## The hot thermax Universe

1：Ïnteraction rates（EFT for）
2．Big．Bang Nuccleosynthesis
3．（but cạn i use Boltzzmanñ．．．？）
4．Lèptogenesis（？o fairy talequ）

## Neutrinos in cosmology

- leptogenesis : $T: 10^{12} \rightarrow 100 \mathrm{GeV}$, generate a lepton asym in CPV dynamics, use SM B+L Violation to transform to baryons
- Big Bang Nucleosynthesis (H,D, ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$ at $T \sim \mathrm{MeV}$ ) how many species of relativistic $\nu$ in the thermal soup?
- decoupling of photons $-e+p \rightarrow H$ (CMB spectrum today) cares about radiation density $\leftrightarrow N_{\nu}, m_{\nu}$
...all about interaction rates of particles in the U...
- EFT $=$ recipe to study observables at scale $\ell$

1. choose appropriate variables to describe relevant dynamics
2. Oth order interactions, by sending all parameters $\begin{cases}L \gg \ell & \rightarrow \infty \\ \delta \ll \ell & \rightarrow 0\end{cases}$
3. then perturb in $\ell / L$ and $\delta / \ell$

- EFT $=$ recipe to study observables at scale $\ell$

1. choose appropriate variables to describe relevant dynamics
2. Oth order interactions, by sending all parameters $\begin{cases}L \gg \ell & \rightarrow \infty \\ \delta \ll \ell & \rightarrow 0\end{cases}$ 3. then perturb in $\ell / L$ and $\delta / \ell$

Example : interactions in the early Universe of age $\tau_{U}\left(\tau_{U} \sim 10^{-24} \mathrm{sec}\right)$ * processes with $\tau_{i n t} \gg \tau_{U}$...neglect!
$\star$ processes with $\tau_{i n t} \ll \tau_{U} \ldots$ assume in thermal equilibrium !

* processes with $\tau_{\text {int }} \sim \tau_{U} \ldots$...calculate this dynamics
$\star$ can then do pert. theory in slow interactions and departures from
thermal equil.
interactions - approaching equilibrium in an expanding $U$ ?

Suppose the density of the U is dominated by relativistic particles in equilibrium ( $\rho \propto T^{4}$ )

$$
\begin{aligned}
& H=\frac{\dot{a}}{a}=\sqrt{\frac{8 \pi G}{3} \frac{g_{e f f} \pi^{2} T^{4}}{30}} \simeq \frac{1.7 \sqrt{g_{\text {eff }}}}{m_{p l}} T^{2} \quad, \quad g_{\text {eff }} \equiv \sum_{\bar{b}, b} g_{b}+\frac{7}{8} \sum_{\bar{f}, f} g_{f} \\
& \text { and } T(t) \sim 1 / a(t) \Rightarrow a(t)=\sqrt{t / t_{0}}, \text { so } \\
& \qquad \tau_{U}(T)=\frac{1}{2 H} \quad \Rightarrow \quad \tau_{U}(\mathrm{sec}) \simeq 0.7 \frac{M e V^{2}}{T^{2}}
\end{aligned}
$$

Suppose the density of the U is dominated by relativistic particles in equilibrium ( $\rho \propto T^{4}$ )
$H=\frac{\dot{a}}{a}=\sqrt{\frac{8 \pi G}{3} \frac{g_{\text {eff }} \pi^{2} T^{4}}{30}} \simeq \frac{1.7 \sqrt{g_{\text {eff }}}}{m_{p l}} T^{2} \quad, \quad g_{\text {eff }} \equiv \sum_{\bar{b}, b} g_{b}+\frac{7}{8} \sum_{\bar{f}, f} g_{f}$
and $T(t) \sim 1 / a(t) \Rightarrow a(t)=\sqrt{t / t_{0}}$, so

$$
\tau_{U}(T)=\frac{1}{2 H} \quad \Rightarrow \quad \tau_{U}(\sec ) \simeq 0.7 \frac{\mathrm{MeV}^{2}}{T^{2}}
$$

Can estimate interaction rate of a particle in the plasma as

$$
\Gamma_{\text {int }} \sim \frac{1}{\tau_{\text {int }}} \sim \beta \times n_{\text {target }} \times \sigma \sim \frac{g T^{3}}{\pi^{2}} \sigma
$$

(lets forget IR divergences) For a $e^{-}$interacting with a bath of $\gamma \mathrm{s}$ :

$$
\beta \sigma(e \gamma \rightarrow e \gamma)=\frac{2 \pi \alpha^{2}}{s} \ln \frac{s}{m_{e}^{2}}
$$

For $s=(3 T)^{2}\left(?\right.$ or $\left.s=T^{2}\right)$ and $\sqrt{g_{\text {eff }}} \sim 10$ :

$$
\frac{\Gamma}{H} \sim \frac{g_{\gamma} T^{3}}{\pi^{2}} \frac{2 \pi \alpha^{2}}{9 T^{2}} \frac{1}{H} \sim \frac{m_{p l}}{3 \times 10^{6} T}
$$

$\Rightarrow e^{-}, \gamma$ in thermal equil for $T \lesssim 10^{13} \mathrm{GeV}$. Ditto $e^{+}$... unbroken $\operatorname{SU}(\mathrm{N})$ : same scaling of $\Gamma / H(T)$, rate a bit bigger.

Another example : $(\nu e \rightarrow \nu e)$ at $T \ll m_{W}$

Interaction rate of a $\nu_{\mu, \tau}$ with $e^{ \pm}$( neglect rare $n, p$ ):

$$
\frac{\Gamma}{H} \sim \frac{g_{e^{ \pm}} T^{3}}{\pi^{2}} \sigma \frac{1}{H} \quad \text { with } \quad \sigma \simeq \frac{G_{F}^{2} s}{16 \pi}
$$

So $\Gamma \sim H$ when

$$
\Gamma \sim \frac{G_{F}^{2} T^{5}}{4 \pi} \sim \frac{1.66 \sqrt{g_{\text {eff }}} T^{2}}{m_{p l}}
$$

$\Rightarrow$ neutrinos acquire equilibrium densities before $T \sim \mathrm{MeV}$.
$\nu_{\mu, \tau}, \bar{\nu}_{\mu, \tau}$ decouple from $e^{ \pm}$around $T \simeq 3.5 \mathrm{MeV}$,
$\nu_{e}$ has also $W$ exchange diagram $=$ remain in equilibrium til $T \sim 2 \mathrm{MeV}$.

Another example : $(\nu e \rightarrow \nu e)$ at $T \ll m_{W}$

Interaction rate of a $\nu_{\mu, \tau}$ with $e^{ \pm}$(neglect rare $n, p$ ):

$$
\frac{\Gamma}{H} \sim \frac{g_{e^{ \pm}} T^{3}}{\pi^{2}} \sigma \frac{1}{H} \quad \text { with } \quad \sigma \simeq \frac{G_{F}^{2} s}{16 \pi}
$$

So $\Gamma \sim H$ when

$$
\Gamma \sim \frac{G_{F}^{2} T^{5}}{4 \pi} \sim \frac{1.66 \sqrt{g_{\text {eff }}} T^{2}}{m_{p l}}
$$

$\Rightarrow$ neutrinos acquire equilibrium densities before $T \sim \mathrm{MeV}$.
$\nu_{\mu, \tau}, \bar{\nu}_{\mu, \tau}$ decouple from $e^{ \pm}$around $T \simeq 3.5 \mathrm{MeV}$,
$\nu_{e}$ has also $W$ exchange diagram $=$ remain in equilibrium til $T \sim 2 \mathrm{MeV}$.
Decouple at $T \gg m_{\nu}$, so retain relativistic number distribution 'til today $\Rightarrow$ there is a Cosmic Neutrino BackGround.
(But $T_{\nu}=(4 / 11)^{1 / 3} T_{\gamma}$, because $e^{ \pm}$annihilation heats $\gamma$ wrt $\nu$ )

In the room, are $\sim 10^{6}$ WIMPS, $\sim 10^{5} \mathrm{Be} \nu$, and $\sim 10^{10}$ Cosmic Background Neutrinos(CNB).

How to detect CNB ?

## (Exercise : how to detect CNB ?)

In the room, are $\sim 10^{6}$ WIMPS, $\sim 10^{5} \mathrm{Be} \nu$, and $\sim 10^{10}$ Cosmic Background Neutrinos(CNB).

What about $\nu$ capture $\beta$ decay : $n+\nu_{C N B} \rightarrow p+e$ ?
Weinberg
Cocco Mangano
To compare rates for ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+e+\bar{\nu}_{e}$ to $\nu_{e}+{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+e$ :
Messina

$$
\frac{n_{\nu C N B}}{\nu \text { phase space }} \simeq \frac{T_{C N B}^{3}}{\pi^{2}} \frac{1}{Q^{3}} \sim\left(\frac{10^{-4} \mathrm{eV}}{20 \mathrm{keV}}\right)^{3} \sim 10^{-24}
$$

But... $E_{e}=Q+m_{\nu}$ (recall for ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+e+\bar{\nu}_{e}, E_{e} \leq Q-m_{\nu}$ )

So...if ever resolution better than $m_{\nu} \ldots$ PTOLEMY!

What rate associated to neutrino masses $m_{D} \overline{\nu_{L}} \nu_{R}$ ?

1. below $m_{W} /$ after EWPT(Elec.Weak PhaseTransition) : $m^{2}$-correction to gauge scattering

$$
\frac{m_{\nu}^{2} G_{F}^{2}}{4 \pi} T^{3}>\frac{1.7 g_{\text {eff }} T^{2}}{m_{p l}} \Leftrightarrow m_{\nu} \gtrsim 100 \mathrm{keV}
$$

What rate associated to neutrino masses $m_{D} \overline{\nu_{L}} \nu_{R}$ ?

1. below $m_{W} /$ after EWPT(Elec.Weak PhaseTransition) : $m^{2}$-correction to gauge scattering

$$
\frac{m_{\nu}^{2} G_{F}^{2}}{4 \pi} T^{3}>\frac{1.7 g_{e f f} T^{2}}{m_{p l}} \Leftrightarrow m_{\nu} \gtrsim 100 \mathrm{keV}
$$

2. above $m_{t} /$ before EWPT :
scattering via neutrino Yukawa : $\lambda \bar{\ell} H \nu_{R}$ (attach other end of Higgs to $t \bar{t}$ )

$$
\begin{gathered}
\frac{\lambda^{2}}{4 \pi} T>\frac{1.7 g_{\text {eff }} T^{2}}{m_{p l}} \Leftrightarrow \lambda \gtrsim 10^{-8} \\
\left(m_{D} \overline{\nu_{L}} \nu_{R} \sim \text { few } \times \mathrm{keV} \overline{\nu_{L}} \nu_{R}\right)
\end{gathered}
$$

Despite that there are six light chiral fermions in the model with Dirac $\nu$-masses, only three are "in equilibrium" in the early $\mathrm{U} \Leftrightarrow$ contribute to the radiation energy density.

## BBN bounds on $N_{\nu}$

$N_{\nu} \equiv$ number of 2-comp. relativistic $\nu$ s with equilibrium energy density
Big Bang Nucleosynthesis makes $\mathrm{D},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}, \mathrm{Li}$ at $T \lesssim \mathrm{MeV}, \tau_{U} \sim$ few minutes) :

- neutrons crucial to form $D_{,}^{3,4} \mathrm{He}, \mathrm{Li}$
- $n_{n} / n_{p} \propto \exp \left\{-\left(m_{n}-m_{p}\right) / T\right\}$ in thermal equil at $T \gtrsim \mathrm{MeV}$
- "freezes" when $\Gamma(n+\nu \rightarrow p+e) \lesssim H \simeq \sqrt{3 \rho_{\text {rad }} / m_{p l}^{2}} ; \rho_{\text {rad }} \supset\left\{\gamma, N_{\nu} \nu\right\}$ $\Rightarrow$ "primordial" abundances of $D,{ }^{3,4} \mathrm{He}, \mathrm{Li}$ constrain

$$
N_{\nu} \lesssim 4.08
$$

Mangano, Serpico

NB : this is a dynamical process : reliable predictions from complex codes accounting for multiple nuclear processes.

1. consider U at $T \sim \mathrm{MeV}$, (nuclear binding $\sim \mathrm{MeV}$ )
$T \ll \Lambda_{Q C D} \Rightarrow$ all baryons are $n$ or $p$, and rare : $n_{B-\bar{B}} / n_{\gamma} \sim \eta \sim 10^{-9}$.
$\Rightarrow$ bind into light nuclei via 2-body processes :

$$
\begin{aligned}
n+p & \leftrightarrow D+\gamma \\
D+D & \leftrightarrow{ }^{3} \mathrm{He}+n \\
D+D & \leftrightarrow T+p \\
D+D & \leftrightarrow{ }^{4} \mathrm{He}+\gamma \\
D+T & \leftrightarrow{ }^{4} \mathrm{He}+n \\
D+{ }^{3} \mathrm{He} & \leftrightarrow{ }^{4} \mathrm{He}+p \\
{ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} & \leftrightarrow{ }^{4} \mathrm{He}+2 p
\end{aligned}
$$

$\Rightarrow$ need first to make $D . E_{\text {bind }}=2.2 \mathrm{MeV}$.
Rates are fast, but baryons are rare : newly born $D$ needs to meet another baryon before a $E>2.2 \mathrm{MeV}$ photon:

$$
n_{\gamma}(E>2.2 \mathrm{MeV}) \sim e^{-2.2 \mathrm{MeV} / T} n_{\gamma} \lesssim 10^{-9} n_{\gamma} \Rightarrow T \lesssim .1 \mathrm{MeV}
$$

2. How many $n$ and $p$ when can make $D$ ? If $\Gamma(n \leftrightarrow p) \sim T^{5} / m_{W}^{4}>H$, obtain equilibrium ratio $n_{n} / n_{p}=e^{-\Delta m / T},(\Delta m=1.293 \mathrm{MeV})$.
$n \leftrightarrow p$ interactions are $p+e \leftrightarrow n+\nu, n+e^{+} \leftrightarrow p+\bar{\nu}, n \leftrightarrow p+e^{-}+\bar{\nu}$ and

$$
H=\frac{1}{m_{p l}} \sqrt{\frac{8 \pi \rho}{3}}=\frac{1.77 \sqrt{g_{e f f}}}{m_{p l}} T^{2} \quad, \quad g_{e f f}=2+\frac{7}{8}\left(4+2 N_{\nu}\right)
$$

2. How many $n$ and $p$ when can make $D$ ? If $\Gamma(n \leftrightarrow p) \sim T^{5} / m_{W}^{4}>H$, obtain equilibrium ratio $n_{n} / n_{p}=e^{-\Delta m / T},(\Delta m=1.293 \mathrm{MeV})$.
$n \leftrightarrow p$ interactions are $p+e \leftrightarrow n+\nu, n+e^{+} \leftrightarrow p+\bar{\nu}, n \leftrightarrow p+e^{-}+\bar{\nu}$ and

$$
H=\frac{1}{m_{p l}} \sqrt{\frac{8 \pi \rho}{3}}=\frac{1.77 \sqrt{g_{e f f}}}{m_{p l}} T^{2} \quad, \quad g_{e f f}=2+\frac{7}{8}\left(4+2 N_{\nu}\right)
$$

"Freezeout" of $\Gamma(n \leftrightarrow p)$ at $T_{f} \sim 0.7 \mathrm{MeV}$, for $N_{\nu}=3$.
(After freezeout, $n_{n} / n_{p}$ decreases due to $n$ decay :
$n_{n} / n_{p}=\exp \left\{-\Delta m / T_{f}\right\} e^{-t / \tau_{n}}$, where $\tau(n \rightarrow p e \bar{\nu}) \sim 881 \mathrm{sec}$.)
2. How many $n$ and $p$ when can make $D$ ? If $\Gamma(n \leftrightarrow p) \sim T^{5} / m_{W}^{4}>H$, obtain equilibrium ratio $n_{n} / n_{p}=e^{-\Delta m / T},(\Delta m=1.293 \mathrm{MeV})$.
$n \leftrightarrow p$ interactions are $p+e \leftrightarrow n+\nu, n+e^{+} \leftrightarrow p+\bar{\nu}, n \leftrightarrow p+e^{-}+\bar{\nu}$ and

$$
H=\frac{1}{m_{p l}} \sqrt{\frac{8 \pi \rho}{3}}=\frac{1.77 \sqrt{g_{\text {eff }}}}{m_{p l}} T^{2} \quad, \quad g_{e f f}=2+\frac{7}{8}\left(4+2 N_{\nu}\right)
$$

"Freezeout" of $\Gamma(n \leftrightarrow p)$ at $T_{f} \sim 0.7 \mathrm{MeV}$, for $N_{\nu}=3$.
(After freezeout, $n_{n} / n_{p}$ decreases due to $n$ decay :
$n_{n} / n_{p}=\exp \left\{-\Delta m / T_{f}\right\} e^{-t / \tau_{n}}$, where $\tau(n \rightarrow p e \bar{\nu}) \sim 881 \mathrm{sec}$.)
3 When $n_{\gamma}(E>2.2 \mathrm{MeV}) \lesssim n_{B}$, available $n$ s to ${ }^{4} \mathrm{He}$ ! Upper bound on ${ }^{4} \mathrm{He}$ abundance today (stars add $\left.{ }^{4} \mathrm{He}\right) \Rightarrow$ upper bound on $N_{\nu}$.
For larger $N_{\nu}$, freezeout earlier, so $T_{f} \nearrow$ and $n_{n} / n_{p}$ larger.

## CMB bounds on $N_{\nu}$

3. Cosmic Microwave Background :(=fit to a multi-param. model...). Roller coaster at $\ell>150$ is a snapshot of sound waves in the plasma at recomb ; amplitude cares about $\rho_{b} / \rho_{\gamma}$. Is sensitive to time since mat-rad equality, which is sensitive to $N_{\nu} \ldots$ but can compensate by changing other parameters!
PDB discussion of Verde-Lesgourges :
suppose other inputs cancel LO effect no $N_{\nu} \ldots$ what remains?
Argue that remaining effects cannot be cancelled by ajusting parmeters, so obtain :

$$
N_{\nu} \lesssim 3.3 \pm 0.5
$$

PLANCK 13
more restrictive with
other cosmo input

## Fewer twiddles for precision cosmology ?

So far, compute on "back of envelope". Recall recipe :
To identify relevant interactions in the early Universe of age $\tau_{U}$ ( $\tau_{U} \sim 10^{-24} \mathrm{sec}$ )

1. processes with $\tau_{\text {int }} \gg \tau_{U} \ldots$...neglect!
2. processes with $\tau_{i n t} \ll \tau_{U} \ldots$ assume in thermal equilibrium !
3. processes with $\tau_{\text {int }} \sim \tau_{U} \ldots$ calculate this dynamics

## Fewer twiddles for precision cosmology?

So far, compute on "back of envelope". Recall recipe :
To identify relevant interactions in the early Universe of age $\tau_{U}$ ( $\tau_{U} \sim 10^{-24} \mathrm{sec}$ )

1. processes with $\tau_{\text {int }} \gg \tau_{U} \ldots$...neglect !
2. processes with $\tau_{i n t} \ll \tau_{U} \ldots$ assume in thermal equilibrium !
3. processes with $\tau_{\text {int }} \sim \tau_{U} \ldots$...calculate this dynamics
...sloppy is fine for 1,2 ; but if really want to calculate dynamics, need eqns for 3 ?

## Dynamical Eqns : can one use Boltzmann Eqns ???

Ludwig Boltzmann: 1844-1906 / Max Planck: 1858-1947 ( $\hbar \sim 1900$ )
early U : $\rho \propto T^{4}>$ nucleus for $T>100 \mathrm{MeV}$ $\tau_{U} \sim$ nanosecond at $T \sim 100 \mathrm{GeV}$
curiously, usually yes!

## Dynamical Eqns : can one use Boltzmann Eqns???

Ludwig Boltzmann: 1844-1906 / Max Planck : 1858-1947 ( $\hbar \sim 1900$ )

$$
\begin{gathered}
\text { early } \mathrm{U}: \rho \propto T^{4}>\text { nucleus for } T>100 \mathrm{MeV} \\
\tau_{U} \sim \text { nanosecond at } T \sim 100 \mathrm{GeV}
\end{gathered}
$$

Why is that? Ask the closed-time-path, finite-density Path Integral for Eqns of motion for the number operator...Density Matrix Eqns, Real-Time Finite-Temp Field Theory/ 2Particle- Irreducible Eqns/ Kadanov-Baym/Schwinger-Dyson Eqns)

$$
\frac{d}{d t} \hat{n}=+i\left[\hat{H}_{0}, \hat{n}\right]-\left[\hat{H}_{l},\left[\hat{H}_{l}, \hat{n}\right]\right]+\ldots
$$

(2nd Quant., Heisenberg rep, t-dep ops)
$\hat{H}_{0}=$ free Hamiltonian Interaction rates from second $+\ldots$ terms.

1) (anti)commutators give Bose-Einstein/FD phase space factors
2) ...if a hierarchy of interaction rates, then in the propagation eigenstate basis, looks like Boltzmann?

## Dynamical Eqns : can one use Boltzmann Eqns???

Ludwig Boltzmann: 1844-1906 / Max Planck : 1858-1947 ( $\hbar \sim 1900$ )

$$
\begin{gathered}
\text { early } \mathrm{U}: \rho \propto T^{4}>\text { nucleus for } T>100 \mathrm{MeV} \\
\tau_{U} \sim \text { nanosecond at } T \sim 100 \mathrm{GeV}
\end{gathered}
$$

Why is that? Ask the closed-time-path, finite-density Path Integral for Eqns of motion for the number operator...Density Matrix Eqns, Real-Time Finite-Temp Field Theory/ 2Particle- Irreducible Eqns/ Kadanov-Baym/Schwinger-Dyson Eqns)

$$
\frac{d}{d t} \hat{n}=+i\left[\hat{H}_{0}, \hat{n}\right]-\left[\hat{H}_{l},\left[\hat{H}_{l}, \hat{n}\right]\right]+\ldots
$$

(2nd Quant., Heisenberg rep, t-dep ops)
$\hat{H}_{0}=$ free Hamiltonian Interaction rates from second $+\ldots$ terms.

1) (anti)commutators give Bose-Einstein/FD phase space factors
2) ...if a hierarchy of interaction rates, then in the propagation eigenstate basis, looks like Boltzmann?
...lets suppose we can (usually) use Boltzmann...

# Can neutrinos make the Universe we see? 

## Leptogenesis

Leptogenesis is a class of recipes, that use majorana neutrino mass models to generate the matter excess. The model generates a lepton asymmetry (before the Electroweak Phase Transition), and the non-perturbative $S M B+L$ violn reprocesses it to a baryon excess.

## Preambule

1. about "What the stars (and us) are made of" ( $5 \%$ of U )
$\approx H \approx$ baryons

## Preambule

1. about "What the stars (and us) are made of" ( $5 \%$ of U)
$\approx H \approx$ baryons
not worry about lepton asymmetry : is (undetected) Cosmic Neutrino Background ...so how to measure asym???

## Preambule

1. about "What the stars (and us) are made of" ( $5 \%$ of U )
$\approx H \approx$ baryons
not worry about lepton asymmetry : is (undetected) Cosmic Neutrino Background ...so how to measure asym???
2. I am made of baryons(defn) ... observation... all matter we see is made of baryons (not anti-baryons)

## Preambule

1. about "What the stars (and us) are made of" ( $5 \%$ of U )

$$
\approx H \approx \text { baryons }
$$

not worry about lepton asymmetry : is (undetected) Cosmic Neutrino Background ...so how to measure asym???
2. I am made of baryons(defn) ... observation... all matter we see is made of baryons (not anti-baryons)
3. quantify as $\left(s_{0} \simeq 7 n_{\gamma, 0}\right)$

$$
\left.Y_{B} \equiv \frac{n_{B}-n_{\bar{B}}}{s}\right|_{0}=3.86 \times 10^{-9} \Omega_{B} h^{2} \simeq(8.53 \pm 0.11) \times 10^{-11}
$$

## Preambule

1. about "What the stars (and us) are made of" ( $5 \%$ of U )

$$
\approx H \approx \text { baryons }
$$

not worry about lepton asymmetry : is (undetected) Cosmic Neutrino Background ...so how to measure asym???
2. I am made of baryons(defn) ... observation... all matter we see is made of baryons (not anti-baryons)
3. quantify as ( $s_{0} \simeq 7 n_{\gamma, 0}$ )

$$
\left.Y_{B} \equiv \frac{n_{B}-n_{\bar{B}}}{s}\right|_{0}=3.86 \times 10^{-9} \Omega_{B} h^{2} \simeq(8.53 \pm 0.11) \times 10^{-11}
$$

$\Rightarrow$ Question : where did that excess come from ?

Where did the matter excess come from?

1. the U (niverse) is matter-anti-matter symmetric?
= islands of particles and anti-particles
X no! not see $\gamma \mathrm{s}$ from annihilation

## Where did the matter excess come from?

1. the $U$ (niverse) is matter-anti-matter symmetric?
= islands of particles and anti-particles
X no! not see $\gamma \mathrm{s}$ from annihilation
2. U was born that way...

X no! After birth of $U$, there was "inflation"

- (only theory explaining coherent temperature fluctuations in microwave background that arrive from causally disconnected regions today...)
- "60 e-folds" inflation $\equiv V_{U} \rightarrow>10^{90} V_{U}$

$$
\left(n_{B}-n_{\bar{B}}\right) \rightarrow 10^{-90}\left(n_{B}-n_{\bar{B}}\right), s \text { from } \rho \text { of inflation... }
$$

## Where did the matter excess come from?

1. the $U$ (niverse) is matter-anti-matter symmetric?
= islands of particles and anti-particles
X no! not see $\gamma$ s from annihilation
2. U was born that way...

X no! After birth of $U$, there was "inflation"

- (only theory explaining coherent temperature fluctuations in microwave background that arrive from causally disconnected regions today...)
- "60 e-folds" inflation $\equiv V_{U} \rightarrow>10^{90} V_{U}$

$$
\left(n_{B}-n_{\bar{B}}\right) \rightarrow 10^{-90}\left(n_{B}-n_{\bar{B}}\right), s \text { from } \rho \text { of inflation... }
$$

3. created/generated/cooked after inflation...

Three ingredients to prepare in the early U (old russian recipe)

1. $B$ violation : if Universe starts in state of $n_{B}-n_{\bar{B}}=0$, need $\not \subset$ to evolve to $n_{B}-n_{\bar{B}} \neq 0$

Three ingredients to prepare in the early $U$ (old russian recipe)

1. $B$ violation : if Universe starts in state of $n_{B}-n_{\bar{B}}=0$, need $B$ to evolve to $n_{B}-n_{\bar{B}} \neq 0$
2. $C$ and $C P$ violation: ...particles need to behave differently from anti-particles.
Present in the SM quarks, observed in Kaons and Bs, searched for in leptons (...T2K,DUNE,future expts)

Three ingredients to prepare in the early U (old russian recipe)

1. $B$ violation : if Universe starts in state of $n_{B}-n_{\bar{B}}=0$, need $\not \subset$ to evolve to $n_{B}-n_{\bar{B}} \neq 0$
2. $C$ and $C P$ violation: ...particles need to behave differently from anti-particles.
Present in the SM quarks, observed in Kaons and Bs, searched for in leptons (...T2K,DUNE,future expts)
3. out-of-thermal-equilibrium ...equilibrium $=$ static. "generation" $=$ dynamical process
No asym.s in un-conserved quantum \#s in equilibrium

Three ingredients to prepare in the early U (old russian recipe)

1. $B$ violation : if Universe starts in state of $n_{B}-n_{\bar{B}}=0$, need $B$ to evolve to $n_{B}-n_{\bar{B}} \neq 0$
2. $C$ and $C P$ violation: ...particles need to behave differently from anti-particles.
Present in the SM quarks, observed in Kaons and Bs, searched for in leptons (...T2K,DUNE,future expts)
3. out-of-thermal-equilibrium ...equilibrium $=$ static. "generation" $=$ dynamical process
No asym.s in un-conserved quantum \#s in equilibrium From end inflation $\rightarrow$ BBN, Universe is an expanding, cooling thermal bath, so non-equilibrium from :

- slow interactions : $\tau_{i n t} \gg \tau_{U}=$ age of Universe ( $\Gamma_{i n t} \ll H$ )
- phase transitions :
ingredient 1 : Does the SM conserve $B$ ?
$B, L$ are global symmetries of the SM Lagrangian ( $q, \ell$ doublets, $e, u, d$ singlets)

$$
\mathcal{L}_{S M} \supset \bar{q} D q, \bar{\ell} D \ell, \bar{\ell} H e, \bar{q} \tilde{H} u, \bar{q} H d
$$

ingredient 1 : Does the SM conserve $B$ ?
$B, L$ are global symmetries of the SM Lagrangian ( $q, \ell$ doublets, $e, u, d$ singlets)

$$
\mathcal{L}_{S M} \supset \bar{q} D q, \bar{\ell} D \ell, \bar{\ell} H e, \bar{q} \widetilde{H} u, \bar{q} H d
$$

so, classically, there are conserved currents, and $B$ and $L$ are conserved. (So $B+L$ and $B-L$ are conserved.)
ingredient 1 : Does the SM conserve $B$ ?
$B, L$ are global symmetries of the SM Lagrangian ( $q, \ell$ doublets, $e, u, d$ singlets)

$$
\mathcal{L}_{S M} \supset \bar{q} D q, \bar{\ell} D \ell \ell, \bar{\ell} H e, \bar{q} \tilde{H} u, \bar{q} H d
$$

so, classically, there are conserved currents, and $B$ and $L$ are conserved. (So $B+L$ and $B-L$ are conserved.)

Good—proton appears stable $: \tau_{p} \gtrsim 10^{33}$ yrs ( $\tau U \sim 10^{10} \mathrm{yrs}$ ).
ingredient 1 : Does the SM conserve $B$ ?
$B, L$ are global symmetries of the SM Lagrangian ( $q, \ell$ doublets, $e, u, d$ singlets)

$$
\mathcal{L}_{S M} \supset \bar{q} D q, \bar{\ell} D \ell, \bar{\ell} H e, \bar{q} \widetilde{H} u, \bar{q} H d
$$

so, classically, there are conserved currents, and $B$ and $L$ are conserved. (So $B+L$ and $B-L$ are conserved.)

Good—proton appears stable : $\tau_{p} \gtrsim 10^{33} \mathrm{yrs}\left(\tau \cup \sim 10^{10} \mathrm{yrs}\right)$.
But the SM does not conserve $B+L \ldots$
In QFT, there is the axial anomaly...
...anomalously, the fermion current associated to a classical symmetry is not conserved.
ingredient 1 : the SM does not conserve $B+L$
$B+L$ is anomalous. Formally, for one generation( $\alpha$ colour ) :

$$
\sum_{\substack{\frac{S U(2)}{\text { singlets }}}} \partial^{\mu}\left(\bar{\psi} \gamma_{\mu} \psi\right)+\partial^{\mu}\left(\bar{\ell} \gamma_{\mu} \ell\right)+\partial^{\mu}\left(\bar{q}^{\alpha} \gamma_{\mu} \boldsymbol{q}_{\alpha}\right) \propto \frac{1}{64 \pi^{2}} W_{\mu \nu}^{A} \widetilde{W}^{\mu \nu A}
$$

where integrating the RHS over space-time counts "winding number" of the $\mathrm{SU}(2)$ gauge field configuration.
$\Rightarrow$ Field configurations of non-zero winding number are sources of a doublet lepton and three (for colour) doublet quarks for each generation.
ingredient 1 : the SM does not conserve $B+L$
$B+L$ is anomalous. Formally, for one generation( $\alpha$ colour ) :

$$
\sum_{\substack{\frac{S U(2)}{\text { singlets }}}} \partial^{\mu}\left(\bar{\psi} \gamma_{\mu} \psi\right)+\partial^{\mu}\left(\bar{\ell} \gamma_{\mu} \ell\right)+\partial^{\mu}\left(\bar{q}^{\alpha} \gamma_{\mu} \boldsymbol{q}_{\alpha}\right) \propto \frac{1}{64 \pi^{2}} W_{\mu \nu}^{A} \widetilde{W}^{\mu \nu A}
$$

where integrating the RHS over space-time counts "winding number" of the $\mathrm{SU}(2)$ gauge field configuration.
$\Rightarrow$ Field configurations of non-zero winding number are sources of a doublet lepton and three (for colour) doublet quarks for each generation.

Left-handed fermions

thanks to V Rubakov

SM B+L violation : rates
't Hooft
Kuzmin Rubakov+
Shaposhnikov
At $T=0$ is tunneling process (from winding \# to next, "instanton") : $\Gamma \propto e^{-8 \pi / g^{2}}$

At $0<T<m_{W}$, can climb over the barrier :
$\Gamma_{\text {B } Z \mathrm{~L}} \sim \begin{array}{cc}e^{-m_{W} / T} & T<m_{W} \\ \alpha^{5} T & T>m_{W}\end{array}$

SM B+L violation : rates

't Hooft Kuzmin Rubakov+ Shaposhnikov

At $T=0$ is tunneling process (from winding \# to next, "instanton") : $\Gamma \propto e^{-8 \pi / g^{2}}$

At $0<T<m_{W}$, can climb over the barrier :
$\Gamma_{\text {B } \not \mathrm{L}} \sim \begin{array}{ll}e^{-m_{W} / T} & T<m_{W} \\ \alpha^{5} T & T>m_{W}\end{array}$

$$
\Rightarrow \text { fast } \mathrm{SM} \mathrm{~B}+\mathrm{L} \text { at } T>m_{W}
$$

$$
\Gamma_{\mathrm{B} \not \mathrm{~L}}>H \text { for } m_{W}<T<10^{12} \mathrm{GeV}
$$

At $T=0$ is tunneling process (from winding \# to next, "instanton") : $\Gamma \propto e^{-8 \pi / g^{2}}$

At $0<T<m_{W}$, can climb over the barrier :
$\Gamma_{\mathrm{B} \not \mathrm{L}} \sim \begin{array}{cc}e^{-m_{W} / T} & T<m_{W} \\ \alpha^{5} T & T>m_{W}\end{array}$

$$
\Rightarrow \text { fast } \mathrm{SM} \mathrm{~B} \nsucc \mathrm{~L} \text { at } T>m_{W}
$$

$$
\Gamma_{\mathrm{B} \not \mathrm{~L}}>H \text { for } m_{W}<T<10^{12} \mathrm{GeV}
$$

SM B $\nsucc$ L called "sphalerons"
$\Rightarrow$ if produce a lepton asym, "sphalerons" partially transform to a baryon asym.!!

At $T=0$ is tunneling process (from winding \# to next, "instanton") :
$\Gamma \propto e^{-8 \pi / g^{2}}$
At $0<T<m_{W}$, can climb over the barrier :
$\Gamma_{\mathrm{B} \not \mathrm{L}} \sim \begin{array}{cc}e^{-m_{W} / T} & T<m_{W} \\ \alpha^{5} T & T>m_{W}\end{array}$

$$
\Rightarrow \text { fast } \mathrm{SM} \mathrm{~B} \not+\mathrm{L} \text { at } T>m_{W}
$$

$$
\Gamma_{\mathrm{B} \not \mathrm{~L}}>H \text { for } m_{W}<T<10^{12} \mathrm{GeV}
$$

SM B $\nsucc \mathrm{L}$ called "sphalerons"
$\Rightarrow$ if produce a lepton asym, "sphalerons" partially transform to a baryon asym.!!
$\star \star \star \mathrm{SM} \mathrm{B} \not \mathrm{L}$ is $\Delta B=\Delta L=3\left(=N_{f}\right)$. No proton decay ! $\star \star \star$

## Summary of preliminaries: A Baryon excess today :

- Want to make a baryon excess $\equiv Y_{B}$ after inflation, that corresponds today to $\sim 1$ baryon per $10^{10} \gamma \mathrm{~s}$.
- Three required ingredients : B , СР, ХЕ

Present in SM, but hard to combine to give big enough asym $Y_{B}$ Cold EW baryogen ? ? Tranberg et al
$\Rightarrow$ evidence for physics Beyond the Standard Model (BSM)

## Summary of preliminaries：A Baryon excess today：

－Want to make a baryon excess $\equiv Y_{B}$ after inflation，that corresponds today to $\sim 1$ baryon per $10^{10} \gamma \mathrm{~s}$ ．
－Three required ingredients ：B ，СР，ХЕ
Present in SM，but hard to combine to give big enough asym $Y_{B}$ Cold EW baryogen ？？Tranberg et al
$\Rightarrow$ evidence for physics Beyond the Standard Model（BSM）
One observation to fit，many new parameters．．．

$$
\begin{gathered}
\Rightarrow \text { prefer } B S M \text { motivated by other data } \Leftrightarrow m_{\nu} \Leftrightarrow \text { seesaw! (uses } \\
\text { non-pert. SM B } ⿻ 上 丨 匕 刂
\end{gathered}
$$

## Recall...the type I seesaw

- add 3 singlet $N$ to the SM in charged lepton and $N$ mass bases, at scale $>M_{i}$ :

$$
\mathcal{L}=\mathcal{L}_{S M}+\left(\boldsymbol{\lambda}_{\alpha J} \overline{N_{J}} \ell_{\alpha} \cdot H+\text { h.c. }\right)-\frac{1}{2} \overline{N_{J}} M_{J} N_{J}^{c}
$$

$M_{l}$ few $\mathrm{GeV} \rightarrow 10^{15} \mathrm{GeV}$, , . CP in $\boldsymbol{\lambda}_{\alpha J} \in \boldsymbol{C}$.

Leptogenesis in the type 1 seesaw : usually a Fairy Tale
Once upon a time, a Universe was born.

Fukugita Yanagida
Buchmuller et al
Covi et al Branco et al Giudice et al

Leptogenesis in the type 1 seesaw : usually a Fairy Tale

Once upon a time, a Universe was born.

Fukugita Yanagida Buchmuller et al

Covi et al Branco et al Giudice et al


## Leptogenesis in the type 1 seesaw : usually a Fairy Tale

Once upon a time, a Universe was born. At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile $N_{j}$ with $\not \subset$ masses and CP interactions) to the Universe.

## Leptogenesis in the type 1 seesaw : usually a Fairy Tale

Once upon a time, a Universe was born. At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile $N_{j}$ with $\not \subset$ masses and $\subset P$ interactions) to the Universe. The adventure begins after inflationary expansion of the Universe :

## Leptogenesis in the type 1 seesaw : usually a Fairy Tale

Once upon a time, a Universe was born. At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile $N_{j}$ with $\measuredangle$ masses and CP interactions) to the Universe. The adventure begins after inflationary expansion of the Universe :
1 If its hot enough, a population of $N s$ appear(they like heat).

## Leptogenesis in the type 1 seesaw : usually a Fairy Tale

Once upon a time, a Universe was born. At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile $N_{j}$ with $\ell$ masses and $C P$ interactions) to the Universe. The adventure begins after inflationary expansion of the Universe :
1 If its hot enough, a population of $N s$ appear(they like heat).
2 The temperature drops below $M, N$ population decays away.

## Leptogenesis in the type 1 seesaw : usually a Fairy Tale

Once upon a time, a Universe was born. At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile $N_{j}$ with $\ell$ masses and $C P$ interactions) to the Universe. The adventure begins after inflationary expansion of the Universe :
1 If its hot enough, a population of $N$ s appear(they like heat).
2 The temperature drops below $M, N$ population decays away. 3 In the CP and $\ell$ interactions of the $N$, an asymmetry in SM leptons is created.

Leptogenesis in the type 1 seesaw : usually a Fairy Tale


If this asymmetry can escape the big bad wolf of thermal equilibrium...

## Leptogenesis in the type 1 seesaw : usually a Fairy Tale

Once upon a time, a Universe was born.
At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile $N_{j}$ with $\not \subset$ masses and CP interactions) to the Universe.
The adventure begins after inflationary expansion of the Universe :
1 If its hot enough, a population of $N$ s appear(they like heat).
2 The temperature drops below $M, N$ population decays away.
3 In the CP and $\ell$ interactions of the $N$, an asymmetry in SM leptons is created.
4 If asymmetry escapes the wolf of thermal equilibrium...
5 the lepton asym gets partially reprocessed to a baryon asym by non-perturbative $B+L$-violating SM processes ("sphalerons") And the Universe lived happily ever after, containing many photons. And for every $10^{10}$ photons, there were 6 extra baryons (wrt anti-baryons).

## Does it work? Calculate something ?

Recipe: calculate suppression factor for each Sakharov condition, multiply together to get $Y_{B}$ :

$$
\begin{gathered}
\frac{n_{B}-n_{\bar{B}}}{s} \sim \frac{1}{3 g_{*}} \epsilon_{L, C P} \eta_{T E} \sim 10^{-3} \epsilon \eta \quad\left(\text { want } 10^{-10}\right) \\
s \sim g_{*} n_{\gamma}, \epsilon=\text { lepton asym in decay, } \eta=\text { TE } \quad \text { process } / \gamma
\end{gathered}
$$

## Does it work? Calculate something ?

Recipe : calculate suppression factor for each Sakharov condition, multiply together to get $Y_{B}$ :

$$
\frac{n_{B}-n_{\bar{B}}}{s} \sim \frac{1}{3 g_{*}} \epsilon_{L, C P} \eta_{T E} \sim 10^{-3} \epsilon \eta \quad\left(\text { want } 10^{-10}\right)
$$

$s \sim g_{*} n_{\gamma}, \epsilon=$ lepton asym in decay, $\eta=$ TE process $/ \gamma$
TE + dynamics:
Suppose at $T \gtrsim M_{1}$, a density $\sim T^{3}$ is produced.

## Does it work? Calculate something ?

Recipe : calculate suppression factor for each Sakharov condition, multiply together to get $Y_{B}$ :

$$
\frac{n_{B}-n_{\bar{B}}}{s} \sim \frac{1}{3 g_{*}} \epsilon_{L, C P} \eta_{T E} \sim 10^{-3} \epsilon \eta \quad \quad\left(\text { want } 10^{-10}\right)
$$

$s \sim g_{*} n_{\gamma}, \epsilon=$ lepton asym in decay, $\eta=$ TE process $/ \gamma$
XE + dynamics:
Suppose at $T \gtrsim M_{1}$, a density $\sim T^{3}$ is produced.
Later, Lepton asym produced in CP $N$ decays, survives if not washed out by Inverse Decays = survives after ID out of equil :

$$
\Gamma_{I D}(\phi \ell \rightarrow N) \simeq \Gamma_{\text {decay }} e^{-M_{1} / T}=\frac{\left[\lambda \lambda^{\dagger}\right]_{11} M_{1}}{8 \pi} e^{-M_{1} / T}<\frac{10 T^{2}}{m_{p l}}
$$

## Does it work? Calculate something ?

Recipe: calculate suppression factor for each Sakharov condition, multiply together to get $Y_{B}$ :

$$
\frac{n_{B}-n_{\bar{B}}}{s} \sim \frac{1}{3 g_{*}} \epsilon_{L, C P} \eta_{T E} \sim 10^{-3} \epsilon \eta \quad \quad\left(\text { want } 10^{-10}\right)
$$

$s \sim g_{*} n_{\gamma}, \epsilon=$ lepton asym in decay, $\eta=$ TE process $/ \gamma$
XE + dynamics:
Suppose at $T \gtrsim M_{1}$, a density $\sim T^{3}$ is produced.
Later, Lepton asym produced in CP $N$ decays, survives if not washed out by Inverse Decays = survives after ID out of equil :

$$
\Gamma_{I D}(\phi \ell \rightarrow N) \simeq \Gamma_{\text {decay }} e^{-M_{1} / T}=\frac{\left[\lambda \lambda^{\dagger}\right]_{11} M_{1}}{8 \pi} e^{-M_{1} / T}<\frac{10 T^{2}}{m_{p l}}
$$

Fraction $N$ remaining at $T_{I D}$ when ID turn off :

$$
\frac{n_{N}}{n_{\gamma}}\left(T_{I D}\right) \simeq e^{-M_{1} / T_{I D}} \simeq \frac{H\left(T=M_{1}\right)}{\Gamma\left(N \rightarrow \ell_{\alpha} \phi\right)} \equiv \eta
$$

In leptogenesis, need $\subset$,,$\measuredangle$ interactions of $N_{l} \ldots$ for instance:

$$
\epsilon_{I}^{\alpha}=\frac{\Gamma\left(N_{I} \rightarrow \phi \ell_{\alpha}\right)-\Gamma\left(\bar{N}_{I} \rightarrow \bar{\phi} \bar{\ell}_{\alpha}\right)}{\Gamma\left(N_{I} \rightarrow \phi \ell\right)+\Gamma\left(\bar{N}_{I} \rightarrow \bar{\phi} \bar{\ell}\right)} \quad\left(\text { recall } N_{I}=\bar{N}_{I}\right)
$$

$\sim$ fraction $N$ decays producing excess lepton

In leptogenesis, need $C P$, $\not \subset$ interactions of $N_{l} \ldots$ for instance :

$$
\epsilon_{I}^{\alpha}=\frac{\Gamma\left(N_{I} \rightarrow \phi \ell_{\alpha}\right)-\Gamma\left(\bar{N}_{I} \rightarrow \bar{\phi} \bar{\ell}_{\alpha}\right)}{\Gamma\left(N_{I} \rightarrow \phi \ell\right)+\Gamma\left(\bar{N}_{I} \rightarrow \bar{\phi} \bar{\ell}\right)} \quad\left(\text { recall } N_{I}=\bar{N}_{I}\right)
$$

$\sim$ fraction $N$ decays producing excess lepton


Just try to calculate $\epsilon_{1}$ ?

- asym at tree $\times$ loop, if CP from complex cpling and on-shell particles in the loop (divergences cancel in diff, need Im part of Feynman param integrtn)
© , complex couplings, loops unitarity and all that...
$\mathbf{1}$ the S -matrix $\boldsymbol{S} \equiv \mathbf{1}+i \boldsymbol{T}$ is CPT invariant
Kolb+Wolfram, NPB '80, Appendix

$$
\langle\overline{\phi \ell}| \boldsymbol{S}|N\rangle=\langle N| \boldsymbol{S}|\phi \ell\rangle \quad\left(=\langle\phi \ell| \boldsymbol{S}^{\dagger}|N\rangle^{*}\right)
$$

© , complex couplings, loops unitarity and all that...
$\mathbf{1}$ the S-matrix $\boldsymbol{S} \equiv \mathbf{1}+i \boldsymbol{T}$ is CPT invariant

Kolb+Wolfram, NPB '80, Appendix

$$
\langle\overline{\phi \ell}| \boldsymbol{S}|N\rangle=\langle N| \boldsymbol{S}|\phi \ell\rangle \quad\left(=\langle\phi \ell| \boldsymbol{S}^{\dagger}|N\rangle^{*}\right)
$$

$$
\text { and unitary : } \boldsymbol{S \boldsymbol { S } ^ { \dagger }}=\mathbf{1}=(\mathbf{1}+i \boldsymbol{T})\left(\mathbf{1}-i \boldsymbol{T}^{\dagger}\right)
$$

$$
\Rightarrow i \boldsymbol{T}-i \boldsymbol{T}^{\dagger}+\boldsymbol{T} \boldsymbol{T}^{\dagger}=0
$$

© , complex couplings, loops unitarity and all that...
1 the S-matrix $\boldsymbol{S} \equiv \mathbf{1}+i \boldsymbol{T}$ is CPT invariant
Kolb+Wolfram, NPB '80, Appendix

$$
\langle\overline{\phi \ell}| \boldsymbol{S}|N\rangle=\langle N| \boldsymbol{S}|\phi \ell\rangle \quad\left(=\langle\phi \ell| \boldsymbol{S}^{\dagger}|N\rangle^{*}\right)
$$

and unitary: $\boldsymbol{S S ^ { \dagger }}=\mathbf{1}=(\mathbf{1}+i \boldsymbol{T})\left(\mathbf{1}-i \boldsymbol{T}^{\dagger}\right)$

$$
\begin{gathered}
\Rightarrow i \boldsymbol{T}-i \boldsymbol{T}^{\dagger}+\boldsymbol{T}^{\dagger}=0 \\
\Rightarrow i\langle\phi \ell| \boldsymbol{T}|N\rangle-i\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle+\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle=0
\end{gathered}
$$

CP , complex couplings, loops unitarity and all that...
$\mathbf{1}$ the S-matrix $\boldsymbol{S} \equiv \mathbf{1}+i \boldsymbol{T}$ is CPT invariant

Kolb+Wolfram, NPB '80, Appendix

$$
\langle\overline{\phi \ell}| \boldsymbol{S}|N\rangle=\langle N| \boldsymbol{S}|\phi \ell\rangle \quad\left(=\langle\phi \ell| \boldsymbol{S}^{\dagger}|N\rangle^{*}\right)
$$

$$
\text { and unitary : } \boldsymbol{S \boldsymbol { S } ^ { \dagger }}=\mathbf{1}=(\mathbf{1}+i \boldsymbol{T})\left(\mathbf{1}-i \boldsymbol{T}^{\dagger}\right)
$$

$$
\begin{aligned}
& \Rightarrow i \boldsymbol{T}-i \boldsymbol{T}^{\dagger}+\boldsymbol{T T}^{\dagger}=0 \\
& \Rightarrow i\langle\phi \ell| \boldsymbol{T}|N\rangle-i\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle+\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle=0 \\
& \left.|\langle\phi \ell| \boldsymbol{T}| N\rangle\left.\right|^{2}=\left|\langle\phi \ell| \boldsymbol{T}^{\dagger}\right| N\right\rangle\left.\right|^{2}-i\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle\langle N| \boldsymbol{T}^{\dagger}|\phi \ell\rangle \\
& +i\langle N| \boldsymbol{T}|\phi \ell\rangle\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle+\ldots
\end{aligned}
$$

© , complex couplings, loops unitarity and all that...
$\mathbf{1}$ the S -matrix $\boldsymbol{S} \equiv \mathbf{1}+i \boldsymbol{T}$ is CPT invariant

$$
\langle\overline{\phi \ell}| \boldsymbol{S}|N\rangle=\langle N| \boldsymbol{S}|\phi \ell\rangle \quad\left(=\langle\phi \ell| \boldsymbol{S}^{\dagger}|N\rangle^{*}\right)
$$

and unitary : $\boldsymbol{S S}^{\dagger}=\mathbf{1}=(\mathbf{1}+i \boldsymbol{T})\left(\mathbf{1}-i \boldsymbol{T}^{\dagger}\right)$

$$
\begin{gathered}
\Rightarrow i \boldsymbol{T}-i \boldsymbol{T}^{\dagger}+\boldsymbol{T}^{\dagger}=0 \\
\Rightarrow i\langle\phi \ell| \boldsymbol{T}|N\rangle-i\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle+\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle=0 \\
|\langle\phi \ell| \boldsymbol{T}| N\rangle\left.\right|^{2}=\begin{array}{l}
\left.\left|\langle\phi \ell| \boldsymbol{T}^{\dagger}\right| N\right\rangle\left.\right|^{2}-i\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle\langle N| \boldsymbol{T}^{\dagger}|\phi \ell\rangle \\
+i\langle N| \boldsymbol{T}|\phi \ell\rangle\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle+\ldots
\end{array}
\end{gathered}
$$

2 We are interested in a CP asymmetry :

$$
\left.\left.\epsilon \propto \int d \Pi(|\langle\phi \ell| \boldsymbol{T}| N\rangle\right|^{2}-\left.\langle\overline{\phi \ell}| \boldsymbol{T}|N\rangle\right|^{2}\right)
$$

SO (this formula exact, if I kept 2 s and sums)

$$
\epsilon \propto \boldsymbol{I} \boldsymbol{m}\left\{\langle\phi \ell| \boldsymbol{T}^{\dagger}|N\rangle\langle N| \boldsymbol{T}^{\dagger}|\phi \ell\rangle\right\}
$$

$\Rightarrow$ need complex cplings, and on-shell particles in a loop
loops, unitarity and all that...(estimate $\epsilon$, no loop caln)

Can use unitarity and CPT invariance of S-matrix to estimate $\epsilon$ from tree amplitudes.
Consider $M_{1} \ll M_{2,3}$, asym from $\subset P$,, decays of $N_{1}$ :

$$
\epsilon_{1}^{\alpha}=\frac{\Gamma\left(N_{1} \rightarrow \phi \ell_{\alpha}\right)-\Gamma\left(\bar{N}_{1} \rightarrow \bar{\phi} \bar{\ell}_{\alpha}\right)}{\Gamma\left(N_{1} \rightarrow \phi \ell\right)+\Gamma\left(\bar{N}_{I} \rightarrow \bar{\phi} \bar{\ell}\right)} \quad\left(\text { recall } N_{1}=\bar{N}_{1}\right)
$$

loops, unitarity and all that...(estimate $\epsilon$, no loop caln)

Can use unitarity and CPT invariance of S-matrix to estimate $\epsilon$ from tree amplitudes.
Consider $M_{1} \ll M_{2,3}$, asym from $C P, \not, K$ decays of $N_{1}$ :

$$
\epsilon_{1}^{\alpha}=\frac{\Gamma\left(N_{1} \rightarrow \phi \ell_{\alpha}\right)-\Gamma\left(\bar{N}_{1} \rightarrow \bar{\phi} \bar{\ell}_{\alpha}\right)}{\Gamma\left(N_{1} \rightarrow \phi \ell\right)+\Gamma\left(\bar{N}_{I} \rightarrow \bar{\phi} \bar{\ell}\right)} \quad\left(\text { recall } N_{1}=\bar{N}_{1}\right)
$$

$$
[\kappa]_{\alpha \beta} \sim \frac{\left[m_{\nu}\right]_{\alpha \beta}}{v^{2}}
$$


loops, unitarity and all that...(estimate $\epsilon$, no loop caln)

Can use unitarity and CPT invariance of S-matrix to estimate $\epsilon$ from tree amplitudes.
Consider $M_{1} \ll M_{2,3}$, asym from $C P, \not, \not \subset$ decays of $N_{1}$ :

$$
\begin{gathered}
\epsilon_{1}^{\alpha}=\frac{\Gamma\left(N_{1} \rightarrow \phi \ell_{\alpha}\right)-\Gamma\left(\bar{N}_{1} \rightarrow \bar{\phi} \bar{\ell}_{\alpha}\right)}{\Gamma\left(N_{1} \rightarrow \phi \ell\right)+\Gamma\left(\bar{N}_{l} \rightarrow \bar{\phi} \bar{\ell}\right)} \quad\left(\text { recall } N_{1}=\bar{N}_{1}\right) \\
{[\kappa]_{\alpha \beta} \sim \frac{\left[m_{\nu}\right]_{\alpha \beta}}{v^{2}}} \\
N_{1} \longrightarrow \underset{\lambda}{X} \ell_{\alpha} \times N_{1} \xrightarrow[\lambda^{*} \phi]{\ell}+N_{1} \frac{\ell}{\lambda^{*} \phi} \ell_{\alpha} \\
\epsilon_{1} \sim \frac{1}{8 \pi} \frac{\lambda^{2} \kappa}{\lambda^{2}} M<\frac{3}{8 \pi} \frac{m_{\nu}^{\max } M_{1}}{v^{2}} \sim 10^{-6} \frac{M_{1}}{10^{9} \mathrm{GeV}}
\end{gathered}
$$

## Estimate $Y_{B}$

Recall $\left(s \sim g_{*} n_{\gamma}, \epsilon=\right.$ lepton asym in decay $\eta=$ TE $\quad$ process $\left./ \gamma\right):$

$$
\begin{aligned}
\frac{n_{B}-n_{\bar{B}}}{s} & \sim \frac{1}{3 g_{*}} \epsilon_{L, C P} \eta_{T E} \sim 10^{-3} \epsilon \eta \quad\left(\text { want } 10^{-10}\right) \\
& \sim 10^{-3} \frac{H}{\Gamma} 10^{-6} \frac{M_{1}}{10^{9} \mathrm{GeV}}
\end{aligned}
$$

for $M_{1} \ll M_{2,3}$, need $M_{1} \gtrsim 10^{9} \mathrm{GeV}$ to obtain sufficient $\epsilon$
?but give $\delta m_{H}^{2} \gg m_{H}^{2}$ ?

For $M_{I} \sim M_{J} \Leftrightarrow$ resonantly enhance $\epsilon \ldots$ up to $\epsilon \lesssim 1 / 8 \pi$ ! but need decays before Electroweak PT (to profit from sphalerons)... and ID out-of-equil :

$$
\Gamma_{I D} \sim e^{-M / T} \Gamma(N \rightarrow \phi \ell)<H \quad \Rightarrow \quad M \gtrsim 10 T_{c}
$$

Fairy tale works for degen $N_{I}$ for $M_{I} \gtrsim \mathrm{TeV}$

For $M_{I} \sim M_{J} \Leftrightarrow$ resonantly enhance $\epsilon \ldots$ up to $\epsilon \lesssim 1 / 8 \pi$ ! but need decays before Electroweak PT (to profit from sphalerons)... and ID out-of-equil :

$$
\Gamma_{I D} \sim e^{-M / T} \Gamma(N \rightarrow \phi \ell)<H \quad \Rightarrow \quad M \gtrsim 10 T_{c}
$$

Fairy tale works for degen $N_{I}$ for $M_{I} \gtrsim \mathrm{TeV}$

## But unverifiable?

+ credibility enhanced if measure Majorana $m_{\nu}(0 \nu 2 \beta)$
+ and if measure CP in the lepton sector
(but no dependence of CP for leptogen on low energy CP $=$ other phases also contribute, so leptogen can work with vanishing low-E CPV, and fail with non-zero CPV at low-E)
- scenario ruled out if measure Dirac $m_{\nu}$


## $\nu \mathrm{MSM}$ : type 1 seesaw below 100 GeV gives BAU and DM

AkhmedovRubakovSmirnov
Asaka + Shaposhnikov thesis Canetti
ingredients: SM +
$N_{2,3}: 100 \mathrm{MeV} \lesssim M_{2,3} \lesssim 10 \mathrm{GeV}, \Delta M \lesssim \begin{cases}10^{-6} \mathrm{eV} & Y_{B}, \Omega_{D M} \\ \mathrm{keV} & Y_{B}, N O T \\ \Omega_{D M}\end{cases}$
Yukawas $\ni$ give 2 light SM neutrinos via seesaw
$N_{1}: M_{1} \sim \mathrm{keV}$. WDM candidate.
feebly coupled (negligeable contribution $m_{\nu, S M}$ )

## $\nu \mathrm{MSM}$ : type 1 seesaw below 100 GeV gives BAU and DM

AkhmedovRubakovSmirnov
Asaka + Shaposhnikov thesis Canetti
ingredients: $\mathrm{SM}+$
$N_{2,3}: 100 \mathrm{MeV} \lesssim M_{2,3} \lesssim 10 \mathrm{GeV}, \Delta M \lesssim \begin{cases}10^{-6} \mathrm{eV} & Y_{B}, \Omega_{D M} \\ \mathrm{keV} & Y_{B}, N O T \Omega_{D M}\end{cases}$
Yukawas $\ni$ give 2 light SM neutrinos via seesaw
$N_{1}: M_{1} \sim \mathrm{keV}$. WDM candidate.
feebly coupled (negligeable contribution $m_{\nu, S M}$ )

## scenario :

Population of $N_{2,3}$ produced via Yukawas before EPT
Produce $\Delta L \rightarrow Y_{B}$ via oscillations of $N_{2,3}, \nu_{S M}$ before EPT
Produce $\Delta L \gtrsim 10^{-5}$ via osc. and decay of $N_{2,3}$ after EPT
Can produce sufficient distribution of $N_{1}$ via osc.
tests :
$N_{2,3}$ : beam dump, SHIP
$N_{1}$ as DM : $X$-rays from DM decay, WDM bounds (depend on momentum distribution)

How does asym generation work? (very simplified !)

1 at $T \lesssim T e V\left(\right.$ recall $\left.\lambda \lesssim 10^{-7}\right)$, produce $N_{2}, N_{3}$ via Yukawa interaction $\lambda \bar{N} \ell \cdot \phi$

How does asym generation work? (very simplified !)

1 at $T \lesssim \operatorname{TeV}\left(\right.$ recall $\left.\lambda \lesssim 10^{-7}\right)$, produce $N_{2}, N_{3}$ via Yukawa interaction $\lambda \bar{N} \ell \cdot \phi$
$2 N_{2}, N_{3}$ oscillate (almost degenerate)
3 back to $\nu_{L}$ via $\lambda$

## How does asym generation work? (very simplified !)

1 at $T \lesssim T e V\left(\right.$ recall $\left.\lambda \lesssim 10^{-7}\right)$, produce $N_{2}, N_{3}$ via Yukawa interaction $\lambda \bar{N} \ell \cdot \phi$
$2 N_{2}, N_{3}$ oscillate (almost degenerate)
3 back to $\nu_{L}$ via $\lambda$
at $\tau_{U} \sim \tau_{\text {osc }}, 1,2,3$ are coherent, so CPV from $\lambda-\Delta M^{2}-\lambda$ gives flavour asyms in $\nu_{L \alpha}$ (to small)
*lepton number in $\ell_{L}+N_{R}$ is conserved* (actually, $L_{S M}+$ helicity of $N_{I}$ ) from $\tau_{\text {osc }} \rightarrow \tau_{\text {EWPT }}$, asyms in $\nu_{L \alpha}$ seed asyms in $N \longrightarrow$ asyms in $\nu_{L \alpha}$ (enough asym)
...works also in detailed calculations with all available technology... (eg also include lepton number violating interactions)



$$
U^{2}=\operatorname{Tr}\left[\lambda M^{-2} \lambda^{\dagger}\right]
$$

## Summary

Leptogenesis is a class of recipes, that use majorana neutrino mass models to generate the matter excess. The model generates a lepton asymmetry (before the Electroweak Phase Transition), and the non-perturbative $S M B+L$ violn reprocesses it to a baryon excess. $\star$ efficient, to use the BSM for $m_{\nu}$ to generate the Baryon Asym.
$\star$ using SM $\mathrm{B}+\mathrm{L}$ violn ( $\Delta B=\Delta L=3$ ) avoids proton lifetime bound

* it works ...rather well, for a wide range of parameters

