

First IMPRS-PTFS Seminar

Jochen Ketter

February 4, 2011

Mass of the Electron Antineutrino

 $\blacksquare \beta$ -Decay of Tritium

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$

Mass of the Electron Antineutrino

 $\blacksquare \beta$ -Decay of Tritium

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$

KATRIN: electron kinematics near the endpoint

Mass of the Electron Antineutrino

 $\blacksquare \beta$ -Decay of Tritium

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$

KATRIN: electron kinematics near the endpoint

Penning Trap Contribution

Mass of the Electron Antineutrino

 $\blacksquare \beta$ -Decay of Tritium

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$

KATRIN: electron kinematics near the endpoint

Penning Trap Contribution

■ *Q*-value of the decay: 18589.8(1.2) eV

Mass of the Electron Antineutrino

 $\blacksquare \beta$ -Decay of Tritium

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$

 KATRIN: electron kinematics near the endpoint

Penning Trap Contribution

- *Q*-value of the decay: 18589.8(1.2) eV
- measurement of the mass-ratio R

Mass of the Electron Antineutrino

 $\blacksquare \beta$ -Decay of Tritium

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$

KATRIN: electron kinematics near the endpoint

Penning Trap Contribution

- *Q*-value of the decay: 18589.8(1.2) eV
- measurement of the mass-ratio R
- uncertainty of 30 meV in Q ⇒ uncertainty of 10^{-11} in mass-ratio R

Mass of the Electron Antineutrino

 $\blacksquare \beta$ -Decay of Tritium

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$

KATRIN: electron kinematics near the endpoint

Penning Trap Contribution

- *Q*-value of the decay: 18589.8(1.2) eV
- measurement of the mass-ratio R
- uncertainty of 30 meV in Q ⇒ uncertainty of 10^{-11} in mass-ratio R

dedicated experiment, developed at the University of Washington in Seattle

Charged Particle Confinement

free-space cyclotron frequency

$$\omega_{c} = \frac{qB}{m}$$

Charged Particle Confinement • free-space cyclotron frequency $\omega_{c} = \frac{qB}{m}$ • electrostatic quadrupole field

Charged Particle Confinement

free-space cyclotron frequency

$$\omega_{\rm c} = \frac{qB}{m}$$

electrostatic quadrupole fieldthree eigenmodes

axial
$$\omega_z = \sqrt{\frac{qU_0}{md^2}}$$

modified cyclotron ω_+
magnetron ω_-

$$\omega_{\pm} = \frac{1}{2} \left[\omega_{\rm c} \pm \sqrt{\omega_{\rm c}^2 - 2\omega_z^2} \right]$$

Charged Particle Confinement

free-space cyclotron frequency

$$\omega_{\rm c} = \frac{qB}{m}$$

electrostatic quadrupole fieldthree eigenmodes

• axial
$$\omega_z = \sqrt{\frac{qU_0}{md^2}}$$

• modified cyclotron ω
• magnetron ω_-

$$\omega_{\pm} = \frac{1}{2} \left[\omega_{\rm C} \pm \sqrt{\omega_{\rm C}^2 - 2\omega_z^2} \right]$$

Charged Particle Confinement

free-space cyclotron frequency

$$\omega_{\rm c} = \frac{qB}{m}$$

electrostatic quadrupole fieldthree eigenmodes

• axial
$$\omega_z = \sqrt{\frac{qU_0}{md^2}}$$

- modified cyclotron ω_+
- magnetron ω_{-}

$$\omega_{\pm} = \frac{1}{2} \left[\omega_{\rm C} \pm \sqrt{\omega_{\rm C}^2 - 2\omega_z^2} \right]$$

Invariance Theorem

$$\omega_{\rm c}^2 = \omega_+^2 + \omega_-^2 + \omega_z^2$$

Charged Particle Confinement

free-space cyclotron frequency

$$\omega_{\rm c} = \frac{qB}{m}$$

electrostatic quadrupole fieldthree eigenmodes

• axial
$$\omega_z = \sqrt{\frac{qU_0}{md^2}}$$

- modified cyclotron ω_+
- magnetron ω_{-}

$$\omega_{\pm} = \frac{1}{2} \left[\omega_{\rm C} \pm \sqrt{\omega_{\rm C}^2 - 2\omega_z^2} \right]$$

Invariance Theorem

$$\omega_{\rm c}^2 = \omega_+^2 + \omega_-^2 + \omega_z^2$$

$$R = \frac{m_{a}}{m_{b}} = \frac{q_{a}}{q_{b}} \cdot \frac{\omega_{c}(b)}{\omega_{c}(a)} \cdot \frac{B_{a}}{B_{b}}$$

Ion Electrode Interaction

- induced image charges ⇒ image currents
- goal: generate and amplify voltage drop

Driven Harmonic Oscillator

- natural motion damped
- oscillation with driven frequency

Driven Harmonic Oscillator

- natural motion damped
- oscillation with driven frequency
- amplitude and phase determined by
 - natural frequency
 - damping constant

Driven Harmonic Oscillator

- natural motion damped
- oscillation with driven frequency
- amplitude and phase determined by
 - natural frequency
 - damping constant

Coherent Detection

■ Error Signal for frequency lock ⇒ lock axial mode to the drive

Driven Harmonic Oscillator

- natural motion damped
- oscillation with driven frequency
- amplitude and phase determined by
 - natural frequency
 - damping constant

Coherent Detection

■ Error Signal for frequency lock ⇒ lock axial mode to the drive

Radial Modes

 monitor excitations via higher-order effect on natural axial frequency

Complications

Complications

American standards

Complications

- American standards
- lab space: total height

Complications

- American standards
- lab space: total height
- tritium safety precautions

Complications

- American standards
- lab space: total height
- tritium safety precautions

Complications

- American standards
- lab space: total height
- tritium safety precautions

Improvements over Predecessor

double-trap assembly

Complications

- American standards
- lab space: total height
- tritium safety precautions

- double-trap assembly
- external ion source

Complications

- American standards
- lab space: total height
- tritium safety precautions

- double-trap assembly
- external ion source
- novel cascaded Zener-diode voltage-reference voltage-source

Complications

- American standards
- lab space: total height
- tritium safety precautions

- double-trap assembly
- external ion source
- novel cascaded Zener-diode voltage-reference voltage-source

The Control Room

External Influences

- room temperature
- external magnetic field changes
- vibration isolation

External Influences

- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet

External Influences

- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet

temperature-dependent magnetic susceptibility

External Influences

- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet

temperature-dependent magnetic susceptibility \Rightarrow stabilize:

■ liquid helium pressure ⇒ constant boiling point

External Influences

- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet

temperature-dependent magnetic susceptibility \Rightarrow stabilize:

- liquid helium pressure ⇒ constant boiling point
- liquid helium level
 ⇒ constant temperature distribution

The Traps of THe-Trap

Inside Vacuum Envelope

two hyperbolic traps with correction electrodes

The Traps of THe-Trap

Inside Vacuum Envelope

- two hyperbolic traps with correction electrodes
- transfer section
- capture section

The Traps of THe-Trap

Inside Vacuum Envelope

- two hyperbolic traps with correction electrodes
- transfer section
- capture section
- Field Emission Point

The Road to lons

load a cloud of ions

The Road to lons

- load a cloud of ions
- kick the contaminants

The Road to lons

- load a cloud of ions
- kick the contaminants
- work with one species $(^{12}C^{4+})$

The Road to lons

- load a cloud of ions
- kick the contaminants
- work with one species $(^{12}C^{4+})$

Triggered Sweeps

The Road to lons

- load a cloud of ions
- kick the contaminants
- work with one species $(^{12}C^{4+})$

Triggered Sweeps

establish lock

The Road to lons

- load a cloud of ions
- kick the contaminants
- work with one species $(^{12}C^{4+})$

Triggered Sweeps

- establish lock
- run triggered sweeps

The Road to lons

- load a cloud of ions
- kick the contaminants
- work with one species $(^{12}C^{4+})$

Triggered Sweeps

- establish lock
- run triggered sweeps

■ Klaus Blaum: MPIK/UW-PTMS → THe-Trap

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer
- Robert Van Dyck, Jr.: UW-PTMS

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer
- Robert Van Dyck, Jr.: UW-PTMS

Achievements

- experiment moved to MPIK
- dedicated lab
- commissioning experiments
- single ion sensitivity

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer
- Robert Van Dyck, Jr.: UW-PTMS

Achievements

- experiment moved to MPIK
- dedicated lab
- commissioning experiments
- single ion sensitivity

Challenges

- systematic studies
- external loading and ion transfer

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer
- Robert Van Dyck, Jr.: UW-PTMS

Achievements

- experiment moved to MPIK
- dedicated lab
- commissioning experiments
- single ion sensitivity

Challenges

- systematic studies
- external loading and ion transfer

Long-term Goal

³H/³He Mass-Ratio Measurement

