Towards a 3H/3He Mass-Ratio Measurement with THe-Trap
First IMPRS-PTFS Seminar

Jochen Ketter

February 4, 2011
Motivation

Mass of the Electron Antineutrino

- β-Decay of Tritium

$$^3\text{H} \rightarrow ^3\text{He} + e^- + \bar{\nu}_e$$
Motivation

Mass of the Electron Antineutrino

- β-Decay of Tritium

 $^3\text{H} \rightarrow ^3\text{He} + e^- + \bar{\nu}_e$

- KATRIN: electron kinematics near the endpoint

\[
\begin{align*}
\frac{dN}{dE} & \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \\
E - E_0 [\text{eV}] & \\
\end{align*}
\]

- $m_{\bar{\nu}_e} = 0$ eV
- $m_{\bar{\nu}_e} = 1$ eV
- $m_{\bar{\nu}_e} = 2$ eV
- $m_{\bar{\nu}_e} = 3$ eV
Mass of the Electron Antineutrino

- β-Decay of Tritium
 \[^3\text{H} \rightarrow ^3\text{He} + e^- + \bar{\nu}_e \]

- KATRIN: electron kinematics near the endpoint

Penning Trap Contribution
Motivation

Mass of the Electron Antineutrino

- **β-Decay of Tritium**
 \[^3\text{H} \rightarrow ^3\text{He} + e^- + \bar{\nu}_e \]
- **KATRIN**: electron kinematics near the endpoint

Penning Trap Contribution

- **Q-value of the decay**: $18\,589.8(1.2)\,\text{eV}$
Motivation

Mass of the Electron Antineutrino

- β-Decay of Tritium

\[^3\text{H} \rightarrow ^3\text{He} + e^- + \bar{\nu}_e \]

- KATRIN: electron kinematics near the endpoint

Penning Trap Contribution

- Q-value of the decay: 18589.8(1.2) eV
- measurement of the mass-ratio R
Motivation

Mass of the Electron Antineutrino

- **β-Decay of Tritium**
 \[{^3}\text{H} \rightarrow {^3}\text{He} + e^- + \overline{\nu}_e \]
- KATRIN: electron kinematics near the endpoint

Penning Trap Contribution

- **Q-value of the decay**: 18 589.8(1.2) eV
- Measurement of the mass-ratio \(R \)
- Uncertainty of 30 meV in \(Q \) implies uncertainty of \(10^{-11} \) in mass-ratio \(R \)
Motivation

Mass of the Electron Antineutrino

- **β-Decay of Tritium**
 \[^3\text{H} \rightarrow ^3\text{He} + e^- + \bar{\nu}_e \]
- **KATRIN**: electron kinematics near the endpoint

Penning Trap Contribution

- **Q-value of the decay**: 18589.8(1.2) eV
- Measurement of the mass-ratio \(R \)
- Uncertainty of 30 meV in \(Q \) → uncertainty of \(10^{-11} \) in mass-ratio \(R \)

dedicated experiment, developed at the University of Washington in Seattle
Charged Particle Confinement

- free-space cyclotron frequency

\[\omega_c = \frac{qB}{m} \]
A Penning Trap Primer

Charged Particle Confinement

- free-space cyclotron frequency
 \[\omega_c = \frac{qB}{m} \]
- electrostatic quadrupole field

Invariance Theorem

\[\omega_{2c}^{2} = \omega_{2c}^{2} + \omega_{2c}^{2} + \omega_{2c}^{2} \]

Mass-Ratio

\[R = \frac{m_a}{m_b} = \frac{q_a}{q_b} \cdot \omega_c(b) \cdot B_a \cdot B_b \]
A Penning Trap Primer

Charged Particle Confinement

- free-space cyclotron frequency
 \[\omega_c = \frac{qB}{m} \]
- electrostatic quadrupole field
- three eigenmodes
 - axial \(\omega_z = \sqrt{\frac{qU_0}{md^2}} \)
 - modified cyclotron \(\omega_+ \)
 - magnetron \(\omega_- \)

\[\omega_{\pm} = \frac{1}{2} \left[\omega_c \pm \sqrt{\omega_c^2 - 2\omega_z^2} \right] \]
Charged Particle Confinement

- free-space cyclotron frequency
 \[\omega_c = \frac{qB}{m} \]
- electrostatic quadrupole field
- three eigenmodes
 - axial \(\omega_z = \sqrt{ \frac{qU_0}{md^2} } \)
 - modified cyclotron \(\omega_+ \)
 - magnetron \(\omega_- \)
- \(\omega_{\pm} = \frac{1}{2} \left[\omega_c \pm \sqrt{\omega_c^2 - 2\omega_z^2} \right] \)
A Penning Trap Primer

Charged Particle Confinement

- free-space cyclotron frequency
 \[\omega_c = \frac{qB}{m} \]
- electrostatic quadrupole field
- three eigenmodes
 - axial \(\omega_z = \sqrt{\frac{qU_0}{md^2}} \)
 - modified cyclotron \(\omega_+ \)
 - magnetron \(\omega_- \)
 \[\omega_{\pm} = \frac{1}{2} \left[\omega_c \pm \sqrt{\omega_c^2 - 2\omega_z^2} \right] \]
- Invariance Theorem
 \[\omega_c^2 = \omega_+^2 + \omega_-^2 + \omega_z^2 \]
Charged Particle Confinement

- free-space cyclotron frequency
 \[\omega_c = \frac{qB}{m} \]
- electrostatic quadrupole field
- three eigenmodes
 - axial \(\omega_z = \sqrt{\frac{qU_0}{md^2}} \)
 - modified cyclotron \(\omega_+ \)
 - magnetron \(\omega_- \)
 \[\omega_\pm = \frac{1}{2} \left[\omega_c \pm \sqrt{\omega_c^2 - 2\omega_z^2} \right] \]
- Invariance Theorem
 \[\omega_c^2 = \omega_+^2 + \omega_-^2 + \omega_z^2 \]

Mass-Ratio
\[
R = \frac{m_a}{m_b} = \frac{q_a}{q_b} \cdot \frac{\omega_c(b)}{\omega_c(a)} \cdot \frac{B_a}{B_b}
\]
Non-Destructive Ion Detection

Ion Electrode Interaction

- induced image charges \(\Rightarrow\) image currents
- goal: generate and amplify voltage drop

\[
\text{Image Current} + C_t \rightarrow I
\]
Non-Destructive Ion Detection

Ion Electrode Interaction
- induced image charges \(\Rightarrow \) image currents
- goal: generate and amplify voltage drop

Narrow-Band Detection
- tune out trap capacitance at
 \[\omega_0 = \frac{1}{\sqrt{LC}} \]
Non-Destructive Ion Detection

Ion Electrode Interaction
- induced image charges → image currents
- goal: generate and amplify voltage drop

Narrow-Band Detection
- tune out trap capacitance at
 \[
 \omega_0 = \frac{1}{\sqrt{LC}}
 \]
Non-Destructive Ion Detection

Ion Electrode Interaction
- induced image charges ⇒ image currents
- goal: generate and amplify voltage drop

Narrow-Band Detection
- tune out trap capacitance at \(\omega_0 = \frac{1}{\sqrt{LC}} \)
- resistive cooling
Non-Destructive Ion Detection

Ion Electrode Interaction
- induced image charges ⇒ image currents
- goal: generate and amplify voltage drop

Narrow-Band Detection
- tune out trap capacitance at:
 \[\omega_0 = \frac{1}{\sqrt{LC}} \]
- resistive cooling

![Tuned Circuit Diagram]

\[U(t) \]

Signal Analysis

Frequency Information
Anharmonic Frequency Detection
Anharmonic Frequency Detection

Driven Harmonic Oscillator

- natural motion damped
- oscillation with driven frequency
Anharmonic Frequency Detection

Driven Harmonic Oscillator

- natural motion damped
- oscillation with driven frequency
- amplitude and phase determined by
 - natural frequency
 - damping constant
Anharmonic Frequency Detection

Driven Harmonic Oscillator
- natural motion damped
- oscillation with driven frequency
- amplitude and phase determined by
 - natural frequency
 - damping constant

Coherent Detection
- Error Signal for frequency lock
 ⇒ lock axial mode to the drive
Anharmonic Frequency Detection

Driven Harmonic Oscillator
- natural motion damped
- oscillation with driven frequency
- amplitude and phase determined by
 - natural frequency
 - damping constant

Coherent Detection
- Error Signal for frequency lock
 ⇒ lock axial mode to the drive

Radial Modes
- monitor excitations via higher-order effect on natural axial frequency
The Setup at MPIK
The Setup at MPIK

Complications
The Setup at MPIK

Complications

- American standards
The Setup at MPIK

Complications

- American standards
- Lab space: total height
The Setup at MPIK

Complications

- American standards
- lab space: total height
- tritium safety precautions
The Setup at MPIK

Complications

- American standards
- Lab space: total height
- Tritium safety precautions

Improvements over Predecessor
The Setup at MPIK

Complications

- American standards
- lab space: total height
- tritium safety precautions

Improvements over Predecessor

- double-trap assembly
The Setup at MPIK

Complications
- American standards
- lab space: total height
- tritium safety precautions

Improvements over Predecessor
- double-trap assembly
- external ion source
The Setup at MPIK

Complications

■ American standards
■ lab space: total height
■ tritium safety precautions

Improvements over Predecessor

■ double-trap assembly
■ external ion source
■ novel cascaded Zener-diode voltage-reference voltage-source
The Setup at MPIK

Complications

- American standards
- lab space: total height
- tritium safety precautions

Improvements over Predecessor

- double-trap assembly
- external ion source
- novel cascaded Zener-diode voltage-reference voltage-source
The Control Room
The Magnet Room

External Influences

- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet

Temperature-dependent magnetic susceptibility

⇒ stabilize:

- liquid helium pressure
⇒ constant boiling point
- liquid helium level
⇒ constant temperature distribution
The Magnet Room

External Influences
- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet
The Magnet Room

External Influences

- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet

temperature-dependent magnetic susceptibility
The Magnet Room

External Influences

- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet

temperature-dependent magnetic susceptibility ⇒ stabilize:
- liquid helium pressure ⇒ constant boiling point
The Magnet Room

External Influences
- room temperature
- external magnetic field changes
- vibration isolation

Cold-Bore Magnet

temperature-dependent magnetic susceptibility ⇒ stabilize:
- liquid helium pressure ⇒ constant boiling point
- liquid helium level ⇒ constant temperature distribution
The Traps of The-Trap

Inside Vacuum Envelope

- two hyperbolic traps with correction electrodes
The Traps of THe-Trap

Inside Vacuum Envelope

- two hyperbolic traps with correction electrodes
- transfer section
- capture section
Inside Vacuum Envelope

- two hyperbolic traps with correction electrodes
- transfer section
- capture section
- Field Emission Point
RF Ion Work

The Road to Ions

- load a cloud of ions
RF Ion Work

The Road to Ions

- load a cloud of ions
- kick the contaminants
RF Ion Work

The Road to Ions
- load a cloud of ions
- kick the contaminants
- work with one species ($^{12}\text{C}^4+$)
The Road to Ions

- load a cloud of ions
- kick the contaminants
- work with one species ($^{12}\text{C}^{4+}$)

Triggered Sweeps
The Road to Ions

- load a cloud of ions
- kick the contaminants
- work with one species ($^{12}\text{C}^{4+}$)

Triggered Sweeps

- establish lock
RF Ion Work

The Road to Ions
- load a cloud of ions
- kick the contaminants
- work with one species \((^{12}\text{C}^{4+})\)

Triggered Sweeps
- establish lock
- run triggered sweeps
RF Ion Work

The Road to Ions
- load a cloud of ions
- kick the contaminants
- work with one species (12C$^{4+}$)

Triggered Sweeps
- establish lock
- run triggered sweeps
Summary and Outlook

Personnel

Klaus Blaum:
MPIK/UW-PTMS → THe-Trap

David Pinegar
Christoph Diehl
Martin Höcker
Sebastian Streubel
Marius Tremer

Robert Van Dyck, Jr.:
UW-PTMS

Achievements
experiment moved to MPIK
dedicated lab
commissioning experiments
single ion sensitivity

Challenges
systematic studies
external loading and ion transfer

Long-term Goal

$^{3}\text{H}/^{3}\text{He}$ Mass-Ratio Measurement
Summary and Outlook

Personnel

- Klaus Blaum:
 MPIK/UW-PTMS → THe-Trap

Achievements
- Experiment moved to MPIK
- Dedicated lab
- Commissioning experiments
- Single ion sensitivity

Challenges
- Systematic studies
- External loading and ion transfer

Long-term Goal
- \(^3\text{H}/^3\text{He} \) Mass-Ratio Measurement
Summary and Outlook

Personnel

- **Klaus Blaum:** MPIK/UW-PTMS → THé-Trap
- **David Pinegar**

Achievements
- experiment moved to MPIK
- dedicated lab
- commissioning experiments
- single ion sensitivity

Challenges
- systematic studies
- external loading and ion transfer

Long-term Goal
- $^3\text{H}/^3\text{He}$ Mass-Ratio Measurement
Summary and Outlook

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
Summary and Outlook

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker

Achievements
- experiment moved to MPIK
- dedicated lab
- commissioning experiments
- single ion sensitivity

Challenges
- systematic studies
- external loading and ion transfer

Long-term Goal
- $\text{^3H}/\text{^3He}$ Mass-Ratio Measurement
Summary and Outlook

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel

Achievements

- Experiment moved to MPIK
- Dedicated lab
- Commissioning experiments
- Single ion sensitivity

Challenges

- Systematic studies
- External loading and ion transfer

Long-term Goal

- $^3\text{He}/^3\text{H}$ Mass-Ratio Measurement
Summary and Outlook

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer

Achievements

- Experiment moved to MPIK
- Dedicated lab
- Commissioning experiments
- Single ion sensitivity

Challenges

- Systematic studies
- External loading and ion transfer

Long-term Goal

- 3H/3He mass-ratio measurement
Summary and Outlook

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer
- Robert Van Dyck, Jr.: UW-PTMS

Achievements
- Experiment moved to MPIK
- Dedicated lab
- Commissioning experiments
- Single ion sensitivity

Challenges
- Systematic studies
- External loading and ion transfer

Long-term Goal
- 3H/3He mass-ratio measurement
Summary and Outlook

Personnel
- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer
- Robert Van Dyck, Jr.: UW-PTMS

Achievements
- experiment moved to MPIK
- dedicated lab
- commissioning experiments
- single ion sensitivity
Summary and Outlook

Personnel

- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer
- Robert Van Dyck, Jr.: UW-PTMS

Achievements

- experiment moved to MPIK
- dedicated lab
- commissioning experiments
- single ion sensitivity

Challenges

- systematic studies
- external loading and ion transfer
Summary and Outlook

Personnel
- Klaus Blaum: MPIK/UW-PTMS → THe-Trap
- David Pinegar
- Christoph Diehl
- Martin Höcker
- Sebastian Streubel
- Marius Tremer
- Robert Van Dyck, Jr.: UW-PTMS

Achievements
- Experiment moved to MPIK
- Dedicated lab
- Commissioning experiments
- Single ion sensitivity

Challenges
- Systematic studies
- External loading and ion transfer

Long-term Goal
- 3H/3He Mass-Ratio Measurement