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Anharmonic Frequency Detection

Driven Harmonic Oscillator

natural motion damped

oscillation with driven frequency

amplitude and phase determined by
natural frequency
damping constant

Coherent Detection

Error Signal for frequency lock
⇒ lock axial mode to the drive

Radial Modes

monitor excitations via higher-order
effect on natural axial frequency
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novel cascaded Zener-diode
voltage-reference voltage-source
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