atom physics seminar

ultra short laser pulses

creation and application
ultra short laser pulses

overview

- what? - why? - how?
- creation and optimisation
- typical experimental setup
- properties of existing pulsed lasers
- applications
ultra short laser pulses

What are ultra short laser pulses?

Pulses are called ultra short if they only consist of a few wave cycles.

One wavelength of 790nm corresponds to 2.6 fs => few cycle pulses mean short pulses.

Simple Gaussian „gedanken“ pulses

\[E(t) = E_0 \cdot e^{-\frac{t^2}{T}} \cdot \cos(\omega_0 t) \]
ultra short laser pulses

Why do you want to create ultra short laser pulses?

• high time resolution
 to resolve eg. vibration modes in H$_2$ molecules

• high energy densities
 for plasma physics, electron motion controlling, material procession
ultra short laser pulses

How do you create them?

\[E(t) = E_0 e^{-\Gamma t^2} \cos(\omega_0 t) \]

\[E(\omega) \propto e^{-\frac{(\omega - \omega_0)^2}{4\Gamma}} \]

We need a spectrum with a certain bandwidth to have a fine time resolution. And we need a method to superpose the modes in a way, that a short pulse comes out.
ultra short laser pulses

creation of laser pulses

• short pulse needs a high bandwidth
 → estimation via uncertainty relation

\[\hbar \Delta \omega \Delta t \geq \frac{\hbar}{2} \]

\[\rightarrow \Delta \omega \geq \frac{0.5}{\Delta t} \]

\[\Delta t = 10 \text{ fs} \]

\[\rightarrow \Delta \omega \geq 5 \times 10^{13} \text{ Hz} \]

exact value for gaussian pulses:
\[\Delta \omega \Delta t \geq 0.441 \]
ultra short laser pulses

creation of laser pulses

In wavelength this means:

$$\Delta \lambda = c \frac{\Delta \omega}{\omega_c^2 - \Delta \omega^2} \neq \frac{c}{\Delta \omega}$$

$$\omega_c = \frac{c}{\lambda_c} = \frac{c}{790\text{nm}} \approx 3.79 \times 10^{14} \text{Hz}$$

$$\Rightarrow \Delta \lambda \approx 106 \text{nm}$$

we need a laser medium which amplifies wavelengths from about 740nm to 840 nm

Titan:Saphir laser: 670 to 1070 nm with maximum at 790 nm.
ultra short laser pulses

creation of laser pulses

but in the cavity of a laser there are only some wavelengths allowed
→ standing waves → Fabry-Pérot interferometer

condition for standing waves

\[\frac{\lambda}{2} n = L \Rightarrow \lambda_n = \frac{2L}{n} \]

difference between two adjacent modes

\[\Delta \omega = \frac{\pi c}{L} \]
Question: What happens if the spectrum gets discrete?
ultra short laser pulses

creation of laser pulses

• independent phase of the modes
 => continuous wave lasers

• locked phase of the different modes
 => train of pulses
ultra short laser pulses

mode locking

active mode locking:
• acousto-optic modulator with frequency f
• amplitude modulation through diffraction
modulated function $\sim \cos(\omega t)\cos(ft)$
exites frequencies $\omega - f$ and $\omega + f$

addition theorem:

$$\cos(x) \cdot \cos(\delta x) =$$

$$\frac{1}{2} \cos(x + \delta x) + \frac{1}{2} \cos(x - \delta x)$$

$$\Delta \omega = \frac{\pi c}{L} \quad \text{if } f = \Delta \omega \Rightarrow \text{mode locking}$$
mode locking

active mode locking:

considered in time domain its shutting and opening a weak gate

the time between two pulses is given by the resonator length $\tau = 2L/c$
ultra short laser pulses
mode locking

passive mode locking:
- refraction depends on intensity - Kerr effect
- gaussian power distribution
 ⇒ the refractive index experienced by the beam is greater in the centre than at the edge.
 ⇒ the Kerr medium works like a lens for high intensity light.
ultra short laser pulses

pulse behaviour an optimisation

- dispersion of the pulses in a medium
- compensation of the dispersive effects
- pulse amplifying and optimal compression
ultra short laser pulses

dispersion

The non-linear dispersion has the following effects

\[F(z, t) = \sqrt{\frac{1}{c\varepsilon_0 n^2 A_{eff}}} \text{Re} \left\{ A(z, t) e^{i(\omega_0 t - k(\omega_0)z)} \right\} \]

\[k(\omega) = k_0(\omega) + k_1|\omega_0| \Delta \omega + \frac{k_2|\omega_0|}{2} \Delta \omega^2. \]

k1: inverse group velocity
k2: group dispersion: different wavelengths have different speed => spreading of the envelope

this is called upchirp

but no change in the \(\omega \) spectrum
ultra short laser pulses

fourier limit

fourier transformation

this theoretical limit is called fourier limit
and the aim is to reach this limit through compressing methods
ultra short laser pulses

compensation: prism compression

Through the distance l you can adjust the compensation: If l becomes larger, the red beam travels a longer and longer distance through the prism where its velocity is smaller.
ultra short laser pulses

compensation: grating compression

diffraction of light depends on wavelength
ultra short laser pulses

chirped pulse amplification

avoiding high peak powers in the amplifier through stretching

or dispersive medium (glass)

pumped Ti:S crystal
ultra short laser pulses

a real pulse laser

Nd:YAG pump laser

400μJ@25fs

prism compressor

amplifier with pockels cell

oscillator

Nd:YAG pump laser

4nJ@12fs

oscillator

Nd:YAG pump laser

Nd:YAG pump laser

Nd:YAG pump laser
ultra short laser pulses

a real pulse laser

neodym doted yttrium aluminium granat solid state laser
ultra short laser pulses

a real pulse laser

Nd:YAG pump laser

amplifier with pockels cell

oscillator

Nd:YAG pump laser
ultra short laser pulses
a real pulse laser

Nd:YAG pump laser

400μJ@25fs

prism compressor

amplifier with pockels cell

oscillator

Nd:YAG pump laser

oscillator

4nJ@12fs
ultra short laser pulses

fourier limit

this theoretical limit is called **fourier limit**
and the aim is to reach this limit through compressing methods
ultra short laser pulses

laser pulses in a non-linear medium – Kerr effect

\[F(z, t) = A(z, t) e^{i(\omega_0 t - k_0(\omega_0)z)} \]

\[k(I(t)) = \frac{\omega_0}{c} (n_0 + n_2 I(t)) \]

\[F(z, t) = A(z, t) e^{i(\omega_0 t - k_0(\omega_0)z - \frac{\omega_0}{c} n_2 I(t) z)} \]

\[\phi(t) = \frac{\omega_0}{c} n_2 I(t) \quad \Delta \omega = -\dot{\phi} \]
ultra short laser pulses

laser pulses in a non-linear medium – kerr effect

\[\phi(t) = \frac{\omega_0}{c} n_2 I(t) \]

\[\Delta \omega = -\dot{\phi} \]

⇒ frequency widening
⇒ possibility to compress the pulse even more (smaller fourier limit)
increasing the bandwith

- n_2 is small so you need long non-linear dispersive media
- high intensity => use of inert gas. Solid medium would be destroyed
ultra short laser pulses

properties of todays pulsed lasers

<table>
<thead>
<tr>
<th>laser type</th>
<th>pulse energy</th>
<th>duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti:S λ\text{central}: 795nm</td>
<td>400 µJ/pulse</td>
<td>25 fs</td>
</tr>
<tr>
<td>compressed</td>
<td>100 µJ/pulse</td>
<td>5-10fs</td>
</tr>
<tr>
<td>X–ray or XUV</td>
<td>~1 µJ/pulse</td>
<td>~650 as</td>
</tr>
</tbody>
</table>

with fs-laser pulses there are intensities of about 10^{15} W/cm2 possible.

solar constant: 0.1366 W/cm2

⇒ intensity of sunlight shining on the area of Austria bundled to one cm2

These are values of 5 years old dissertations so the current state of the art in energies/intensities are orders of magnitudes higher.
How are ultra fast processes measured with ultra short pulses?

example:

oscillations of deuterium molecules
ultra short laser pulses

vibration of D$_2$

deuterium molecule in the ground state

D$_2$ potential a.u.

nucleus distance a.u.
Vibration of D_2

multi photon ionisation

$P \sim |n|^n$
ultra short laser pulses

Vibration of D$_2$

potential a.u.

nucleus distance a.u.

no longer an eigenstate

„Lochfraß“
Vibration of D_2 in ultra short laser pulses

Potential in a.u. vs nucleus distance in a.u.

- Superposition of almost only the first and second state oscillation with $\Delta \omega$.
Vibration of D$_2$

 ultra short laser pulses

Vibration of D$_2$

high probability of ionisation

⇒ ionisation rate depends on time between ionisation of the first and the second pulse

low probability of ionisation

potential a.u.

nucleus distance a.u.
ultra short laser pulses

Vibration of D$_2$

We get this graph to assign the frequency.

D$_2^+$ events x 10^4

11.1 fs oscillations

delay time / fs

atom physics seminar – Moritz Zaiß – 26.06.07
Vibration of D$_2$

Fourier transformation of the measured data

11.1 fs oscillation agrees excellent with the theoretical value 11.14 fs

This time dependency was first time measured with 7 fs ultra short laser pulses in time domain
ultra short laser pulses

applications of modern puls lasers

reaction microscope

laser pulse

E, B

D₂ gas

ion detector

electron detector

helmholtz inductors
ultra short laser pulses

further applications of modern pulsed lasers

- meteorologic applications
- laser spectroscopy
- coherent control of electrons in atoms
- fine metal processing
- dental treatments
- fusion
ultra short laser pulses

applications of modern puls lasers

three dimensional images in the air
visualization of "real 3D images" using laser pulses

gas discharge through high intensity

http://www.aist.go.jp/aist_e/latest_research/2006/20060210/20060210.html
ultra short laser pulses
applications of modern puls lasers
http://www.aist.go.jp/aist_e/latest_research/2006/20060210/20060210.html
ultra short laser pulses

summary

creation

• medium with band spectrum
• mode locking
• stretching
• amplifying
• increase the bandwidth
• compressing

⇒ ultra short laser pulses

application

• high time resolution for measurements of fast systems e.g. atomic systems
• high intensity and high precision e.g. material processing

⇒ excellent tool for future physics

Thank You for Your attention!
ultra short laser pulses

sources

1. K. Zrost, “Wechselwirkung von Atomen und kleinen Molekülen mit intensiven, ultrakurzen

CPA: http://www.icuil.org/article.php?articlesID=10
applications: http://www.weltderphysik.de/de/1511.php
Fusion: http://www.llnl.gov/str/Petawatt.html
Plots: MuPad, gnuplot
Vibration of D\textsubscript{2}

Now the R-wavepacket of the D\textsubscript{2} oscillates with a certain frequency. We can measure this frequency if we shoot another pulse which ionizes the D\textsubscript{2}. If we vary the time between the pulses and measure the rate of D\textsubscript{2} we will find, that the events oscillate, too.

Ionisation is more probable

Ionisation is less probable
ultra short laser pulses

applications of modern puls lasers

Figure 6. Contrast of conventional inertial confinement fusion (ICF) and the fast-ignitor ICF, which is used on the Petawatt laser.