Investigation of heavy neutron-rich nuclides with Schottky mass spectrometry at the ESR

Daria Shubina

Max Planck Institute for Nuclear Physics, Heidelberg

INTERMETERMAL

Daria Shubina

Introduction

Outline

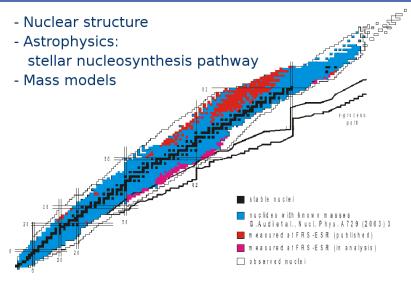
Motivation for research

Experiment

Experimental facilities

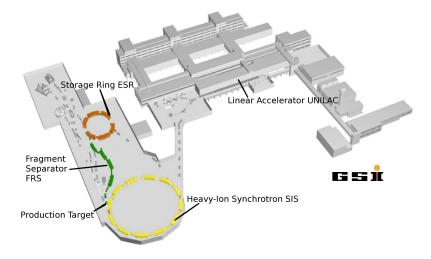
Data Analysis

ROOT-based software

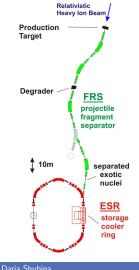

Results

Masses measured for the first time and discovered isomers

Discussion


Separation energies and pairing-gap energies

Introduction


B.Franzke et al., Mass Spectrometry Reviews, 27, 428 (2008)

GSI Helmholtzzentrum

Daria Shubina

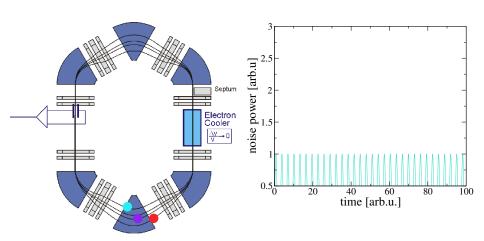
Separation and Storage

FRS

- Highly-charged ions
- In-Flight separated
- Cocktail or monoisotopic beams

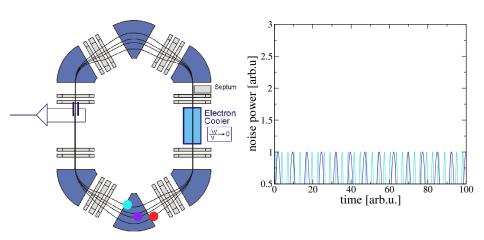
H. Geissel et al., Nucl. Instr. and Meth. B70, 286 (1992)

FSR

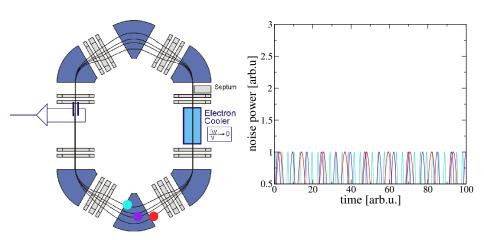

- Circumference: 108 m
- ▶ Vacuum: 10⁻¹¹ mbar
- Revolution frequency: 2 MHz @ E = 400 MeV/u
- Stochastic¹ and electron² cooling

B.Franzke et al., Nucl. Instr. and Meth. B24/25, 18 (1987)

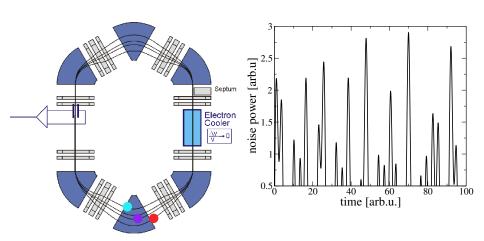
- ¹ F.Nolden et al., Nucl. Instr. and Meth. A532, 329 (2004)
- M.Steck et al., Nucl. Instr. and Meth. A532, 357 (2004)


H. Geissel et al., Phys. Rev. Lett. 68, 3412 (1992)

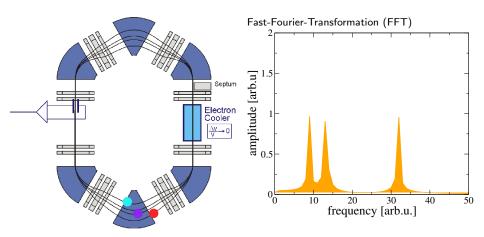
Schottky Mass Spectrometry(SMS)

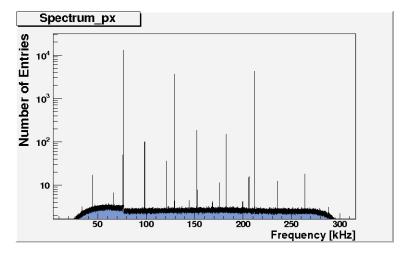

Experimental facilities

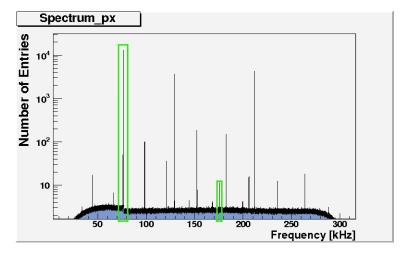
Schottky Mass Spectrometry(SMS)

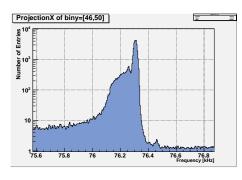


Experimental facilities

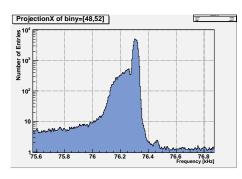

Schottky Mass Spectrometry (SMS)

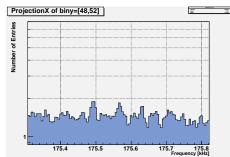

Schottky Mass Spectrometry(SMS)

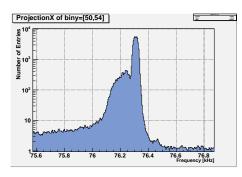

Schottky Mass Spectrometry(SMS)

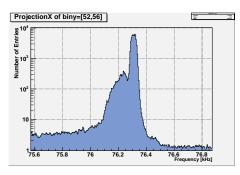


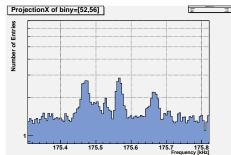

Broad-band spectrum

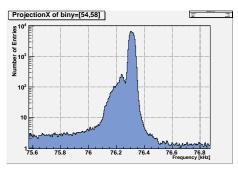


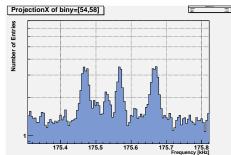

Broad-band spectrum

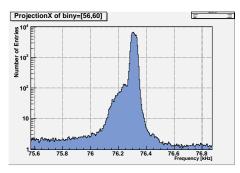


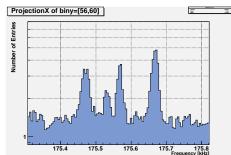


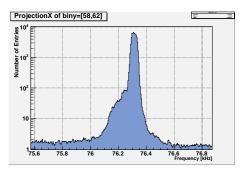


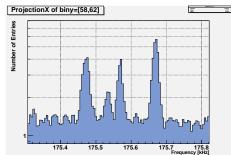


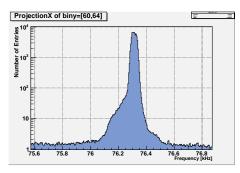


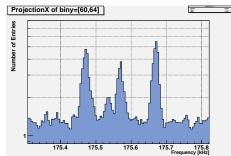


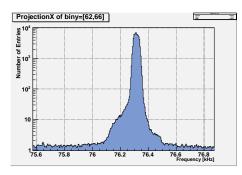


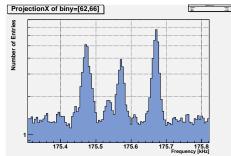


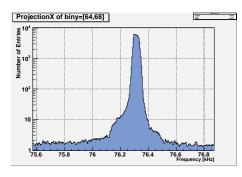


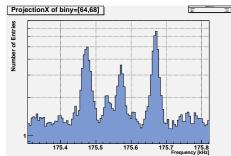


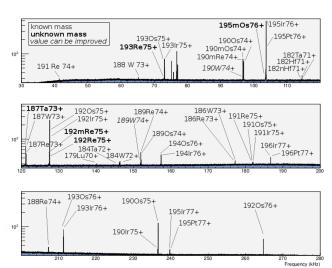




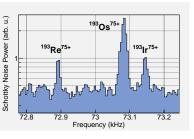








Identification

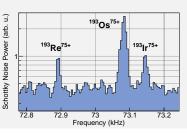


Daria Shubina

Mass Evaluation

Relationship between frequency, mass-to-charge ratio and velocity:

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta \frac{m}{q}}{\frac{m}{q}} + \frac{\Delta v}{v} (1 - \frac{\gamma^2}{\gamma_t^2})$$


Mass Evaluation

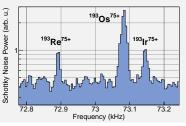
Relationship between frequency, mass-to-charge ratio and velocity:

$$rac{\Delta f}{f} = -rac{1}{\gamma_t^2} rac{\Delta rac{m}{q}}{rac{m}{q}} + rac{\Delta v}{v} (1 - rac{\gamma^2}{\gamma_t^2})$$

The mean velocity of cooled ions is identical:

$$\frac{\Delta v}{v} \rightarrow 0$$

Mass Evaluation

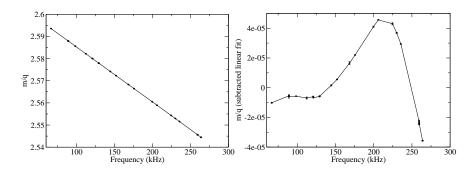

Relationship between frequency, mass-to-charge ratio and velocity:

$$rac{\Delta f}{f} = -rac{1}{\gamma_t^2}rac{\Delta rac{m}{q}}{rac{m}{q}} + rac{\Delta v}{v}(1-rac{\gamma^2}{\gamma_t^2})$$

The mean velocity of cooled ions is identical:

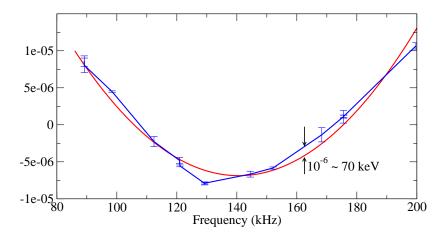
$$\frac{\Delta v}{v} \to 0$$

Revolution frequency depends on the mass-to-charge ratio of the ions as:



$$\frac{\Delta f}{f} \sim \frac{\Delta \frac{m}{q}}{\frac{m}{q}}$$

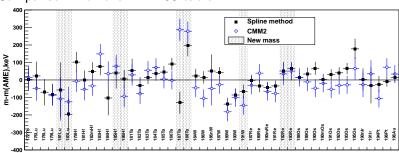
Spline method


$$\frac{m}{q} = \frac{m}{q}(f)$$
What is this function $\frac{m}{q}(f)$?

In the first order approximation it looks linear. But not in the second.

Daria Shubina

Linear spline vs quadratic polynomial

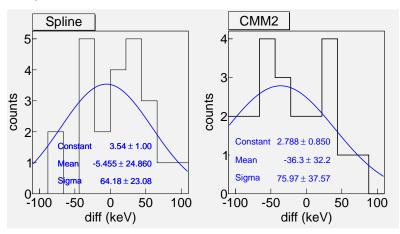


Daria Shubina

Masses measured for the first time and discovered isomers

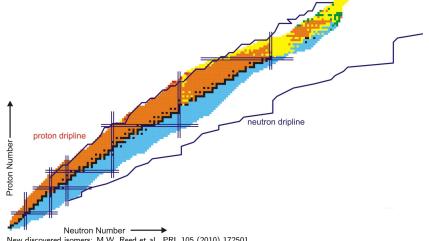
Mass values

Comparison with the AME-03 table:



Daria Shubina

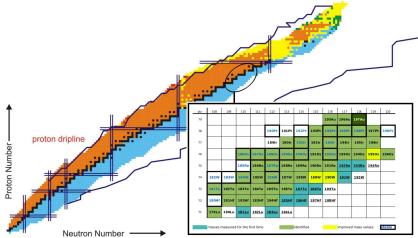
Results 000


Masses measured for the first time and discovered isomers

Distribution of deviation from AME-03 (only reference masses)

Masses measured for the first time and discovered isomers

¹⁹⁷Au projectile fragments


New discovered isomers: M.W. Reed et al., PRL 105 (2010) 172501

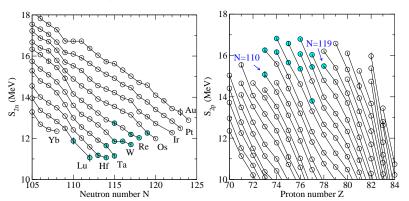
Mass measurements at the ESR: B.Franzke et al., Mass Spectrometry Reviews, 27, 428 (2008)

Daria Shubina

Masses measured for the first time and discovered isomers

¹⁹⁷Au projectile fragments

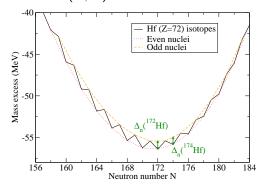
New discovered isomers: M.W. Reed et al., PRL 105 (2010) 172501


Mass measurements at the ESR: B.Franzke et al., Mass Spectrometry Reviews, 27, 428 (2008)

Separation energies and pairing-gap energies

Two-neutron and two-proton separation energies

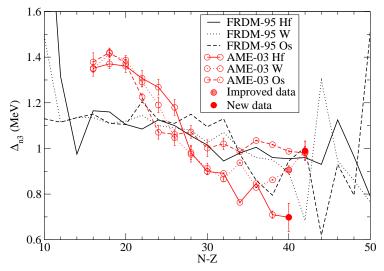
$$S_{2n} = m(Z, N-2) + 2m_n - m(Z, N)$$


$$S_{2p} = m(Z-2, N) + 2m_H - m(Z, N)$$

Daria Shubina

Pairing-gap energy

Mass excess: $ME = m(Z, N) - A \cdot u$

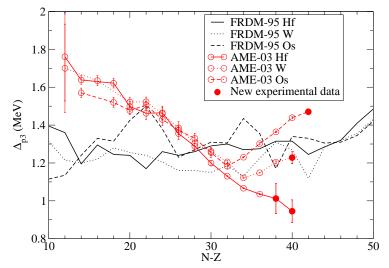


$$\Delta_{n3} = \frac{1}{2}(m(Z, N-1) - 2m(Z, N) + m(Z, N+1))$$

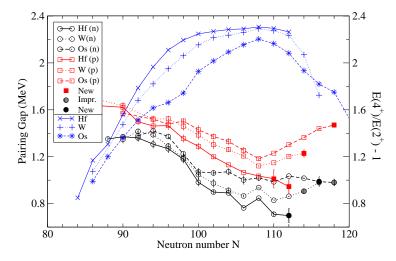
 $\Delta_{p3} = \frac{1}{2}(m(Z-1, N) - 2m(Z, N) + m(Z+1, N))$

Daria Shubina

Separation energies and pairing-gap energies


Neutron pairing-gap energies

Daria Shubina


Separation energies and pairing-gap energies

Proton pairing-gap energies

Daria Shubina

Comparison with spectroscopic data

Daria Shubina

Masses for 9 nuclides have been measured for the first time

- Masses for 9 nuclides have been measured for the first time
- Masses for 3 nuclides have been improved

- Masses for 9 nuclides have been measured for the first time
- Masses for 3 nuclides have been improved
- Nothing interesting has been found

- Masses for 9 nuclides have been measured for the first time
- Masses for 3 nuclides have been improved
- Nothing interesting has been found

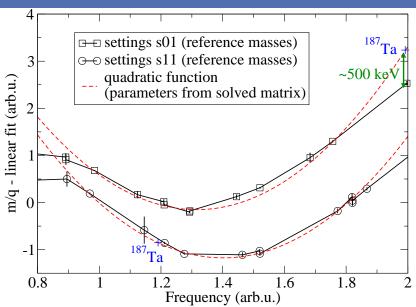
- Masses for 9 nuclides have been measured for the first time
- Masses for 3 nuclides have been improved
- Investigation of deformations in nuclei confirms spectoscopical results: **Hf** isotopes with N=110 and N=112 are still well-deformed, in contrast with **W** and **Os** isotopes, which "turn back" to sphericity at N=108

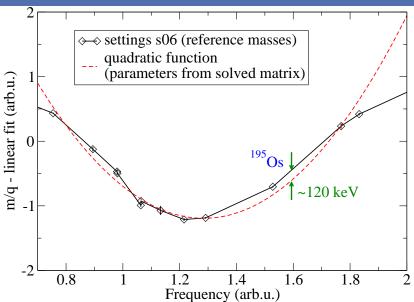
Thank you for your attention!

K. Blaum, F. Bosch, C. Brandau, R.B. Cakirli, J.J. Carroll, R.F. Casten, D.M. Cullen, I.J. Cullen, A.Y. Deo, B. Detwiler, C. Dimopoulou, F. Farinon, H. Geissel, E. Haettner, M. Heil, R.S. Kempley, R. Knöbel, C. Kozhuharov, J. Kurcewicz, N. Kuzminchuk, S.A. Litvinov, Yu.A. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, Z. Patyk,

W.R. Plass, A. Prochazka, M.W. Reed, M.S. Sanjari, C. Scheidenberger, M. Steck, Th. Stöhlker, B. Sun, T.P.D. Swan, G. Trees, P.M. Walker,

H. Weick, N. Winckler, M. Winkler, P.J. Woods, T. Yamaguchi





Daria Shubina Max Planck Institute for Nuclear Physics

Daria Shubina Max Planck Institute for Nuclear Physics