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Motivation

Mass of the Electron Antineutrino

m (3-Decay of Tritium
3H—3He+e™ +Ve

m KATRIN: electron kinematics near the
endpoint

Penning Trap Contribution

B Q-value of the decay: 18589.8(1.2)eV
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Mass of the Electron Antineutrino

m (-Decay of Tritium my. =1ev

my, =2eV
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m KATRIN: electron kinematics near the
endpoint -5 -4 -3 -2 -1

E—Eg [eV]
Penning Trap Contribution

B Q-value of the decay: 18589.8(1.2)eV
B measurement of the mass-ratio R

m uncertainty of 30meV in Q
= uncertainty of 10711 in mass-ratio R
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dedicated experiment, developed at the
University of Washington in Seattle




A Penning Trap Primer

Charged Particle Confinement

m free-space cyclotron frequency

qB
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A Penning Trap Primer

Charged Particle Confinement

m free-space cyclotron frequency
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m modified cyclotron w
B magnetron w_
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A Penning Trap Primer

Charged Particle Confinement

m free-space cyclotron frequency

qB
We=—
m

m electrostatic quadrupole field
m three eigenmodes

m axial w; = ,/ %

m modified cyclotron w
B magnetron w_

Wt = % [wc + 1/a)g = 2w§]
m Invariance Theorem
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A Penning Trap Primer

Charged Particle Confinement

m free-space cyclotron frequency

qB
We=—
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m electrostatic quadrupole field
m three eigenmodes

m axial w; = ,/ %

m modified cyclotron w
B magnetron w_
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Non-Destructive lon Detection

lon Electrode Interaction

m induced image charges
= image currents

m goal: generate and
amplify voltage drop
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Non-Destructive lon Detection

lon Electrode Interaction Narrow-Band Detection

m induced image charges m tune out trap capacitance at
= image currents o 1
0 = —

m goal: generate and JVLC
amplify voltage drop

Image
Current Tuned Circuit
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Non-Destructive lon Detection

lon Electrode Interaction Narrow-Band Detection

m induced image charges m tune out trap capacitance at
= image currents 1
wo = —
m goal: generate and JVLC
amplify voltage drop m resistive cooling

Image
Current Tuned Circuit
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Signal
Analysis

Frequency Information




Anharmonic Frequency Detection
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Anharmonic Frequency Detection

Driven Harmonic Oscillator

m natural motion damped
m oscillation with driven frequency
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Driven Harmonic Oscillator fzl

m natural motion damped e

m oscillation with driven frequency
m amplitude and phase determined by
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Anharmonic Frequency Detection

Driven Harmonic Oscillator fzl

m natural motion damped e

m oscillation with driven frequency
m amplitude and phase determined by

m natural frequency
m damping constant

Coherent Detection in phase

m Error Signal for frequency lock
= lock axial mode to the drive

dragging by 90
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Anharmonic Frequency Detection

Driven Harmonic Oscillator

m natural motion damped e

m oscillation with driven frequency
m amplitude and phase determined by

m natural frequency
m damping constant

Coherent Detection in phase

m Error Signal for frequency lock
= lock axial mode to the drive

Radial Modes

® monitor excitations via higher-order
effect on natural axial frequency
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The Setup at MPIK
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The Magnet Room

External Influences

B room temperature

m external magnetic field
changes

m vibration isolation
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The Magnet Room

External Influences

B room temperature

m external magnetic field
changes

m vibration isolation

Cold-Bore Magnet

temperature-dependent magnetic
susceptibility = stabilize:
m liquid helium pressure
= constant boiling point
m liquid helium level

= constant temperature
distribution
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The Traps of THe-Trap

Inside Vacuum Envelope

m two hyperbolic traps with
correction electrodes
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Inside Vacuum Envelope

m two hyperbolic traps with
correction electrodes

m transfer section
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The Traps of THe-Trap

Inside Vacuum Envelope

m two hyperbolic traps with
correction electrodes

m transfer section
m capture section
m Field Emission Point
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RF lon Work

The Road to lons

m load a cloud of ions
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The Road to lons
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RF lon Work

The Road to lons

m load a cloud of ions
m kick the contaminants
m work with one species (}2C4*)
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RF lon Work

The Road to lons

m load a cloud of ions
m kick the contaminants
m work with one species (}2C4*)

185 18 475 -7
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Correction Signal (V)

-1.5 -1 -0.5 0 0.5 1 15
Modified cyclotron frequency v,- 26613114 Hz
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Personnel
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Personnel

m Klaus Blaum:
MPIK/UW-PTMS — THe-Trap
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Summary and Outlook

Personnel Achievements

Klaus Blaum: m experiment moved to MPIK
MPIK/UW-PTMS — THe-Trap m dedicated lab

David Pinegar B commissioning experiments
Christoph Diehl m single ion sensitivity

Martin Hocker

vorioe memer
Marius Tremer

Robert Van Dyck, Jr.: m systematic studies

Wb iis m external loading and ion transfer

Long-term Goal

m 3H/3He Mass-Ratio Measurement



