

High-precision mass measurements with PENTATRAP for neutrino physics

Christoph Schweiger Max-Planck-Institut für Kernphysik, Heidelberg

IMPRS-PTFS Seminar, 2020/01/16

Some applications of high-precision PTMS

Mass-ratio measurements at a level of $\frac{\delta(m_1/m_2)}{m_1/m_2} \le 10^{-11}$		
Measurements at PENTATRAP		Measurements at other facilities/calculations
Neutrino physics		${}^{163}\text{Ho} + e^- \rightarrow {}^{163}\text{Dy} + \nu_e + E$
Direct test of $E = mc^2$		$E = \frac{hc}{\lambda} = \Delta m ({}^{36}\text{Cl} - {}^{35}\text{Cl} - n)c^2$
Test of QED	Binding energies:	$E_B(Xe^{17+}) = \Delta m(Xe^{17+} - Xe^{18+})c^2 - m_ec^2$
	g-factor:	$\Delta m(^{48}\text{Ca}^{17+} - {}^{40}\text{Ca}^{17+})$

Dark matter searches, transuranium elements, ...

The electron neutrino mass

¹⁶³Ho +
$$e^- \rightarrow {}^{163}$$
Dy^{*} + $\nu_e \rightarrow {}^{163}$ Dy + $\nu_e + Q_{EC}$

Electron Capture in Holmium experiment

ECHo

- m_{ν_e} via electron capture process in ¹⁶³Ho
- Current limit: $m_{\nu_e} < 150 \text{ eV}$
- ECHo aims at: $m_{\nu_e} \approx 1 \text{ eV}$
- Metallic magnetic calorimeters (MMCs) in a cryostat at 50 mK
- Energy resolution: 2 eV at 6 keV
- ¹⁶³Ho implanted directly in the absorber

Gastaldo, L. et al., *EPJ 226*, 1623 (2017) Velte, C. et al., *EPJ 79*, 1026 (2019)

Check for systematic uncertainties:

From fitting a theoretical spectrum:

- Electron neutrino mass
- *Q*-value of the transition

 $Q_{\rm EC} = \Delta m (^{163} \mathrm{Ho} - {}^{163} \mathrm{Dy}) \mathrm{c}^2$

High-precision Penning-trap mass spectrometry

Gastaldo, L. et al., *EPJ 226*, 1623 (2017) Velte, C. et al., *EPJ 79*, 1026 (2019)

Penning-trap mass spectrometry (PTMS)

Free-space cyclotron frequency

$$\omega_c = \frac{q}{m}B$$

Brown, L. et al., Rev. Mod. Phys. 58, 233 (1986)

magnetron motion

axial and magnetron

motion

axial motion

Penning-trap mass spectrometry (PTMS)

$$\omega_c = \frac{q}{m}B$$

Invariance theorem: $\omega_c^2 = \omega_+^2 + \omega_z^2 + \omega_-^2$

Three independent eigenmotions: Modified cyclotron motion (ω_+) Axial motion (ω_z) Magnetron motion (ω_-)

Brown, L. et al., Rev. Mod. Phys. 58, 233 (1986)

modified cyclotron motion

Penning-trap mass spectrometry (PTMS)

Magnetic field has to be known as well! -> Mass-ratio measurements

$$\omega_c^2 = \omega_+^2 + \omega_z^2 + \omega_-^2$$

Modified cyclotron motion (ω_+) Axial motion (ω_z) Magnetron motion (ω_{-})

Brown, L. et al., Rev. Mod. Phys. 58, 233 (1986)

Features of the PENTATRAP experiment

Aim of the high-precision Penning-trap mass spectrometer PENTATRAP: mass-ratio measurements of stable and long-lived highly charged ions with a relative uncertainty below 10⁻¹¹

Unique features

- Trap tower consisting of 5 cylindrical Penning traps
- Non-destructive image-current detection
- Strong magnetic field (7T)
- Pressure and level stabilization for the superconducting magnet
- Temperature stabilized lab (<0.02K/30 min)
- Ultra stable voltage source StaReP
- Access to highly charged ions

Highly charged ions for PTMS

- Free cyclotron frequency scales with the charge state
- Larger induced image current enhances SNR in detection system

Production of HCI of ¹⁶³Ho from a sample of 10¹⁶ atoms (30 ng)?

Electron beam ion traps (EBITs)

Heidelberg compact EBITs

Iron yoke with 72 permanent magnets

Magnetic field: 850 mT in the trapping region

Access to the trap region by four ports (opening angle 60°)

Electron gun position adjustable using a linear manipulator

NdFeB permanent magnets

Micke, P. et al., Rev. Sci. Instr. 89, 063109 (2018)

Injection techniques for EBITs

- Gas injection
- Injection of volatile organic compounds
- External laser ablation

Efficiency not sufficient for small samples!

Injection techniques for EBITs

- Gas injection
- Injection of volatile organic compounds
- External laser ablation

In-trap laser desorption technique

Efficiency not sufficient for small samples!

Schweiger, Ch. et al., RSI 90, 123201 (2019)

Massive ¹⁶⁵Ho target

Blue curve: Laser ablation from ¹⁶⁵Ho target Orange curve: Background measurement without laser

Schweiger, Ch. et al., RSI 90, 123201 (2019)

Small holmium targets

- 1 mm diameter Ti-wire
- Targets with known number of ¹⁶⁵Ho atoms on the surface:

Drop-on-demand inkjet printing technique (group of Ch. Düllmann @ JGU Mainz)

Haas, R. et al., *NIM A* 874, 43 (2017) Schweiger, Ch. et al., *RSI 90*, 123201 (2019)

Small holmium targets

- 1 mm diameter Ti-wire
- Targets with known number of ¹⁶⁵Ho atoms on the surface:

Drop-on-demand inkjet printing technique (group of Ch. Düllmann @ JGU Mainz)

, 30kV, 91x, 14mm, 22.7.19

⊢ 200 µm —

Lifetime of small holmium targets

- Only one laser spot position
- Laser pulse energy not increased

The PENTATRAP experiment

Available **HCI sources**:

- Dresden EBIT: Injection of volatile compounds or gas injection
- In-trap laser desorption HC-EBIT for ¹⁶³Ho and other rare species
- **HD super-EBIT**: Highly charged ions up to Pb⁸²⁺

Measurement schemes with five traps – single trap

Measurement schemes with five traps – double trap

Data analysis: polynomial fit

Data analysis: polynomial fit

Data analysis: polynomial fit

Ratios for different measurement runs with all ratios combined (blue)

$$\frac{\delta R}{R} = 1 \cdot 10^{-11}$$

Ratios for each measurement run

Ratios for both traps

Masses of xenon isotopes

Successful commissioning of PENTATRAP

 Original plan: Q-value of the beta-decay of ¹⁸⁷Re:

 $Q = M(^{187}\text{Re}) - M(^{187}\text{Os}) = M(^{187}\text{Re}^{29+}) - M(^{187}\text{Os}^{29+}) + \Delta B$ $= M(^{187}\text{Os}^{29+}) \cdot [R - 1] + \Delta B$

trap

trap 2

trap 3

trap 4

trap 5

- Original plan: Q-value of the beta-decay of ¹⁸⁷Re
- Consistently two ratios were found, difference $\sim 10^{-9}$ corresponding to $\sim 200 \text{ eV}$
- Measurement of "unity" to investigate possible reasons: ¹⁸⁷Re²⁹⁺/¹⁸⁷Re²⁹⁺

trap

trap 2

trap 3

trap 4

trap 5

- Original plan: Q-value of the beta-decay of ¹⁸⁷Re
- Consistently two ratios were found, difference $\sim 10^{-9}$ corresponding to $\sim 200 \text{ eV}$
- Measurement of "unity" to investigate possible reasons: ¹⁸⁷Re²⁹⁺/¹⁸⁷Re²⁹⁺
- ⇒ Very long-lived excited state in a highly charged ion (130 days lifetime)!
- ⇒ Confirmed by theory calculations

measurement time in min

• Long-lived excited state produced in the EBIT by electron impact excitation:

$$A^{q+} + e^- \to [A^{q+}]^* \to A^{q+} + e^- + h\nu$$

- Experimental and theoretical results agree very well:
 - $\Delta E^{\text{Re}} = 202.2(1.6) \text{ eV} \qquad \Delta E^{\text{DFT, Re}} = 203.95(0.35) \text{ eV}$ $\Delta E^{\text{Os}} = 207(3) \text{ eV} \qquad \Delta E^{\text{MCDF, Re}} = 202.1(2.7) \text{ eV}$ $\Delta E^{\text{FAC, Re}} = 203.9 \text{ eV}$
- First directly measured long-lived excited state in HCI found by PTMS
- Not accessible by narrow-linewidth laser spectroscopy
- Can provide experimental data to benchmark theory
- Finding clock transitions in HCI (few eV-regime)

Current work on ¹⁶³Ho

- Optimization of the beamline using 163-dysprosium
- Testing small samples of Dy
- Final measurement of the Ho/Dy electron capture Q-value

Summary & outlook

- Successful commissioning of PENTATRAP using HCI of xenon
- Long-lived excited state in HCI of Re

CURRENT AIMS:

• Measurement of Q_{EC} of the electron capture decay in 163 Ho

Thanks to

DFG Research Unit FOR 2202

Rima Schüssler, Alexander Rischka, Christoph Schweiger, Kathrin Kromer, Daniel Lange, Peter Micke, José R. Crespo López-Urrutia, Pavel Filianin, W. Huang, Sergey Eliseev, Yuri N. Novikov, Klaus Blaum

and you, for your attention!