

The high-precision Penning-trap mass spectrometer PENTATRAP for fundamental studies

Alexander Rischka IMPRS-PTFS Seminar

Basics of Penning-Trap Mass Spectrometry

Motivation for precision mass spectrometry

- Test of special relativity
- Contribution to neutrino physics

The PENTATRAP experiment

Basics of Penning-Trap Mass Spectrometry

Frequency to mass relation

Homogeneous magnetic field **B**

$$\omega_c = \frac{q}{m}B$$

Frequency to mass relation

Homogeneous magnetic field **B**

$$\omega_c = \frac{q}{m}B$$

q, B drops at mass difference

Confinement of the ion of interest Homogeneous magnetic field B + electrical field E

$$\omega_c = \frac{q}{m}B$$

Confinement of the ion of interest Homogeneous magnetic field B + quadrupolar electrical field E

$$\omega_c = \frac{q}{m}B$$

Movement of the confined ion

Three eigenmotions

$$\omega_c = \omega_+^2 + \omega_-^2 + \omega_z^2$$

modified cyclotron motion

$$\omega_{+} = \frac{\omega_c}{2} + \sqrt{\frac{\omega_c^2}{4} - \frac{\omega_z^2}{2}}$$

magnetron motion

$$\omega_{-} = \frac{\omega_c}{2} - \sqrt{\frac{{\omega_c}^2}{4} - \frac{{\omega_z}^2}{2}}$$

axial motion

Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

Frequency hirachy

ncy hirachy: the cyclotron frequency is the most import

 $\omega_+ \gg \omega_z \gg \omega_-$

A typical **10**⁻¹¹ measurement needs:

modified cyclotron motion:
$$\frac{\Delta \omega_+}{\omega_+} < 10^{-11}$$
 \blacksquare \blacksquare

Types of PTMS

ojecting radial motions on a position sensitive detector, **c**

Types of PTMS

ojecting radial motions on a position sensitive detector, **c**

ourier transform the induced image current, **non destru**

Max-Planck-Institut für Kernphysik

Motivation for precision mass spectrometry

Field	Examples	δm/m	δE (A=100
Nuclear structure _c physics	shell closures, shell quenching, regions of eformation, drip lines, halos, <i>seperation en</i> e	ergies	
Astrophysics nuclear models nu mass formula _{re}	δV _{pn} , island of stability rp-process and r-process path, waiting-po uclei, proton threshold energies, astrophysic eaction rates, neutron star, x-ray burst	10 ⁻⁶ to 10 ⁻⁷ 9int al	100 keV to 10 keV
Weak interaction studies	CVC hypothesis, CKM matrix super胡杨敏超达多- ^{Ft} of emitters	10-8	1 keV
Metrology, fundamental constants	α (h/m _{cs} , m _{cs} /m _p , m./m.), m _{si}	10 ⁻⁹ to 10 ⁻¹⁰	00 eV - 10 e\
Neutri no	Contribution to neutrino physics	~10 ⁻¹⁰ <10 ⁻¹¹	10 eV < 1 eV
pnysic s	Test of $E=mc^2$	~10 ⁻¹⁰ <10 ⁻¹¹	10 eV < 1 eV
CPT tests QED in HCI	m_p and $m_p m_{e}$ and m_{e_+} m_{ion} , electron binding energy	<10-11	< 1 eV

Test of *E***=***mc*² **with PTMS**

AMS 5, measuring the energy of the gamma

ENTATRAP, measuring the $\Delta m(^{36}Cl, ^{35}Cl)$

Current value:	Future measurement			
$n + {}^{32}S \rightarrow {}^{33}S + \gamma$	$n + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma$			
$1 - \Delta mc^2 / E = (-1.4 \pm 4.4) \times 10^{-7}$	$1 - \Delta mc^2 / E < 10^{-8}$			

S. Rainville *et al.*, Nature 438, 1096 (2005)

 $m_v = \mathbf{Q}$ -Value - Endpoint of spectrum

Types of decays: β^{-} and EC

KATRIN - Project , MAC-E filter β^{-} - Decay of Trit

- Anti electron neutrino, < 2 eV/c² (90% C.L.)
- THe-Trap Experiment for *Q*-Value

ECHo - Project, μCalorimter **EC in** ¹⁶³Ho

- electron neutrino, ¹⁶³Ho: mv ≤ 225 eV/c² (90% C.L.)
- PENTATRAP Experiment for *Q*-Value

ire<mark>s Q-Value with a relative uncertainty of (δm/m)</mark>

EC in Holmium, ECHo Collaboration

cay spectrum of ¹⁶³Ho from μCalorimeter measuren

value to check for systematic uncertainties needed

Q-Value: ~ 2.8 keV with an 20 eV uncertainty for ECHo Phase 1

Q-Value: ~ 2.8 keV with an 20 eV uncertainty for ECHo Phase 1

A 2 eV uncertainty is needed for ECHo Phase 2

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

The PENTATRAP Experiment

Features of the PENTATRAP experiment

xternal ion-source:

- Access to higly charge ions
- Simple switching between species

Features of PENTATRAP Experiment

xternal ion-source:

- Access to higly charge ions
- Simple switching between species

ive Penning traps:

- Fast switching of ions
- New measurement schemes possib

Features of PENTATRAP Experiment

xternal ion-source:

- Access to higly charge ions
- Simple switching between species

ive Penning traps:

- Fast switching of ions
- New measurement schemes possib

yogenic trapping region:

- UHV, aiming for < 10⁻¹⁵ mbar
- reducing thermal noise and excitation

Ion-source and beamline

Ion-source and beamline

Ultra-stable voltage source

Ultra-stable voltage source

Summary & Outlook

Summary:

- Q-value of EC in ¹⁶³Ho with 20 eV uncertainty
- Beamline commissioned and ready
- StaRep in commissioning at THe-Trap

Outlook:

- Cryogenic setup in workshop, ready end of 2016
- Measuring ¹⁹³Pt as alternative candidate to ¹⁶³Ho

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Thank you for your attention

Phase-Sensitive Methods for ω_+

Pulse and amplify (PNA)

hase evolution with low energy, ion probe less anharr eadout via axial mode, axial resonators have better SN

New cryogenic setup

- **Improvements:**
- simpler

Pos.

- less vacuum challenges

	ess	assembly	time a	nd	l smaller debug	cycle		G KB	D
c	= c						L	PRÜFUN	0
Daten/000373 - 001	9 900130.018 8 001782.V3 - 4K veri 7 001747.001	Sethilantichraube ISO 4017 - HL × 16 Sollent-Org Maile - FöllenautDaum Spulenbichrnung V3 - 4K vergoldet - Resseltenheit gesant	8 M4 × 16 TiAl6V4, 3.7165, Tiften, UHV 5/m 1	Normteil A		fo Merry Dalai A	instance 12 instance 12 instance 101 All instance 1001A instance 1001A instance 1001A Approxed Statements Anone Kattins Alignment/Statements Anone Kattins Alignment/Statements Anone Kattins Anone Kattins Alignment/Statements Anone Kattins Anone Anone Kattins Anone	Max-Planck-Institut für Kernphysik Heidelberg	в
POMVIV218VCAD1	6 000681.001 5 000672.001 4 000668.001 3 000666.001 2 000503.001 1 000503.001	Electronik - Ura-Resonator Dructucki, Abschrenung, Klama Punpspere Gasantau/Dau Veryakumikamaner	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	vorhanden		Restate Meal Annoy Kammereutbeu Anno 218 - Pentetrap V2	were concerned that days	forgenetic (b): PRUPUNC K5 Despite	

Types of PTMS

ojecting radial motions on a position sensitive detector, **c**

ourier transform the induced image current, **non destru**

