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Two trapped interacting particles … 

interacting singlet 

Ground state of the Helium atom: 

 

No analytic solution available, we learn how 

to apply powerful numerical techniques:  

Hartree Fock method. 



More particles … 

The particles should pair up within shells …. 

… or also beyond? 



More particles … 

Intershell pairing? 

→ Pauli blocking should supress this! 



Many body limit 

Define quantities like the Fermi energy, 

density, pressure …. 

… apply local density approximation … 

 

But when are such approximations 

justified? 

 

This is an ancient problem! 

 



few grains of sand single grain 

Sorites Paradox 

How many grains make a heap? 

• 1 grain of sand does not make a heap.  

• If 1 grain does not make a heap then 2 grains of wheat do not. 

• If 2 grains do not make a heap then 3 grains do not.  

• …  

• If 9,999 grains do not make a heap then 10,000 do not.  

From Stanford Encyclopedia of Philosophy:  

http://plato.stanford.edu/entries/sorites-paradox/ 
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Ultracold neutral atoms 

Bose Einstein condensates of large samples of atoms: Macroscopic wave 

function: Number of particles is so large that a constant density of atoms is 

observed in experiments: 

http://jila.colorado.edu/bec/images/bec.png 

Removing one single atom does not make a difference! 

Measure: 𝑛 𝒓 = ⟨Ψ † 𝒓 Ψ 𝒓 ⟩ 



Our approach 

Reduce the complexity of a system as much as possible 

 

 until only the essential parts remain! 
 

 

 

In most physical systems:  

 

Range of interaction  

significantly complicates the description 

 
 



Ultracold atoms are an ideal tool … 

The interactions between ultracold atoms can be effectively pointlike  

(contact interaction) 

 

van der Waals interaction: range of 𝑟𝑣𝑑𝑊 ∼ 1nm 

 

In the experiments we have:  

 

• extremely low density (interparticle spacing ~ 1µm)  

 

• extremely low momentum, such that 𝜆𝑑𝐵 =
ℎ

2𝜋𝑚𝑘𝑇
≫ 𝑟𝑣𝑑𝑊 

 



• extremely low momentum, such that 𝜆𝑑𝐵 =
ℎ

2𝜋𝑚𝑘𝑇
≫ 𝑟𝑣𝑑𝑊 

 

(This is the opposite limit desired in collision experiments: 

shorter wavelength enhances resolution) 

 

Here: 

  

• If 𝜆𝑑𝐵 is sufficiently large, all the information about internal structure of the 

atom is hidden in a single quantity, the scattering length 𝒂 

 

• We can even tune the scattering length to any desired value by simply 

applying a magnetic field (Feshbach resonances). 

Ultracold atoms are an ideal tool … 



The 6Li atom 
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Tuning interactions: Feshbach resonance in 6Li 
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6Li ground state 

NO interaction between identical particles 

G. Zürn et al., PRL 110, 135301 (2013) 

C. Chin et al., Rev. Mod. Phys. 82, 1225 (2010) 



A picture from the lab … 

 

109 laser cooled atoms at ~1mK 



A container for ultracold atoms 

This might still work  

for liquid nitrogen …. 

We need to isolate the atoms from the environment: 

… here we use the focus of a laser beam: 

Optical dipole trap depth: 𝑈 ∝ 𝐼(𝒓) 



Evaporative cooling 

It just works the same: 

For our cup of coffee … 

… and for our cold atoms: 

Cool from ~1mK down to 

below 1µK 

Just reduce the trap depth, i.e. laser power 



Ultracold gas of fermions 

About 50000 atoms @ 250nK, TF~1µK 

~100µm 

Absorption imaging of ultracold clouds: 

resonant laser beam 

CCD camera 



Towards a finite gas … 

The challenge: 

achieve  ℏω ≫ 𝑘𝑇 



Creating a finite gas of fermions 

• superimpose microtrap (~1.8 µm waist) 

p0= 0.9999 

• 2-component mixture in reservoir 
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Fermi-Dirac dist. 

~100µm 



Creating a finite gas of fermions 

• switch off reservoir 

 

p0= 0.9999 

 

 

 

 

 
+ magnetic field gradient in 

axial direction 

 



Single atom detection 

CCD 

distance between 2 neighboring atom 

numbers :  ~ 6s 

1-10 atoms can be distinguished with 

high fidelity > 99%  

 

one atom in a MOT 

1/e-lifetime: 250s 

Exposure time 0.5s 

Fluorescence normalized to atom number 



Spilling the atoms …. 

• We can control the atom number with exceptional precision! 

• Note aspect ratio 1:10: 1-D situation 

• So far: Interactions tuned to zero … 
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F. Serwane et al., Science 332, 336 (2011) 



Let‘s study  

interacting systems! 

 



Let´s look at two atoms in the trap 

𝐻 =
𝑝1
2

2𝑚
+

𝑝2
2

2𝑚
+

1

2
𝑚𝜔2𝑥1

2 +
1

2
𝑚𝜔2𝑥2

2+𝑔1𝐷𝛿(𝑥2 − 𝑥1) 

 
Separate the center-of-mass motion from relative motion 

 

𝑥 = 𝑥2 − 𝑥1; 𝑋 = 𝑥2 + 𝑥1 

 

𝐻RelMotion =
𝑝2

2𝜇
 + 

1

2
𝜇𝜔2𝑥2 + 𝑔1𝐷𝛿(𝑥) 

 

This can be solved exactly! 

(All antisymmetric solutions of the harmonic oscillator are solutions!) 

T. Busch et al., Foundations of Physics 28, 549 (1998) 



Solutions for the two particles: 
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spatially  
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noninteracting repulsive 𝑔 > 0  attractive 𝑔 < 0 
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Energy of 2 atoms in a harmonic trap 

Relative energy of two contact-interacting atoms:  

T. Busch et al., Foundations of Physics 28, 549 (1998) 

𝑉 𝑥 =
1

2
𝜇𝜔2𝑥2 + 𝑔1𝐷𝛿(𝑥) 

repulsive attractive 

B-field 
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Energy of 2 atoms in a harmonic trap 

T. Busch et al., Foundations of Physics 28, 549 (1998) 

repulsive attractive 

B-field 

Relative energy of two contact-interacting atoms:  𝑉 𝑥 =
1
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𝜇𝜔2𝑥2 + 𝑔1𝐷𝛿(𝑥) 
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Energy of 2 atoms in a harmonic trap 

G. Zürn et al., PRL 108, 075303 (2012) 

repulsive attractive 

B-field 

fermionization 

Relative energy of two contact-interacting atoms:  𝑉 𝑥 =
1

2
𝜇𝜔2𝑥2 + 𝑔1𝐷𝛿(𝑥) 



More particles … 

The particles should pair up within shells …. 

… or also beyond? 



More particles … 

Intershell pairing? 



More particles … 

Intershell pairing? 



More particles … 

Intershell pairing? 

→ Pauli blocking should supress this! 



Attractive interactions 

The energy it costs to remove one particle…. 

… compared to a noninteracting system 
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G. Zürn et al., arXiv:1307.5153 (PRL, in press) 



Precise energy measurements 

„bare“ RF – transition  

RF – transition with interaction 

37 

RF photon+ ΔE 

RF photon 

Radio Frequency spectroscopy  



Approaching the many body limit? 

Grow a Fermi sea:  

add a growing number of majority atoms to a single minority 



Measure the interaction energy 

 vary the number of majority particles: 
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Measure the interaction energy 
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lnteraction energy in dimensionless units 

Analytic solution of the two particle problem 

T.Busch et al., Found. Phys. 28, 549 (1998) 

Analytic solution for an infinite number of majority particles  

J. McGuire, J. Math. Phys. 6,432 (1965) 

(local density approximation) 

noninteracting strongly repulsive 
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Analytic solution of the two particle problem 

T.Busch et al., Found. Phys. 28, 549 (1998) 

Analytic solution for an infinite number of majority particles  

J. McGuire, J. Math. Phys. 6,432 (1965) 

(local density approximation) 

noninteracting strongly repulsive 
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2 particles 
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3 particles 

S.E. Gharashi et al.,  

PRA 86, 042702 (2012) 

A.Wenz et al., arXiv:1307.3443 (Science, in press) 



Approaching the many body limit… 

… with very few particles (in a one-dimensional system) 

A.Wenz et al., arXiv:1307.3443 (Science, in press) 

… with very few particles (in a one-dimensional system) … 

 

… a 1-D polaron? 

• We observe the energy of the 

finite system to approach the 

many body energy 

 

• We do not measure a spectrum 

an excitation spectrum from 

which a quasi particle residue 

could be deduced.  



 

Can we also learn something 

about correlations?  



Spin correlations 

Let us first go back to the two-particle case: 

• Without any interactions, the singlet has lower energy: 

 

 

 

 

 

 

 

 

 

 

 

 

• Can we make the repulsion so strong that the triplet becomes the ground 

state? 



Many spins 

We can ask a similar question for a many body system: 

𝜇 = 𝐸F 

𝜇 

𝜇 

kFa ≪ kFa(crit) kFa ≤ kFa(crit) kFa > kFa(crit) 

Can the repulsion between the different spins be so strong such that they separate? 

 

→ The Stoner model of itinerant ferromagnetism 

E. Stoner, Philos. Mag. 15, 1018 (1933) 
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repulsive attractive 

B-field 

„super-repulsive“ regime 

E(↑↓)>E(↑ ↑) 

This should also apply to many spins 



Three particles 

? 

What‘s the probability for a spin down 

particle to tunnel first? 



Three particles 
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… more particles 
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What happens to the remaining atoms? 

We can show that the two remaining particles always have total spin S=1 

Are we separating the „cloud“ along a „domain wall“?   

  

                + 



Summary 

• We can see a strong odd-even effect: 

 

 

 

 

• We can observe the few particle system approach the 

many body limit in 1-D 

 

 

 

 

• We can observe correlations in a strongly repulsive few-

body system 
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Outlook 

Realize multiple wells with similar fidelity and control 

Basic building blocks of condensed matter! 



We moved to a new building 

All the experiments presented have been performed at the MPI für Kernphysik

  



Entering the new building 

By now, all experiments 

are operational again! 



Thank you very much 

for your attention! 

Vincent Klinkhamer 

Selim Jochim 

Gerhard Zürn 

Thank you for your attention! 


