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Plan of the lectures

Weyl, Dirac and Majorana fermions

Neutrino masses in simplest extensions of the Standard Model.

The seesaw mechanism(s).

Neutrino oscillations in vacuum

Same E or same p?

QM uncertainties and coherence issues

Wave packet approach to neutrino oscillations

Lorentz invariance of oscillation probabilities

2f and 3f neutrino mixing schemes and oscillations

Implications of CP, T and CPT

Coherent elastic neutrino nucleus scattering (CEvNS)
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Weyl, Dirac and Majorana neutrino femions

Dirac equation:

(iγµ∂µ −m)ψ(x) = 0

The chiral (Weyl) representation of the Dirac γ-matrices:

γ0 =





0 1

1 0



 , γi =





0 σi

−σi 0



 , γ5 =





−1 0

0 1



 ,

LH and RH chirality projector operators:

PL =

1− γ5
2

, PR =

1+ γ5
2

.

They have the following properties:

P 2
L = PL , P 2

R = PR , PLPR = PRPL = 0 , PL + PR = 1

LH and RH spinor fields: ΨR,L = 1±γ5

2 Ψ , Ψ = ΨL +ΨR .
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Why LH and RH chirality? For relativistic particles chirality almost coincides

with helicity (projection of the spin of the particle on its momentum).

P± =
1

2

(

1± σp

|p|

)

.

At E ≫ m positive-energy solutions satisfy

ΨR ≃ Ψ+ , ΨL ≃ Ψ− .

N.B.: Helicity of a free particle is conserved; chirality is not (unless m = 0).

Particle - antiparticle conjugation operation Ĉ:

Ĉ : ψ → ψc = Cψ̄T

where ψ̄ ≡ ψ†γ0 and C satisfies

C−1γµC = −γTµ , C† = C−1 = −C∗ (⇒ CT = −C) .

In the Weyl representation: C = iγ2γ0.
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Some useful relations:

♦ (ψc)c = ψ , ψc = −ψT C−1 , ψ1ψ
c
2 = ψ2ψ

c
1 , ψ1Aψ2 = ψc

2(CAT C−1)ψc
1 .

(A – an arbitrary 4× 4 matrix).
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1 .

(A – an arbitrary 4× 4 matrix).

♦ (ψL)
c = (ψc)R , (ψR)

c = (ψc)L ,

i.e. the antiparticle of a left-handed fermion is right-handed.

⋄ Problem: Prove these relations.
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ψ =





φ

ξ







Some useful relations:

♦ (ψc)c = ψ , ψc = −ψT C−1 , ψ1ψ
c
2 = ψ2ψ

c
1 , ψ1Aψ2 = ψc

2(CAT C−1)ψc
1 .

(A – an arbitrary 4× 4 matrix).

♦ (ψL)
c = (ψc)R , (ψR)

c = (ψc)L ,

i.e. the antiparticle of a left-handed fermion is right-handed.

⋄ Problem: Prove these relations.

ψ =





φ

ξ





From the expression for γ5:

ψL =





φ

0



 , ψR =





0

ξ



 ,

⇒ Chiral fields are 2-component rather than 4-component objects.
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Dirac vs. Majorana neutrino masses

Dirac equation in terms of 2-spinors φ and ξ:

(i∂0 − iσ ·∇)φ−mξ = 0 ,

(i∂0 + iσ ·∇)ξ −mφ = 0 .

Fermion mass couples LH and RH components of ψ. For m = 0 eqs. for φ

and ξ decouple (Weyl equations; Weyl fermions).
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and ξ decouple (Weyl equations; Weyl fermions).

Dirac Lagrangian:

L = ψ̄(iγµ∂µ −m)ψ .

The fermion mass Lagrangian:

−Lm = mψ̄ψ = m (ψ̄L + ψ̄R)(ψL + ψR) = m (ψ̄RψL + ψ̄LψR) ,



Dirac vs. Majorana neutrino masses

Dirac equation in terms of 2-spinors φ and ξ:

(i∂0 − iσ ·∇)φ−mξ = 0 ,

(i∂0 + iσ ·∇)ξ −mφ = 0 .

Fermion mass couples LH and RH components of ψ. For m = 0 eqs. for φ

and ξ decouple (Weyl equations; Weyl fermions).

Dirac Lagrangian:

L = ψ̄(iγµ∂µ −m)ψ .

The fermion mass Lagrangian:

−Lm = mψ̄ψ = m (ψ̄L + ψ̄R)(ψL + ψR) = m (ψ̄RψL + ψ̄LψR) ,

LH and RH fields are necessary to make up a fermion mass.

Dirac fermions: ψL and ψR are completely independent fields

For Majorana fermions: ψR = (ψL)
c, where (ψ)c ≡ C ψ̄T .
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Dirac vs. Majorana neutrino masses

Acting on a chiral field, particle-antiparticle conjugation flips its chirality:

(ψL)
c = (ψc)R , (ψR)

c = (ψc)L

(the antiparticle of a left handed fermion is right handed) ⇒
one can construct a massive fermion field out of ψL and (ψL)

c:

χ = ψL + (ψL)
c

⇒ Majorana field:

χc = χ

Majorana mass term:

−LMaj
m =

m

2
(ψL)c ψL + h.c. = − m

2
ψT
LC−1 ψL + h.c. =

m

2
χ̄χ .

Breaks all charges (electric, lepton, baryon) – can only be written for entirely

neutral fermions ⇒ Neutrinos are the only known candidates!
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D. and M. fields: plane wave decomposition

Plane-wave decomposition of a Dirac field:

ψ(x) =

∫

d3p

(2π)3
√

2E~p

∑

s

[

bs(~p)us(~p)e
−ipx + d†s(~p)vs(~p)e

ipx
]
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D. and M. fields: plane wave decomposition

Plane-wave decomposition of a Dirac field:

ψ(x) =

∫

d3p

(2π)3
√

2E~p

∑

s

[

bs(~p)us(~p)e
−ipx + d†s(~p)vs(~p)e

ipx
]

For Majorana fields:

χ(x) =

∫

d3p

(2π)3
√

2E~p

∑

s

[

bs(~p)us(~p)e
−ipx + b†s(~p)vs(~p)e

ipx
]

.

The spinors us(~p) and vs(~p) satisfy

C uT = v , C vT = u ⇒

χc ≡ Cχ̄T = χ

♦ Majorana particles are genuinely neutral (coincide with their antiparticles).
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Fermion masses in the Standard Model

Come from Yukawa interactions of fermions with the Higgs field:

−LY = huijQLiuRjH̃ + hdijQLidRjH + feij lLieRjH + h.c.

QLi =
(

uLi

dLi

)

, lLi =
(

νLi

eLi

)

, H =
(

H+

H0

)

, H̃ = iτ2H
∗

uRi, dRi, eRi – SU(2)L - singlets.

EWSB: 〈H0〉 = v ≃ 174 GeV ⇒ fermion mass matrices are generated:

♦ (mu)ij = huijv , (md)ij = hdijv , (me)ij = feijv .

No RH neutrinos were introduced in the SM!
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Why is mν = 0 in the Standard Model ?

No RH neutrinos NRi – Dirac mass terms cannot be introduced

Operators of the kind l lHH, which could could produce Majorana

neutrino mass after H → 〈H〉, are dimension 5 and so cannot be

present at the Lagrangian level in a renormalizable theory

These operators cannot be induced in higher orders either (even

nonperturbatively) because they would break not only lepton number

L but also B − L, which is exactly conserved in the SM

In the Standard Model:

B and L are accidental symmetries at the Lagrangian level. Get broken at

1-loop level due the axial (triangle) anomaly. But: their difference B − L is

still conserved and is an exact symmetry of the model
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Diagonalization of fermion mass matrices

I. Dirac fermions (e.g. charged leptons):

−Lm =

Nf
∑

a,b=1

m′ab Ψ̄
′
aLΨ

′
bR + h.c. = Ψ̄′Lm

′Ψ′R + Ψ̄′Rm
′†Ψ′L

Rotate Ψ′L and Ψ′R by unitary transformations:

Ψ′L = VLΨL , Ψ′R = VRΨR ; m = V †Lm
′VR = diag.

Diagonalized mass term:

−Lm = Ψ̄L(V
†
Lm
′VR)ΨR + h.c. =

Nf
∑

i=1

miΨ̄iLΨRi + h.c.

Mass eigenstate fields:

Ψi = ΨiL +ΨiR; −Lm =

Nf
∑

i=1

mi Ψ̄iΨi

Invariant w.r.t. U(1) transfs. Ψi → eiαiΨi – conservs individual ferm. numbers
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Diagonalization of fermion mass matrices

II. Majorana fermions:

Lm = − 1

2

Nf
∑

a,b=1

m′ab (Ψ
′
aL)

c Ψ′bL + h.c. =
1

2
Ψ′L

T
C−1m′Ψ′L + h.c.

Matrix m′ is symmetric: m′
T
= m′. ⋄ Problem: prove this.

Unitary transformation of Ψ′L:

Ψ′L = ULΨL , m = UT
Lm

′ UL = diag.

Diagonalized mass term:

Lm =
1

2
[ΨT

LC
−1(UT

Lm
′ UL)ΨL + h.c. =

1

2

Nf
∑

i=1

miΨ
T
Li C

−1 ΨLi + h.c.

Mass eigenstate fields:

χi = ΨiL + (ΨiL)
c; Lm = −1

2

Nf
∑

i=1

mi χ̄iχi

Not invariant w.r.t. U(1) transfs. ΨLi → eiαiΨLi
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Neutrino masses and lepton flavour violation

For Dirac neutrinos the relevant terms in the Lagrangian are

−Lw+m =
g√
2
(ē′Laγ

µ ν′La)W
−
µ + (m′l)ab ē

′
Rae
′
Lb + (m′ν)ab ν̄

′
Raν

′
Lb + h.c.

Diagonalization of mass matrices:

e′L = VL eL , e′R = VR eR , ν′L = UL νL , ν′R = UR νR

V †Lm
′
lVR = ml , U †Lm

′
νUR = mν (ml,ν − diagonal mass matrices)

−Lw+m =
g√
2
(ēLγ

µ V †LUL νL)W
−
µ + diag. mass terms + h.c.

For m′ν = 0: without loss of generality one can consider both CC term and

ml term diagonal ⇒ the Lagrangian is invariant w.r.t. three separate U(1)

transformations:

♦ eLa,Ra → eiφaeLa,Ra , νLa,Ra → eiφaνLa,Ra (a = e, µ, τ)
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Neutrino masses and lepton flavour violation

⇒ For massles neutrinos three individual lepton numbers (lepton flavours)

Le, Lµ, Lτ conserved.

For massive Dirac neutrinos Le, Lµ, Lτ are violated ⇒ ν oscillations and

µ→ eγ, µ→ 3e, etc. allowed.

But: the total lepton number L = Le + Lµ + Lτ is conserved.

For massive Majorana neutrinos: individual lepton flavours Le, Lµ, Lτ and

the total lepton number L are violated.

In addition to neutrino oscillations and LFV decays 2β0ν decay (∆L = 2

process) is allowed.
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Why are neutrinos so light ?

In the minimal SM: mν = 0. Add 3 RH ν’s NRi:

−LY ⊃ Yν l̄LNRH + h.c., lLi =





νLi

eLi





〈H0〉 = v = 174 GeV ⇒ mν = mD = Yνv

mν < 1 eV ⇒ Yν < 10−11 – Not natural !

Is it a problem? Ye ≃ 3× 10−6. But: with mν 6= 0 , huge disparity between the

masses within each fermion generation !

A simple and elegant mechanism – seesaw

(Minkowski, 1977; Gell-Mann, Ramond & Slansky, 1979; Yanagida, 1979;

Glashow, 1979; Mohapatra & Senjanović, 1980)
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Heavy NRi’s make νLi’s light :

−LY+m = Yν l̄LNR H̃ +
1

2
MRNRNR + h.c.,

In the nL = (νL, (NR)
c)T basis: −Lm = 1

2n
T
LCMνnL + h.c.,

Mν =





0 mT
D

mD MR





NRi are EW singlets ⇒ MR can be ∼MGUT(MI) ≫ mD ∼ v.

Block diagonalization: MN ≃MR ,

♦ mνL
≃ −mT

DM
−1
R mD ⇒ mν ∼ (174 GeV)2

MR

For mν . 0.05 eV ⇒ MR & 1015 GeV∼MGUT ∼ 1016 GeV !
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The (type I) seesaw mechanism

Consider the case of n LH and k RH neutrino fields:

Lm =
1

2
ν′TL C−1mL ν

′
L −N ′RmD ν

′
L +

1

2
N ′TR C−1M∗RN ′R + h.c.

mL and MR – n× n and k× k symmetric matrices, mD – an k× n matrix.
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The (type I) seesaw mechanism

Consider the case of n LH and k RH neutrino fields:

Lm =
1

2
ν′TL C−1mL ν

′
L −N ′RmD ν

′
L +

1

2
N ′TR C−1M∗RN ′R + h.c.

mL and MR – n× n and k× k symmetric matrices, mD – an k× n matrix.

Introduce an n+ k - component LH field

nL =





ν′L

(N ′R)
c



 =





ν′L

N ′cL



 ⇒

Lm =
1

2
nTL C−1MnL + h.c. ,

where

M =





mL mT
D

mD MR



 (M : matrix (n+ k)× (n+ k))

Problem: prove these formulas.
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Block-diagonalization of M

nL = V χ′L , V TMV = V T





mL mT
D

mD MR



V =





m̃L 0

0 M̃R
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Look for the unitary matrix V in the form

V =





√

1− ρρ† ρ

−ρ†
√
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 (ρ : matrix n× k)
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Look for the unitary matrix V in the form
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 (ρ : matrix n× k)

Assume that characteristic scales of neutrino masses satisfy

mL,mD ≪MR ⇒ ρ≪ 1.



Block-diagonalization of M

nL = V χ′L , V TMV = V T





mL mT
D

mD MR



V =





m̃L 0

0 M̃R





Look for the unitary matrix V in the form

V =





√

1− ρρ† ρ

−ρ†
√

1− ρ†ρ



 (ρ : matrix n× k)

Assume that characteristic scales of neutrino masses satisfy

mL,mD ≪MR ⇒ ρ≪ 1.

Treat ρ as perturbation ⇒

ρ∗ ≃ mT
DM

−1
R , M̃R ≃MR ,

m̃L ≃ mL −mT
DM

−1
R mD
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Type I seesaw mechanism – 1-gener. case

A simple 1-flavour case (n = k = 1). Notation change: MR → mR, NR → νR.

M =





mL mD

mD mR



 (mL, mD, mR − real positive numbers)
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Type I seesaw mechanism – 1-gener. case

A simple 1-flavour case (n = k = 1). Notation change: MR → mR, NR → νR.

M =





mL mD

mD mR



 (mL, mD, mR − real positive numbers)

Can be diagonalized as OTMO = Md where O is real orthogonal 2× 2

matrix and Md = diag(m1, m2). Introduce the fields χL through nL = OχL:

nL =





νL

νcL



 =





cos θ sin θ

− sin θ cos θ









χ1L

χ2L



 (χ1L, χ2L − LH comp. of χ1,2)

Rotation angle and mass eigenvalues:

tan 2θ =
2mD

mR −mL
,

m1,2 =
mR +mL

2
∓

√

(

mR −mL

2

)2

+m2
D .

m1, m2 real but can be of either sign
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1-generation case – contd.

Lm =
1

2
nTL C−1MnL + h.c. =

1

2
χT
L C−1Md χL + h.c.

=
1

2
(m1 χ

T
1L C−1χ1L +m2 χ

T
2L C−1χ2L) + h.c. =

1

2
( |m1|χ1χ1 + |m2|χ2χ2 )
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T
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T
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1

2
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Here

χ1 = χ1L + η1(χ1L)
c , χ2 = χ2L + η2(χ2L)

c .

with ηi = 1 or −1 for mi > 0 or < 0 respectively.
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1-generation case – contd.

Lm =
1

2
nTL C−1MnL + h.c. =

1

2
χT
L C−1Md χL + h.c.

=
1

2
(m1 χ

T
1L C−1χ1L +m2 χ

T
2L C−1χ2L) + h.c. =

1

2
( |m1|χ1χ1 + |m2|χ2χ2 )

Here

χ1 = χ1L + η1(χ1L)
c , χ2 = χ2L + η2(χ2L)

c .

with ηi = 1 or −1 for mi > 0 or < 0 respectively.

♦ Mass eigenstates χ1, χ2 are Majorana states!

Interesting limiting cases:

(a) mR ≫ mL, mD (seesaw limit)

m1 ≈ mL − m2
D

mR
→ − m2

D

mR
for mL = 0

m2 ≈ mR
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1-generation case – contd.

(b) mL = mR = 0 (Dirac case)

M =





0 m

m 0



 → Md =





−m 0

0 m



 .



1-generation case – contd.

(b) mL = mR = 0 (Dirac case)

M =





0 m

m 0



 → Md =





−m 0

0 m



 .

Diagonalized by rotation with angle θ = 45◦. We have η2 = −η1 = 1;

χ1 + χ2 =
√
2(νL + νR) , χ1 − χ2 = −

√
2(νcL + νcR) = −(χ1 + χ2)

c.

⇓



1-generation case – contd.

(b) mL = mR = 0 (Dirac case)

M =





0 m

m 0



 → Md =





−m 0

0 m



 .

Diagonalized by rotation with angle θ = 45◦. We have η2 = −η1 = 1;

χ1 + χ2 =
√
2(νL + νR) , χ1 − χ2 = −

√
2(νcL + νcR) = −(χ1 + χ2)

c.

⇓

1

2
m (χ1χ1+χ2χ2) =

1

4
m [(χ1 + χ2)(χ1+χ2)+ [(χ1 − χ2)(χ1−χ2)] = mν̄DνD ,

where

νD ≡ νL + νR .



1-generation case – contd.

(b) mL = mR = 0 (Dirac case)

M =





0 m

m 0



 → Md =





−m 0

0 m



 .

Diagonalized by rotation with angle θ = 45◦. We have η2 = −η1 = 1;

χ1 + χ2 =
√
2(νL + νR) , χ1 − χ2 = −

√
2(νcL + νcR) = −(χ1 + χ2)

c.

⇓

1

2
m (χ1χ1+χ2χ2) =

1

4
m [(χ1 + χ2)(χ1+χ2)+ [(χ1 − χ2)(χ1−χ2)] = mν̄DνD ,

where

νD ≡ νL + νR .

(c) mL, mR ≪ mD (pseudo-Dirac neutrino): |m1,2| ≈ mD ± mL+mR

2 .
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The 3 basic seesaw models 

i.e. tree level ways to generate the dim 5                 operator

Right-handed singlet:
(type-I seesaw)

Scalar triplet:
(type-II seesaw)

Fermion triplet:
(type-III seesaw)

mν = Y
T

N

1

MN

YNv
2 mν = Y∆

µ∆

M2

∆

v2 mν = Y
T

Σ

1

MΣ

YΣv
2

λ

M
LLHH

+

      small if       large 
(or if      small)

mν

Yν

MN        small if       large 
(or if          small)

mν        small if       large 
(or if      small)

mνM∆

Y∆, µ

MΣ

YΣ

+
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Access to the seesaw parameters from    mass matrix data

Type I or III seesaw model:

Type II seesaw:

 15 parameters in Yukawa matrix
 9 real parameters

 6 phases

 3 masses of the N

18 parameters

    mass matrix data: gives

+

•  

•  

ν

mνij = Y
T
Nik

1

MNk

YNkjv
2

mνij = Y∆ij

µ∆

M2

∆

v2

ν

mass matrix data

gives full access to

type II flavour structure

ν

access to 9 parameter

combinations of      andYN MN
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Neutrino oscillations
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Neutrinos can oscillate !

A periodic change of neutrino flavour (identity):

νe → νµ → νe → νµ → νe ...

Happens without any external influence!

Dr. Jekyll / Mr. Hyde kind of story

Neutrinos have two-sided (or even 3-sided) personality !

P (νe → νµ;L) = sin2 2θ · sin2
(

∆m2

4p L
)

Hints of oscillations of solar neutrinos seen since the 1960s

First unambiguous evidence – oscillations of atmospheric

neutrinos (The Super-Kamiokande Collaboration, 1998)
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A bit of history...

Idea of neutrino oscillations: First put forward by Pontecorvo
in 1957. Suggested possibility of ν ↔ ν̄ oscillations by
analogy with K0K̄0 oscillations.
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A bit of history...

Idea of neutrino oscillations: First put forward by Pontecorvo
in 1957. Suggested possibility of ν ↔ ν̄ oscillations by
analogy with K0K̄0 oscillations.

Flavour transitions (“virtual transmutations”) first considered
by Maki, Nakagawa and Sakata in 1962.

B. Pontecorvo S. Sakata Z. Maki M. Nakagawa
1913 - 1993 1911 – 1970 1929 – 2005 1932 – 2001
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Neutrino revolution

Neutrino mass had been unsuccessfully looked for for almost 40

years (several wrong discovery claims)

Since 1998 – an avalanche of discoveries :

Oscillations of atmospheric, solar, reactor and accelerator

neutrinos

Neutrino oscillations imply that neutrinos are massive

In the standard model neutrinos are massless ⇒ we have

now the first compelling evidence of physics beyond the standard

model !
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Oscillations discovered experimentally !

tan
2
(Θ)

∆m
2
 i
n
 e

V
2

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-4

10
-3

10
-2

10
-1

1 10 10
2

Ga

Cl

SuperK

SNO

tan
2
(Θ)

∆m
2
 i
n
 e

V
2

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-4

10
-3

10
-2

10
-1

1 10 10
2

GaGaGa

Cl

SuperK

SNO

KamLAND

95% exclusion

by rate

KamLAND

95% allowed

by rate+shape

KamLAND

95% allowed

by rate+shape

Zenith angle distributions

~15km~13000km ~500km ~13000km ~500km

2-flavor oscillations
Best fit

sin22 =1.0, m2=2.0x10-3 eV2
Null oscillation             

Sub-GeV e-like

Multi-GeV e-like

Sub-GeV -like

Multi-GeV -like
+ PC

Sub-GeV Multi-R 
-like

Multi-GeV Multi-R  
-like

Up stop

Up thru

 (km/MeV)
e!

/E0L

0 10 20 30 40 50 60 70

R
at

io

0

0.2

0.4

0.6

0.8

1

1.2

1.4 KamLAND data CHOOZ data
best-fit osci.

e!best-fit osci. + Expected Geo 

preliminary

1st 2nd 3rd

KamLAND covers the 2nd and 3rd maximum

Neutrino Oscillation
previous result (above 2.6 MeV)

characteristic of neutrino oscillation

hypothetical

single reactor

at 180 km

short baseline

experiment

�

νµ���
�''&�!�1�&��&�
-!&/&10

( )� �
�

�

�
� ���� ��

� �
�

�
�

�
� �

 
→ = 2−  

 
*��%����νµ������
�&

2	��������
��

<��
������
�������

	������
��
��=

)������
��

<����������	

�����
��
��=

������
��	

����
������
��

������
��	

  νµ�����
���

*���+��,���$�
 	�����-���	���� (�� �.%/0�1"��	�
����������4

Evgeny Akhmedov ISAPP 2019 Summer School MPIK Heidelberg, May 28 – June 4, 2019 – p. 28



Oscillations: a well known QM phenomenon

E 2

Ψ

Ψ
E

1

2

1

Ψ1(t) = e−iE1 tΨ1(0)

Ψ2(t) = e−iE2 tΨ2(0)

Ψ(0) = aΨ1(0) + bΨ2(0) (|a|2 + |b|2 = 1) ; ⇒
Ψ(t) = a e−i E1 tΨ1(0) + b e−i E2 tΨ2(0)

Probability to remain in the same state |Ψ(0)〉 after time t:

♦ Psurv = |〈Ψ(0)|Ψ(t)〉|2 =
∣

∣|a|2 e−i E1 t + |b|2 e−i E2 t
∣

∣

2

= 1− 4|a|2|b|2 sin2[(E2 − E1) t/2]
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Neutrino oscillations: theory
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Leptonic mixing

For mν 6= 0 weak eigenstate neutrinos νe, νµ, ντ do not

coincide with mass eigenstate neutrinos ν1, ν2, ν3

Diagonalization of leptonic mass matrices:

e′L → VL eL , ν ′
L → UL νL . . . ⇒

−Lw+m =
g√
2
(ēLγ

µ V †
LUL νL)W

−
µ + diag. mass terms + h.c.

Leptonic mixing matrix: U = V †
LUL

♦ ναL =
∑

i

Uαi νiL ⇒ |ναL〉 =
∑

i

U∗
αi |νiL〉

(α = e , µ , τ, i = 1 , 2 , 3)
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Master formula for ν oscillations

The standard formula for the oscillation probability of relativistic or

quasi-degenerate in mass neutrinos in vacuum:

♦ P (να → νβ;L) =

∣

∣

∣

∣

∑

i Uβi e
−i

∆m2
ij

2p
L U∗

αi

∣

∣

∣

∣

2

(~ = c = 1)

Problem: prove that the RHS does not depend on the index j.

Oscillation disappear when either

U = 1, i.e. Uαi = δαi (no mixing) or

∆m2
ij = 0 (massless or mass-degenerate neutrinos).
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How is it usually derived?

Assume at time t = 0 and coordinate x = 0 a flavour eigenstate

|να〉 is produced:

|ν(0, 0)〉 = |νfl
α〉 =

∑

i

U∗
αi |νmass

i 〉

After time t at the position x, for plane-wave particles:

|ν(t, ~x)〉 =
∑

i

U∗
αi e

−ipix|νmass
i 〉

Mass eigenstates pick up the phase factors e−iφi with

φi ≡ pi x = Et − ~p ~x

P (να → νβ) =
∣

∣〈νfl
β |ν(t, x)〉

∣

∣

2
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How is it usually derived?

Consider ~x || ~p ⇒ ~p~x = px (p = |~p|, x = |~x|)
Phase differences between different mass eigenstates:

∆φ = ∆E · t − ∆p · x

Shortcuts to the standard formula

1. Assume the emitted neutrino state has a well defined

momentum (same momentum prescription) ⇒ ∆p = 0.

For ultra-relativistic neutrinos Ei =
√

p2 +m2
i ≃ p+

m2
i

2p
⇒

∆E ≃ m2
2 −m2

1

2E
≡ ∆m2

2E
; t ≈ x (~ = c = 1)

⇒ The standard formula is obtained
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How is it usually derived?

2. Assume the emitted neutrino state has a well defined

energy (same energy prescription) ⇒ ∆E = 0.

∆φ = ∆E · t − ∆p · x ⇒ − ∆p · x

For ultra-relativistic neutrinos pi =
√

E2 −m2
i ≃ E − m2

i

2p
⇒

−∆p ≡ p1 − p2 ≈ ∆m2

2E
;

⇒ The standard formula is obtained

Stand. phase ⇒ (losc)ik = 4πE
∆m2

ik

≃ 2.5 m E (MeV)

∆m2
ik

eV2
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Same E and same p approaches



Same E and same p approaches

Very simple and transparent



Same E and same p approaches

Very simple and transparent

Allow one to quickly arrive at the desired result



Same E and same p approaches

Very simple and transparent

Allow one to quickly arrive at the desired result

Trouble: they are both wrong
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Kinematic constraints

Same momentum and same energy assumptions: contradict kinematics!

Pion decay at rest (π+ → µ+ + νµ, π− → µ− + ν̄µ):

For decay with emission of a massive neutrino of mass mi:

E2
i =

m2
π

4

(

1−
m2

µ

m2
π

)2

+
m2

i

2

(

1−
m2

µ

m2
π

)

+
m4

i

4m2
π

p2i =
m2

π

4

(

1−
m2

µ

m2
π

)2

− m2
i

2

(

1 +
m2

µ

m2
π

)

+
m4

i

4m2
π

For massless neutrinos: Ei = pi = E ≡ mπ

2

(

1− m2

µ

m2
π

)

≃ 30 MeV

To first order in m2
i :

Ei ≃ E + ξ
m2

i

2E
, pi ≃ E − (1− ξ)

m2
i

2E
, ξ =

1

2

(

1−
m2

µ

m2
π

)

≈ 0.2

Evgeny Akhmedov ISAPP 2019 Summer School MPIK Heidelberg, May 28 – June 4, 2019 – p. 37



Kinematic constraints

Same momentum or same energy would require

ξ = 1 or ξ = 0 – not the case!

Also: would violate Lorentz invariance of the oscillation

probability

How can wrong assumptions lead to the correct oscillation

formula ?
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Problems with the plane-wave approach

Same momentum ⇒ oscillation probabilities depend only

on time. Leads to a paradoxical result – no need for a far

detector ! “Time-to-space conversion” (??) – assumes

neutrinos to be point-like particles (notion opposite to plane

waves).

Same energy – oscillation probabilities depend only on

coordinate. Does not explain how neutrinos are produced

and detected at certain times. Correspponds to a stationary

situation.

Plane wave approach ⇔ exact energy-momentum conservation.

Neutrino energy and momentum are fully determined by those of

external particles ⇒ only one mass eigenstate can be emitted!
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♦ Consistent approaches:

QM wave packet approach – neutrinos described by wave packets rather

than by plane waves



♦ Consistent approaches:

QM wave packet approach – neutrinos described by wave packets rather

than by plane waves

QFT approach: neutrino production and detection explicitly taken into

account. Neutrinos are intermediate particles described by propagators

ν

Pi(q)

Pf (k)

Di(q
′)

Df (k′)
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QM wave packet approach

In QM propagating particles are described by wave packets!

– Finite extensions in space and time.

Plane waves: the wave function at time t = 0 Ψ~p0
(~x) = ei~p0~x

–1.5

–1

–0.5

0

0.5

1

1.5

–4 –2 2 4

x

Wave packets: superpositions of plane waves with momenta in an interval of

width σp around mom. p0 ⇒ constructive interference in a spatial interval

of width σx around some point x0 and destructive interference outside it.

σx σp ≥ 1/2 – QM uncertainty relation
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Wave packets

W. packet centered at ~x0 = 0 at time t = 0:

Ψ(~x; ~p0, σ~p) =

∫

d3p

(2π)3
f(~p− ~p0) e

i~p ~x

Rectangular mom. space w. packet:

f

pp
2σp

0
–1

–0.5

0

0.5

1

–4 –2 2 4

x

Gaussian mom. space w. packet:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

p

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–4 –3 –2 –1 1 2 3 4

p

σxσp = 1/2 – minimum uncertainty packet
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Propagating wave packets

Include time dependence:

Ψ(~x, t) =

∫

d3p

(2π)3
f(~p− ~p0) e

i~p~x−iE(p)t

Example: Gaussian wave packets

Momentum-space distribution:

f(~p− ~p0) =
1

(2πσ2
p)

3/4
exp

{

− (~p− ~p0)
2

4σ2
p

}

Momentum dispersion: 〈~p 2〉 − 〈~p 〉2 = σ2
p.

Coordinate-space wave packet (neglecting spreading):

Ψ(~x, t) = ei~p0~x−iE(p0)t
1

(2πσ2
x)

3/4
exp

{

− (~x− ~vgt)
2

4σ2
x

}

, σ2
x = 1/(4σ2

p)

〈~x 〉 = ~vgt ; 〈~x 2〉 − 〈~x 〉2 = σ2
x .

Evgeny Akhmedov ISAPP 2019 Summer School MPIK Heidelberg, May 28 – June 4, 2019 – p. 43



QM wave packet approach

The evolved produced state:

|νflα(~x, t)〉 =
∑

i

U∗αi |νmass
i (~x, t)〉 =

∑

i

U∗αiΨ
S
i (~x, t)|νmass

i 〉

The coordinate-space wave function of the ith mass eigenstate (w. packet):

ΨS
i (~x, t) =

∫

d3p

(2π)3
fSi (~p) e

i~p~x−iEi(p)t

Momentum distribution function fSi (~p): sharp maximum at ~p = ~P (width of the

peak σpP ≪ P ).

Ei(p) = Ei(P ) +
∂Ei(p)

∂~p

∣

∣

∣

∣

~P

(~p− ~P ) +
1

2

∂2Ei(p)

∂~p2

∣

∣

∣

∣

~p0

(~p− ~P )2 + . . .

~vi =
∂Ei(p)

∂~p
=

~p

Ei
, α ≡ ∂2Ei(p)

∂~p2
=

m2
i

E2
i
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Evolved neutrino state

ΨS
i (~x, t) ≃ e−iEi(P )t+i ~P~x gSi (~x− ~vit) (α → 0)

gSi (~x− ~vit) ≡
∫

d3q
(2π)3 f

S
i (~q +

~P ) ei~q(~x−~vgt) Problem: derive this result

Center of the wave packet: ~x− ~vit = 0. Spatial length: σxP ∼ 1/σpP

(gSi decreases quickly for |~x− ~vit| & σxP ).

Detected state (centered at ~x = ~L):

|νflβ(~x)〉 =
∑

k

U∗βk Ψ
D
k (~x)|νmass

i 〉

The coordinate-space wave function of the ith mass eigenstate (w. packet):

ΨD
i (~x) =

∫

d3p

(2π)3
fDi (~p) ei~p(~x−

~L)
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Oscillation probability

Transition amplitude:

Aαβ(T, ~L) = 〈νflβ |νflα(T, ~L)〉 =
∑

i

U∗αiUβi Ai(T, ~L)

Ai(T, ~L) =

∫

d3p

(2π)3
fSi (~p) f

D∗
i (~p) e−iEi(p)T+i~p~L

Strongly suppressed unless |~L− ~viT | . σx. E.g., for Gaussian wave packets:

Ai(T, ~L) ∝ exp

[

− (~L− ~viT )
2

4σ2
x

]

, σ2
x ≡ σ2

xP + σ2
xD

Oscillation probability:

♦ P (να → νβ ;T, ~L) = |Aαβ |2 =
∑

i,k

U∗αiUβiUαkU
∗
βk Ai(T, ~L)A∗k(T, ~L)
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Phase difference

Oscillations are due to phase differences of different mass eigenstates:

∆φ = ∆E · T − ∆p · L (Ei =
√

p2i +m2
i )

Consider the case ∆E ≪ E (relativistic or quasi-degenerate neutrinos) ⇒

∆E =
∂E

∂p
∆p+

∂E

∂m2
∆m2 = vg ∆p +

1

2E
∆m2

∆φ = (vg ∆p+
1

2E
∆m2) T − ∆p · L

= − (L − vg T )∆p +
∆m2

2E
T

In the center of wave packet (L − vg T ) = 0 ! In general, |L − vg T | . σx;

if σx ≪ losc , |L − vg T |∆p≪ 1 ⇒

Evgeny Akhmedov ISAPP 2019 Summer School MPIK Heidelberg, May 28 – June 4, 2019 – p. 47



∆φ =
∆m2

2E
T , L ≃ vgT ≃ T
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∆φ =
∆m2

2E
T , L ≃ vgT ≃ T

– the result of the “same momentum” approach recovered!

Now instead of expressing ∆E through ∆p and ∆m2 express ∆p through

∆E and ∆m2:

♦ ∆φ = − 1

vg
(L − vg T )∆E +

∆m2

2p
L ⇒ ∆m2

2p
L

– the result of the “same energy” approach recovered!

The reasons why wrong assumptions give the correct result:

Neutrinos are relativistic or quasi-degenerate with ∆E ≪ E

The size of the neutrino wave packet is small compared to the oscillation

length: σx ≪ losc (more precisely: energy uncertainty σE ≫ ∆E)
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Oscillation probability in WP approach

P (να → νβ ;T, ~L) = |Aαβ |2 =
∑

i,k

U∗αiUβiUαkU
∗
βk Ai(T, ~L)A∗k(T, ~L)

Ai(T, ~L) =

∫

d3p

(2π)3
fSi (~p) f

D∗
i (~p) e−iEi(p)T+i~p~L
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Oscillation probability in WP approach

Neutrino emission and detection times are not measured (or not accurately

measured) in most experiments ⇒ integration over T :

P (να → νβ ;L) =

∫

dT P (να → νβ ;T, L) =
∑

i,k

U∗αiUβiUαkU
∗
βk e

−i
∆m2

ik
2P̄

L Ĩik

Ĩik = N

∫

dq

2π
fSi (rkq −∆Eik/2v + Pi)f

D∗
i (rkq −∆Eik/2v + Pi)

×fS∗k (riq +∆Eik/2v + Pk)f
D
k (riq +∆Eik/2v + Pk) e

i∆v
v

qL

Here: v ≡ vi+vk

2 , ∆v ≡ vk − vi , ri,k ≡ vi,k

v , N ≡ 1/[2Ei(P )2Ek(P )v],

Problem: derive this result. Hint: use ∆Eik ≃ v∆pik +∆m2
ik
/2E and go to the shifted

integration variable q ≡ p− P where P ≡ (Pi + Pk)/2.
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When are neutrino oscillations observable?

Keyword: Coherence

Neutrino flavour eigenstates νe, νµ and ντ are coherent superpositions of

mass eigenstates ν1, ν2 and ν3 ⇒ oscillations are only observable if

neutrino production and detection are coherent

coherence is not (irreversibly) lost during neutrino propagation.

Possible decoherence at production (detection): If by accurate E and p

measurements one can tell (through E =
√

p2 +m2) which mass eigenstate

is emitted, the coherence is lost and oscillations disappear!

Full analogy with electron interference in double slit experiments: if one can

establish which slit the detected electron has passed through, the interference

fringes are washed out.
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When are neutrino oscillations observable?

Another source of decoherence: wave packet separation due to the difference

of group velocities ∆v of different mass eigenstates.

If coherence is lost: Flavour transition can still occur, but in a non-oscillatory

way. E.g. for π → µνi decay with a subsequent detection of νi with the

emission of e:

P ∝
∑

i

Pprod(µ νi)Pdet(e νi) ∝
∑

i

|Uµi|2|Uei|2

– the same result as for averaged oscillations.

How are the oscillations destroyed? Suppose by measuring momenta and

energies of particles at neutrino production (or detection) we can determine its

energy E and momentum p with uncertainties σE and σp. From

Ei =
√

p2i +m2
i :

σm2 =
[

(2EσE)
2 + (2pσp)

2
]1/2
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When are neutrino oscillations observable?

If σm2 < ∆m2 = |m2
i −m2

k| – one can tell which mass eigenstate is emitted.

σm2 < ∆m2 implies 2pσp < ∆m2, or σp < ∆m2/2p ≃ l−1osc.

But: To measure p with the accuracy σp one needs to measure the momenta

of particles at production with (at least) the same accuracy ⇒ uncertainty

of their coordinates (and the coordinate of ν production point) will be

σx, prod & σ−1p > losc

⇒ Oscillations washed out. Similarly for neutrino detection.

Natural necessary condition for coherence (observability of oscillations):

Lsource ≪ losc , Ldet ≪ losc

No averaging of oscillations in the source and detector

Satisfied with very large margins in most cases of practical interest
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Wave packet separation

Wave packets representing different mass eigenstate components have

different group velocities vgi ⇒ after time tcoh (coherence time) they

separate ⇒ Neutrinos stop oscillating! (Only averaged effect observable).

Coherence time and length:

∆v · tcoh ≃ σx ; lcoh ≃ vtcoh

∆v =
pi
Ei

− pk
Ek

≃ ∆m2

2E2

lcoh ≃ v
∆v

σx = 2E2

∆m2 vσx

The standard formula for Posc is obtained when the decoherence effects

are negligible.
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A manifestation of neutrino coherence

Even non-observation of neutrino oscillations at distances L≪ losc is a

consequence of and an evidence for coherence of neutrino emission and

detection! Two-flavour example (e.g. for νe emission and detection):

Aprod/det(ν1) ∼ cos θ , Aprod/det(ν2) ∼ sin θ ⇒

A(νe → νe) =
∑

i=1,2

Aprod(νi)Adet(νi) ∼ cos2 θ + e−i∆φ sin2 θ

Phase difference ∆φ vanishes at short L ⇒

P (νe → νe) = (cos2 θ + sin2 θ)2 = 1

If ν1 and ν2 were emitted and absorbed incoherently) ⇒ one would have

to sum probabilities rather than amplitudes:

P (νe → νe) ∼
∑

i=1,2

|Aprod(νi)Adet(νi)|2 ∼ cos4 θ + sin4 θ < 1
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Are coherence constraints compatible?

Observability conditions for ν oscillations:

Coherence of ν production and detection

Coherence of ν propagation

Both conditions put upper limits on neutrino mass squared differences ∆m2 :

(1) ∆Ejk ∼
∆m2

jk

2E
≪ σE ; (2)

∆m2
jk

2E2
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Are coherence constraints compatible?

Observability conditions for ν oscillations:

Coherence of ν production and detection

Coherence of ν propagation

Both conditions put upper limits on neutrino mass squared differences ∆m2 :

(1) ∆Ejk ∼
∆m2

jk

2E
≪ σE ; (2)

∆m2
jk

2E2
L≪ σx ≃ vg/σE

But: The constraints on σE work in opposite directions:

(1) ∆Ejk ∼
∆m2

jk

2E
≪ σE ≪ 2E2

∆m2
jk

vg
L

(2)

Are they compatible? – Yes, if LHS ≪ RHS ⇒

2π
L

losc
≪ vg

∆vg
(≫ 1) – fulfilled in all cases of practical interest
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Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but

astrophysical and cosmological neutrinos (solar, SN, relic ν’s ...)

Coherent production/detection: usually satisfied extremely well due to the

tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

msterile ∼ eV − keV − MeV scale ⇒ heavy compared to the “usual”

(active) neutrinos

Sterile neutrinos: hints from SBL accelerator experiments (LSND, MiniBooNE),

reactor neutrino anomaly, keV sterile neutrinos, pulsar kicks, leptogenesis via

ν oscillations, SN r-process nucleosynthesis, unconventional contributions to

2β0ν decay ...

Production/detection coherence has to be re-checked – important

implications for some neutrino experiments!
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Neutrino oscillations: Coherence at macroscopic distances –

L > 10,000 km in atmospheric neutrino experiments !
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Oscillation probability in WP approach

Neutrino emission and detection times are not measured (or not accurately

measured) in most experiments ⇒ integration over T :

P (να → νβ ;L) =
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dT P (να → νβ ;T, L) =
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Neutrino emission and detection times are not measured (or not accurately

measured) in most experiments ⇒ integration over T :

P (να → νβ ;L) =

∫

dT P (να → νβ ;T, L) =
∑

i,k

U∗αiUβiUαkU
∗
βk e

−i
∆m2

ik
2P̄

L Ĩik

Ĩik = N

∫

dq

2π
fSi (rkq −∆Eik/2v + Pi)f

D∗
i (rkq −∆Eik/2v + Pi)

×fS∗k (riq +∆Eik/2v + Pk)f
D
k (riq +∆Eik/2v + Pk) e

i∆v
v

qL

Here: v ≡ vi+vk

2 , ∆v ≡ vk − vi , ri,k ≡ vi,k

v , N ≡ 1/[2Ei(P )2Ek(P )v]

For (∆v/v)σpL≪ 1 (i.e. L≪ lcoh = (v/∆v)σx) Ĩik is approximately

independent of L; in the opposite case Ĩik is strongly suppressed

Ĩik is also strongly suppressed unless ∆Eik/v ≪ σp, i.e. ∆Eik ≪ σE

– coherent production/detection condition
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The standard osc. probability?

The standard formula for the oscillation probability corresponds to Ĩik = 1.

If the two above conditions are satisfied, Ĩik is not suppressed and is L-, E-

and i, k-independent (i.e. a constant).

The standard probability is obtained when this constant is 1 (normalization

necessary!)

Normaliz. condition:
∫

d3p

(2π)3
|fSi (~p)|2|fDi (~p)|2 = 1
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The normalization prescription

Oscillation probability calculated in QM w. packet approach is not

automatically normalized ! Can be normalized “by hand” by imposing the

unitarity condition:
∑

β

Pαβ(L) = 1 .

This gives

∫

dT |Ai(L, T )|2 = 1 ⇒ Ĩii = N1

∫

dp

2πv
|fSi (p)|2 |fDi (p)|2 = 1

– important for proving Lorentz invariance of the oscillation probability.

Depends on the overlap of fSi (p) and fSi (p) ⇒ no independent

normalization of the produced and detected neutrino wave function would do!

In QFT approach the correctly normalized Pαβ(L) is automatically obtained

and the meaning of the normalization procedure adopted in the w. packet

approach clarified
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Oscillations and QM uncertainty relations

Neutrino oscillations – a QM interference phenomenon, owe their existence

to QM uncertainty relations

Neutrino energy and momentum are characterized by uncertainties σE and

σp related to the spatial localization and time scale of the production and

detection processes. These uncertainties

allow the emitted/absorbed neutrino state to be a coherent superposition

of different mass eigenstates

determine the size of the neutrino wave packets ⇒ govern

decoherence due to wave packet separation

σE – the effective energy uncertainty, dominated by the smaller one between

the energy uncertainties at production and detection. Similarly for σp.
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Universal oscillation formula?

The complete process: production – propagation – detection: factorization

Γab(L,E) = ja(E)P prop
ab (L,E)σb(E)

with a universal P prop
ab (L,E) is only possible when all 3 processes are

independent

In general not true, and production – propagation – detection should be

considered as a single inseparable process!

To get the standard formula one assumes for the emitted and absorbed states

|νfla 〉 =
∑

i

U∗ai |νmass
i 〉

The weights of the mass eigenstaes are just U∗ai – do not depend on the

masses of νi ⇒ only true when the phase space volumes at production

and detection do not depend on the mass of νi.
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Universal oscillation formula?

This is only true if the charact. energy E at production (and detection) is large

compared to all mi (relativistic neutrinos), or compared to all |mi −mk|
(quasi-degenerate neutrinos).

⇒ Neutrino oscillations can be described by a universal probability only

when neutrinos are relativistic or quasi-degenerate

Also: loss of coherence of propagating neutrino state depends on the

coherence of the production and detection processes

⇒ The standard formula for the oscillation probability is only valid when

all decoherence effects are negligible !
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Lorentz invariance of oscillation probability

1. “Paradox” of neutrino w. packet length

For neutrino production in decays of unstable particles at rest (e.g. π → µνµ):

σE ≃ τ−1 = Γπ , σx ≃ vg
σE

≃ vg
Γπ

(= vgτ)

For decay in flight: Γ′π = (mπ/Eπ)Γπ. One might expect

σ′x ≃ Eπ

mπ
σx > σx .

On the other hand, if the decaying pion is boosted in the direction of the

neutrino momentum, the neutrino w. packet should be Lorentz-contracted !

The solution: pion decay takes finite time. During the decay time the pion

moves over distance l = uτ ′ (“chases” the neutrino if u > 0).

σ′x ≃ v′g/Γ
′ − l = v′gτ

′ − uτ ′ = (v′g − u)γuτ =
vgτ

γu(1 + vgu)
,

[the relativ. law of addition of velocities: v′g = (vg + u)/(1 + vgu)].
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Lorentz invariance issues – contd.

That is

σ′x =
σx

γu(1 + vgu)

For relativistic neutrinos vg ≈ v′g ≈ 1 ⇒

σ′x = σx

√

1− u

1 + u

⇒ when the pion is boosted in the direction of neutrino emission (u > 0)

the neutrino wave packet gets contracted; when it is boosted in the opposite

direction (u < 0) – the wave packet gets dilated.
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Lorentz invariance issues – contd.
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Lorentz invariance issues – contd.

The oscillation probability must be Lorentz invariant ! But: L. invariance is not

obvious in QM w. packet approach which (unlike QFT) is not manifestly

Lorentz covariant.

How can we see Lorentz invariance of the standard formula for the oscillation

probability ? Pab depends on L/p (contains factors exp[−i∆m2

ik

2p L]). Is L/p

Lorentz invariant? Lorentz transformations:

L′ = γu(L+ ut) , t′ = γu(t+ uL) ,

E′ = γu(E + up) , p′ = γu(p+ uE) .

The stand. osc. formula results when (i) production and detection and

(ii) propagation are coherent; for neutrinos from conventional sources (i)

implies σx ≪ losc ⇒ one can consider neutrinos pointlike and set L = vgt.

⇒ L′ = γuL(1 + u/vg). On the other hand: vg = p/E

⇒ p′ = γup(1 + u/vg).

⇒ L′/p′ = L/p
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Lorentz invariance issues – contd.

A more general argument (applies also to Mössbauer neutrinos which are not

pointlike): Consider the phase difference

♦ ∆φ = − 1

vg
(L − vg t)∆E +

∆m2

2p
L

– a Lorentz invariant quantity, though the two terms are in not in general

separately Lorentz invariant.

But: If the 1st term is negligible in all Lorentz frames, the second term is

Lorentz invariant by itself ⇒ L/p is Lorentz invariant.

The 1st term can be neglected when the production/detection coherence

conditions are satisfied. In particular, it vanishes in the limit of pointlike

neutrinos L = vgt. N.B.:

L′ − v′gt
′ = γu

[

(L+ ut)− vg + u

1 + vgu
(t+ uL)

]

=
L− vgt

γu(1 + vgu)
,

i.e. the condition L = vgt is Lorentz invariant. MB neutrinos: ∆E ≃ 0.
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Lorentz invariance issues – contd.

The oscillation probability must be Lorentz invariant even when the coherence

conditions are not satisfied !

Lorentz invariance is enforced by the normalization condition.

Pab(L) =
∑

i,k

UaiU
∗
biU
∗
akUbk Iik(L) , where

Iik(L) ≡
∫

dT Ai(L, T )A∗k(L, T )e−i∆φik

From the norm. cond.
∫

dT |Ai(L, T )|2 = 1 ⇒

|Ai|2dT = inv. ⇒ |Ai||Ak|dT = inv. ⇒ AiA∗kdT = inv.

The phase difference ∆φik = ∆EikT −∆pikL is also Lorentz invariant ⇒
so is Iik(L), and consequently Pab(L).
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Oscillation probability in vacuum – summary

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

Neutrinos are ultra-relativistic or quasi-degenerate in mass

Coherence conditions for neutrino production, propagation

and detection are satisfied.

Gives also the correct result in the case of strong coherence

violation (complete averaging regime).

Gives only order of magnitude estimate when decoherence

parameters are of order one.

But: Conditions for partial decoherence are difficult to realize

They may still be realized if relatively heavy sterile neutrinos exist
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Phenomenology of neutrino oscillations
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II. Majorana neutrinos

−Lw+m =
g√
2
(ēLγ

µ V †
L
UL νL)W

−
µ +

n
∑

α=1

mlαēαeα −
n
∑

i=1

miν
T
iLC−1νiL + h.c.

ναL =
n
∑

i=1

Uαi νiL ⇒ |ναL〉 =
n
∑

i=1

U∗
αi |νiL〉

Osc. probability: the same expression
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(ēLγ

µ V †LUL νL)W
−
µ +

n
∑

α=1
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mlαēαeα +
1

2

n+k
∑

i=1

miχ̄iχi + h.c.

nL =





ν′L

(N ′R)
c



 =





ν′L

N ′cL





naL =
n+k
∑

i=1

UaiχiL , UTMU = Md ,

χi = χiL + (χiL)
c , i = 1, . . . , n+ k ,

Lm =
1

2
nTL C−1MnL+h.c. =

1

2

n+k
∑

i

MdiχiLC−1χiL+h.c. = − 1

2

n+k
∑

i

Mdiχ̄iχi.



Neutrino mixing schemes

III. Dirac + Majorana mass term (n LH and k RH neutrinos)
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−
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naL =
n+k
∑

i=1

UaiχiL , UTMU = Md ,

χi = χiL + (χiL)
c , i = 1, . . . , n+ k ,

Lm =
1

2
nTL C−1MnL+h.c. =

1

2

n+k
∑

i

MdiχiLC−1χiL+h.c. = − 1

2

n+k
∑

i

Mdiχ̄iχi.

Index a can take n+ k values; denote collectively the first n of them with α

and the last k with σ ⇒
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Sterile - sterile neutrino oscillations:

P (νcσL → νcρL;L) =
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∣

∣
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An important example: 2-flavour case

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉
|νµ〉 = − sin θ |ν1〉+ cos θ |ν2〉

⇒

U =





cos θ sin θ

− sin θ cos θ



 ≡





c s

−s c





***

♦ Ptr = sin2 2θ sin2

(

∆m2

4p
L

)

⋄ Problem: Derive this formula from the general expression for Pαβ.

⋄ Problem: Write this formula in the usual units, reinstating all factors of ~

and c. Find its classical and non-relativistic limits.

Evgeny Akhmedov ISAPP 2019 Summer School MPIK Heidelberg, May 28 – June 4, 2019 – p. 75



Oscillation amplitude: sin2 2θ. Oscillation phase:

∆m2

4p
L = π

L

losc
, losc ≡

4πp

∆m2
≃ 2.48m

p (MeV)

∆m2 (eV2)
.

For large oscillation phase ⇒ averaging regime (due to finite E-resolution of

detectors and/or finite size of ν source/detector):

Ptr = sin2 2θ sin2
(

∆m2

4p
L

)

→ 1

2
sin2 2θ
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3f neutrino mixing and oscillations
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General case of n flavours – parameter counting

(n× n) unitary mixing matrix Ũ ⇒ n2 real parameters:





n

2



 =
n(n− 1)

2
mixing angles ,

n(n+ 1)

2
phases

For leptonic mixing matrix n phases can be absorbed into re-defenition of the

phases of LH charged fields: eαL → eiφαeαL (e.g., 1st line of Ũ can be made

real). This can be compensated in the mass term of charged leptons by

rephasing eαR → eiφαeαR, so that ēαLeαR = inv.

Similarly, for Dirac neutrinos phases of one column can be fixed by absorbing

n− 1 phases into a redefinition of νiL (RH neutrino fields can be rephased

analogously, so that ν̄iLνiR = inv.) ⇒ In Dirac ν case

n+ (n− 1) = 2n− 1 phases are unphysical – can be rotated away by

redefining charged lepton and neutrino fields.

N.B.: Kinetic terms of eL, eR and νL, νR are also invariant w.r.t. rephasing.!
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Physical phases

Number of physical phases:

n(n+ 1)

2
− (2n− 1) =

(n− 1)(n− 2)

2
.

Phys. phases responsible for CP violation! ⇒ No Dirac-type CPV for n < 3.

In Majorana case:

Lm ∝ νTLCνL + h.c.

Rephasing of νL is not possible (cannot be compensated in Lm)

Only n phases can be removed from Ũ (by redefinition of eαL fields) ⇒
In addition to Dirac-type phases there are (n− 1) physical Majorana-type

CP-violating phases.
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Majorana phases do not affect oscillations

Majorana-type phases can be factored out in the mixing matrix:

Ũ = UK

U contains Dirac-type phases, K – Majorana-type phases σi:

K = diag(1 , eiσ1 , ... , eiσn−1)

Neutrino evolution equation: i d
dt ν = Heff ν

Heff = UK















E1

E2

.

.















K†U † = U















E1

E2

.

.















U †

Does not depend on the matrix of Majorana ✟✟CP phases K ⇒
ν oscillations are insensitive to Majorana phases. Also true for osc. in matter.
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3f oscillation parameters

Three neutrino species (νe, νµ, ντ ) – linear superpositions of three mass

eigenstates (ν1, ν2, ν3). Mixing matrix U – 3× 3 unitary matrix. Depends on

3 mixing angles and one Dirac-type ✟✟CP phase δCP.

Experiment: 2 mixing angles large (in the standard parameterization –

θ12 and θ23), one (θ13) is relatively small.

Three neutrinos species – 2 independent mass squared differences,

e.g. ∆m2
21 and ∆m2

31.

∆m2
21 ≪ ∆m2

31
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What do we know about neutrino parameters?

From atmsopheric and LBL accelerator neutrino experiments:

♦ ∆m2
31 ≃ 2.5× 10−3 eV2 , θ23 ∼ 45◦

From solar neutrino experiments and KamLAND:

♦ ∆m2
21 ≃ 7.5× 10−5 eV2 , θ12 ≃ 33◦

From T2K + Double Chooz, Daya Bay and Reno reactor neutrino experiments:

♦ θ13 ≃ 9◦ (previosly from Chooz . 12◦)

CP-violating phase δCP practically unconstrained at the moment.
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Leptonic mixing and 3f osc. in vacuum

Relation between flavour and mass eigenstates:

να =
3
∑

i=1

Uαi νi

να – fields of flavour eigenstates, νi – of mass eigenstates.

3f mixing matrix:

U =









Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3
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Leptonic mixing and 3f osc. in vacuum

Relation btween flavour and mass eigenstates:

|να〉 =
3
∑

i=1

U∗αi |νi〉

Oscillation probability in vacuum:

P (να → νβ ;L) =

∣

∣

∣

∣

∣

3
∑

i=1

Uβi e
−i

∆m2
i1

2p
L U∗αi

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

[

U e−i
∆m2

2p
L U †

]

βα

∣

∣

∣

∣

2

3f mixing matrix in the standard parameterization (cij = cos θij , sij = sin θij):

U =









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e
−iδCP

0 1 0

−s13eiδCP 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









= O23 (Γδ O13 Γ
†
δ) O12 , Γδ ≡ diag(1 , 1 , eiδCP)
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3f neutrino mixing

U =









c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23









m2

0

solar~7×10−5eV2

atmospheric
~2×10−3eV2

atmospheric
~2×10−3eV2

m1
2

m2
2

m3
2

m2

0

m2
2

m1
2

m3
2

νe

νµ
ντ

? ?

solar~7×10−5eV2
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2f oscillations: physical ranges of parameters

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉
|νµ〉 = − sin θ |ν1〉+ cos θ |ν2〉

In general, θ ∈ [0, 2π]. But: there are transformations that leave ν mixing

formulas unchanged:

θ → θ + π, |ν1〉 → −|ν1〉, |ν2〉 → −|ν2〉 ⇒ θ ∈ [−π
2 ,

π
2 ]

θ → −θ, |ν2〉 → −|ν2〉, |νµ〉 → −|νµ〉 ⇒ θ ∈ [0, π2 ]

θ → π
2 − θ, |ν1〉 ↔ |ν2〉, |νµ〉 → −|νµ〉 ⇒ ∆m2 → −∆m2

One can always choose ∆m2 > 0 by choosing appropriately θ within [0, π2 ].

For vacuum oscillations: Ptr, Psurv depend only on sin2 2θ ⇒ one can

choose θ to be in [0, π4 ]. Not true for oscillations in matter!

Similar considerations in the 3f case: all θij ∈ [0, π2 ]; δCP ∈ [0, 2π].
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✟✟✟✟
CP and �

�T in ν osc. in vacuum

νa → νb oscillation probability:

♦ P (να, t0 → νβ ; t) =

∣

∣

∣

∣

∣

∑

i

Uβi e
−i

∆m2
i1

2E
(t−t0) U∗αi

∣

∣

∣

∣

∣

2

• CP: να,β ↔ ν̄α,β ⇒ Uαi → U∗αi ({δCP} → −{δCP})

• T: t →← t0 ⇔ να ↔ νβ

⇒ Uαi → U∗αi ({δCP} → −{δCP})

T-reversed oscillations (“backwards in time”) ⇔ oscillations between

interchanged initial and final flavours

⋄ ✟✟CP and �T – absent in 2f case, pure N ≥ 3f effects!

⋄ No ✟✟CP and �T for survival probabilities (β = α).

Evgeny Akhmedov ISAPP 2019 Summer School MPIK Heidelberg, May 28 – June 4, 2019 – p. 87



CP and T violation in vacuum – contd.

• CPT: να,β ↔ ν̄α,β & t →← t0 (να ↔ νβ)

⋄ P (να → νβ) → P (ν̄β → ν̄α)

The standard formula for Pαβ in vacuum is CPT invariant!

✟✟CP ⇔ �T – consequence of CPT

Measures of ✟✟CP and �T – probability differences:

∆PCP
αβ ≡ P (να → νβ)− P (ν̄α → ν̄β)

∆PT
αβ ≡ P (να → νβ)− P (νβ → να)

From CPT:

⋄ ∆PCP
αβ = ∆PT

αβ ; ∆PCP
αα = 0
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3f case

One ✟✟CP Dirac-type phase δCP (Majorana phases do not affect ν

oscillations!) ⇒ one ✟✟CP and �T observable:

⋄ ∆PCP
eµ = ∆PCP

µτ = ∆PCP
τe ≡ ∆P

∆P = − 4s12 c12 s13 c
2
13 s23 c23 sin δCP

×
[

sin

(

∆m2
12

2E
L

)

+ sin

(

∆m2
23

2E
L

)

+ sin

(

∆m2
31

2E
L

)]

Vanishes when

At least one ∆m2
ij = 0

At least one θij = 0 or 90◦

δCP = 0 or 180◦

In the averaging regime

In the limit L→ 0 (as L3)

Very difficult to

observe!
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Small parameters

Approximate formulas for probabilities can be obtained using

expansions in small parameters:

(1)
∆m2

⊙
∆m2

atm

=
∆m2

21

∆m2
31

∼ 1/30

(2) |Ue3| = | sin θ13| ∼ 0.16

In the limits ∆m2
21 = 0 or Ue3 = 0 – probabilities take an

effective 2f form.

(N.B.: P (να → νβ) = P (νβ → να))
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Coherent elastic neutrino-nucleus scattering
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Coherent elastic neutrino-nucleus scattering

NC – mediated neutrino-nucleus scattering:

ν +A→ ν +A

Incoherent scattering – Probabilities of scattering on individual nucleons add:

♦ σ ∝ (# of scatterers)

Coherent scattering on nucleus as a whole – Amplitudes of scattering on

individual nucleons add

♦ σ ∝ (# of scatterers)2

Significant increase of the cross sections (but requires small momentum

transfer, q . R−1)

(D.Z. Freedman, 1974)
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Coherent neutrino nucleus scattering:  

Predictions & Implications

• Implications for neutrino 

transport in supernovae 

• Large cross section important 

for understanding how neutrinos 

emerge from supernovae
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NC-induced neutrino-nucleus scattering: flavour blind.

♦
[dσνA
dΩ

]

coh
≃ G2

F

16π2
E2

ν [Z(4 sin
2 θW − 1) +N ]2 (1 + cos θ)|F (~q 2)|2

F (~q 2) is nuclear formfactor:

FN(Z)(~q
2) =

1

N(Z)

∫

d3xρN(Z)(~x)e
i~q~x, ~q = ~k − ~k′.
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1
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∫
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For q ≪ R−1 ⇒ F (~q 2) = 1, [dσνA/dΩ
]
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scattered off different nucleons of the nucleus are in phase with each other.
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♦
[dσνA
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]
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≃ G2

F

16π2
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ν [Z(4 sin
2 θW − 1) +N ]2 (1 + cos θ)|F (~q 2)|2
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FN(Z)(~q
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1

N(Z)

∫

d3xρN(Z)(~x)e
i~q~x, ~q = ~k − ~k′.

For q ≪ R−1 ⇒ F (~q 2) = 1, [dσνA/dΩ
]

coh
∝ N2.

For q ≫ R−1: F (~q 2) ≪ 1.

By Heisenberg uncertainty relation: for q . R−1 the uncertainty of the

coordinate of the sctatterer δx & R ⇒ it is in principle impossible to find

out on which nucleon the neutrino has scattered. Also: neutrino waves

scattered off different nucleons of the nucleus are in phase with each other.

The necessary conditions for coherent scattering!
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R ≃ 1.2 fmA1/3; A ∼ 130 ⇒ R−1 ∼ 30 MeV.

Recoil energy of the nucleus:

Erec ≃
~q 2

2MA
, Emax

rec =
2E2

ν

MA + 2Eν
≃ 2E2

ν

MA
.

For q ∼ 30 MeV: Erec ∼ 5 keV.

Need to detect very low recoil energies ⇒ requires

Very low detection thresholds

Low backgrounds

Intense neutrino fluxes
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Jason Newby, Magnificent CEvNS Workshop 2018

First Observation of CEvNS

3

Akimov et al. Science
Vol 357, Issue 6356 
15 September 2017
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COHERENT experiment

Neutrino energies: Eν ∼ 16 – 53 MeV. Nuclear recoil energy: keV - scale.

# of events expected (SM): 173 ± 48

# of events detected: 134 ± 22

“We report a 6.7 sigma significance for an excess of events, that agrees with

the standard model prediction to within 1 sigma”

∼ 2× 1023 POT; σ ∼ 10−38 cm2.

D. Akimov et al., Science 10.1126/science.aao0990 (2017).
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Coherent Neutrino-Nucleus 
Scattering

recoiling nucleus

ν

Neutrino cross sections

Strongly enhanced 
cross-section

No energy 
threshold

coherent scattering

inverse beta decay

Magnificent CEvNS, Raimund Strauss
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• 14.6 kg low-background CsI[Na] detector 

deployed to a basement location of the 

SNS in the summer of 2015 

• ~ 2x1023 POT delivered and recorded 

since CsI began taking data

A hand-held neutrino detector

6
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Why is CEvNS interesting?

Large cross sections – small detectors

Very clean SM predictions for cross sections – sensitivity to NSI

Sensitivity to µν and 〈r2ν〉
Possibility to measure sin2 θW at low energies

Masurements of neutron formfactors (nuclear structure)

Nuclear reactor monitoring (non-proliferation)

Precision flavor-independent neutrino flux measurements for oscillation

experiments

Sterile neutrino searches

Energy transport in SNe

SN neutrino detection

Input for DM direct detection (neutrino floor)

Detection of solar neutrinos
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Why is CEvNS interesting?

Many experiments planned or under way – CONUS, TEXONO,

Ricochet, Connie, ν-cleus, RED100, MINER, νGEN, ...

Many theoretical studies

A very active field!
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Magnificent CEvNS 2018/11/02 Gleb Sinev, Duke          Constraining NSI with Multiple Targets 4

NSI parameterization
P. Coloma. P.B. Denton, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz,

”Curtailing the Dark Side in Non-Standard Neutrino Interactions”, arXiv:1701.04828

Assuming heavy NSI mediators
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Magnificent CEvNS 2018/11/02 Gleb Sinev, Duke          Constraining NSI with Multiple Targets 10

CEvNS cross section and NSI

� Modification = 
� ���

���

≈ 0

NSI terms

J. Barranco, O.G. Miranda, T.I. Rashba,
”Probing new physics with coherent neutrino scattering off nuclei”, arXiv:hep-ph/0508299

SM diff σ
weighted by
piDAR spectra
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Magnificent CEvNS 2018/11/02 Gleb Sinev, Duke          Constraining NSI with Multiple Targets 24

COHERENT NSI constraint

� August 2017 result

� 14.6 kg CsI[Na]

� ~2 years running

� 308.1 live-days

� Events

� 134 ± 22 observed

� 173 ± 48 predicted

D. Akimov, J.B. Albert, P. An, et al.,
”Observation of Coherent Elastic Neutrino-Nucleus Scattering”, arXiv:1708.01294
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Magnificent CEvNS 2018/11/02 Gleb Sinev, Duke          Constraining NSI with Multiple Targets 13

Why straight lines for SM rate?

≈ 0

J. Barranco, O.G. Miranda, T.I. Rashba,
”Probing new physics with coherent neutrino scattering off nuclei”, arXiv:hep-ph/0508299

SM rate:
SM

SM
SM

→

Generating two straight lines in NSI-coupling space with SM rate

SM
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Note that this is a different combination at CEνNS than what is 
measured at reactors or solar neutrino experiments!
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Weinberg Angle
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“Running” of Weinberg Angle
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A brief Curriculum Vitae of neutrino

♦ Suggested by W. Pauli in 1930 to explain the continuous electron spectra

in β-decay and nuclear spin/statistics

♦ Discovered by F. Reines and C. Cowan in 1956 in experiments with

reactor ν̄e (Nobel prize to F. Reines in 1995)

♦ 1957 – the idea of neutrino oscillations put forward by B. Pontecorvo

(ν ↔ ν̄)

♦ 1957 – Chiral nature of νe established by Goldhaber, Grodzins & Sunyar

♦ 1962 – Discovery of the second neutrino type – νµ (Nobel prize to

Lederman, Schwartz & Steinberger in 1988)

♦ 1962 – the idea of neutrino flavour oscillations put forward by Maki,

Nakagawa & Sakata
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♦ 1968 – First observation of solar neutrinos by R. Davis and collaborators

♦ 1975 – Discovery of the third lepton flavour – τ lepton

(Nobel prize to M. Perl in 1995)

♦ 1985 – Theoretical discovery of resonant ν oscillations in matter by

Mikheyev and Smirnov based on an earlier work of Wolfenstein

(the MSW effect)

♦ 1987 – First observation of neutrinos from supernova explosion (SN 1987A)

♦ 1998 – “Evidence for oscillations of atmospheric neutrinos” by the

Super-Kamiokande Collaboration

♦ 2000 – Discovery of the third neutrino species – ντ by the DONUT

Collaboration (Fermilab)
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♦ 2002 – “Direct evidence for neutrino flavor transformation from

neutral-current interactions in the Sudbury Neutrino Observatory”

– flavor transformations of solar neutrinos confirmed

♦ 2002 – Discovery of oscillations of reactor neutrinos by KamLAND

Collaboration; identification of the solution of the solar neutrino problem

♦ 2002 – Confirmation of oscillations of atmospheric neutrinos by K2K

accelerator neutrino experiment

♦ 2002 – Nobel prize to R. Davis and M. Koshiba for “detection of cosmic

neutrinos”

(2002 – “Annus Mirabilis” of neutrino physics)

♦ 2004 – Evidence for oscillatory nature of ν disappearance by

Super-Kamiokande (atmospheric ν’s) and KamLAND.
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♦ 2006 – Independent confirmation of oscillations of atmospheric neutrinos

by MINOS accelerator neutrino experiment

♦ 2007 – First real-time detection of solar 7Be neutrinos by Borexino

♦ 2011/12 – Measurement of the last leptonic mixing angle θ13 by T2K,

Double Chooz, Daya Bay and Reno

♦ 2012/14 – Detection of solar pep and pp neutrinos by Borexino

♦ 2015 – Nobel prize to Takaaki Kajita and Arthur McDonald "for the

discovery of neutrino oscillations, which shows that neutrinos

have mass"

♦ 2017 – First observation of coherent neutrino scattering on nuclei

by the COHERENT Collaboration

. . .

More to come !
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