum σ8

cosmological standard model: 7 parameters
known to few percent accuracy, amazing predictive power
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properties of dark matter

current paradigm:
structures from by gravitational instability from
inflationary fluctuations in the cold dark matter (CDM)
distribution

• collisionless → very small interaction cross-section
• cold → negligible thermal motion at decoupling, no cut-off in
the spectrum P(k) on a scale corresponding to the diffusion
scale

• dark→ no interaction with photons, possible weak interaction
• matter → gravitationally interacting

main conceptual difficulties
• collisionlessness → hydrodynamics, no pressure or viscosity
• non-saturating interaction (gravity) → extensivity of binding
energy modern cosmologyBjörn Malte Schäfer
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dark matter and the microwave background

• fluctuations in the density field at the time of decoupling are
≃ 10−5

• long-wavelength fluctuations grow proportionally to a
• if the CMB was generated at a = 10−3, the fluctuations can
only be 10−2 today

• large, supercluster-scale objects have δ ≃ 1

cold dark matter
need for a nonbaryonic matter component, which is not
interacting with photons
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galaxy rotation curves

• balance centrifugal and gravitational force
• difficulty: measured in low-surface brightness galaxies
• galactic disk is embedded into a larger halo composed of CDM

question
show that the density profile of a galaxy needs to be
ρ ∝ 1/r2
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structure formation equations

cosmic structure formation
cosmic structures are generated from tiny inflationary seed
fluctuations, as a fluid mechanical, self-gravitating
phenomenon (with Newtonian gravity), on an expanding
background

• continuity equation: no matter ist lost or generated
∂

∂tρ + div(ρυ⃗) = 0 (34)

• Euler-equation: evolution of velocity field due to
gravitational forces

∂

∂t υ⃗ + υ⃗∇υ⃗ = −∇Φ (35)

• Poisson-equation: potential is sourced by the density field
ΔΦ = 4πGρ (36)modern cosmologyBjörn Malte Schäfer
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collisionlessness of dark matter

source: P.M. Ricker

• CDM is collisionless (elastic collision cross section ≪
neutrinos)
• why can galaxies rotate and how is vorticity generated?
• why do galaxies form from their initial conditions without
viscosity?

• how can one stabilise galaxies against gravity without
pressure?

• is it possible to define a temperature of a dark matter
system?
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non-extensivity of gravity

source: Kerson Huang, statistical physics

• gravitational interaction is long-reached
• gravitational binding energy per particle is not constant for
n→ ∞
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