Testing the Weak Equivalence Principle with Antimatter

Elena Jordan
Group of Alban Kellerbauer
Max Planck Institute for Nuclear Physics
Heidelberg
AEGIS: Antimatter Experiment: Gravity, Interferometry, Spectroscopy

• Main goal: Measurement of g with a few percent* precision on antihydrogen
 * (initially)

• Proposed in 1997 by Tom Phillips

• Requirements / challenges:
 – Production of a bunched cold beam of antihydrogen (100 mK)
 – Measurement of vertical beam deflection (10 μm drop over 1 m)
Outline

- Motivation / Prospects for anti-gravity
- AEGIS principle and setup
- Current status
- Conclusions and outlook
Motivation

- Weak equivalence principle (WEP):

 “In a uniform gravitational field all objects fall with the same acceleration, regardless of their composition.”

- WEP extremely well tested with matter, but never with antimatter

- Electric charge of subatomic particles

\[
\bar{m}_g = \bar{m}_i
\]
Motivation

• Gravity is the only force **not** described by a quantum field theory

• QFT formulations of gravity open the way for
 – Non-Newtonian gravity
 – WEP violation
 – Fifth forces etc.

• Since 2002 copious amount of neutral antiatoms have become available

Antimatter

- 1928 Paul Dirac predicts antimatter
- 1932 Carl Anderson discovers the positron in cosmic rays
- 1955 Owen Chamberlain et al. publish “Observation of antiprotons”
- 1956 discovery of antineutrons
- 2002 first production of cold antihydrogen atoms
- 2011 first storage of antiatoms for 1000 s
When matter and antimatter collide particles annihilate.

CPT theorem by W. Pauli:

“Every canonical quantum field theory is invariant under simultaneous inversion of charge, parity, and time.”

Antimatter perfect mirror image of matter
Antihydrogen

hydrogen

proton

electron

antihydrogen

antiproton

positron
Outline

- Motivation / Prospects for anti-gravity
- AEGIS principle and setup
- Current status
- Conclusions and outlook
Antiproton Decelerator at CERN

- $10^7 \bar{p}$ produced every ≈ 90 s
- Deceleration from $p = 3.5$ GeV/c to 100 MeV/c
- Fast extraction (200-ns bunches)
AD experiments

1. Antiproton production
2. Injection at 3.5 GeV/c
3. Deceleration and cooling (3.5–0.1 GeV/c)
4. Extraction (≈2×10⁷ in 200 ns)

Electron cooling
Stochastic cooling

AEGIS
ATRAP
ASACUSA
ALPHA

Schematic overview of the apparatus

Ps transfer line

Antiproton beam

5T

1T
AEGIS overview sketch

- positronium source & accumulator
- AD beamline
- antiproton & positron trapping
- antihydrogen production
- position-sensitive detector
- Moire deflectometer
Antiproton capture and cooling

- Energy reduced by 50-µm degrader foil

- Trapping sequence:
 1. Trap is prepared with plasma of 10^8 cold electrons
 2. Small fraction of antiprotons with $E < 9$ keV is reflected
 3. Axial potential on entrance side is raised to trap \bar{p}
 4. Antiprotons are sympathetically cooled by electrons

- Trap cooled to 100 mK by a dilution refrigerator
- sympathetic cooling with laser cooled negative ions
Positronium production

- Positrons from a 22Na source
- Formation of positronium in nano-porous silica based materials

Ortho Ps
$\tau = 140\text{ ns}$

Para PS
$\tau = 125\text{ ps}$

- Measurements ongoing at Trento and Munich (NEPOMUC) to optimize Ps conversion targets
 - at 50 K, 9% of positrons converted to Ps

Antihydrogen recombination

- **Charge exchange reaction:**
 \[\text{Ps}^* + \bar{p} \rightarrow \bar{H}^* + e^- \]

- **Principle demonstrated**
 by ATRAP
 \[\text{Cs}^* \rightarrow \text{Ps}^* \rightarrow \bar{H}^* \]

- **Advantages:**
 - Large cross-section:
 - Narrow and well-defined \(n \)-state distribution
 - Antiproton temperature determines antihydrogen temperature

\[\sigma \approx a_0 n^4 \]

Experimental sequence

- Principle sketch (not to scale):

1) Antiproton capture & cooling
2) Positron production
3) Positronium conversion
4) Positronium excitation
5) Antihydrogen recombination
6) Antihydrogen beam formation
7) Gravity measurement
8) Data analysis
Antihydrogen acceleration

- Rydberg antihydrogen accelerated into a beam by inhomogeneous electric field

\[\vec{F} = -\frac{2}{3} e a_0 n(n - 1) \nabla \vec{E} \]

Gravity measurement

- Forces can be measured with a series of slits
 - Formation of an interference or shadow pattern with two slits
 - Measurement of the vertical deflection δx with a third (analysis) slit
- Many slits: interferometer/deflectometer

- Vertical deflection due to gravity: $\delta x \approx -10 \, \mu m$
- Vertical beam extent: $\Delta x \approx 5.8 \, cm$

(antihydrogen beam at 100 mK, accelerated to 500 m s$^{-1}$, $L \approx 0.5 \, m$)
Data analysis

• Record vertical position for each event as a function of TOF/velocity:

\[v_{\text{beam}} = 600, 400, 300, 250 \text{ m s}^{-1} \]

\[\delta x = -gT^2 = -g(L/v)^2 \]

• Summing up the peaks:

Measurement of \(g \) to 1%:

– \(\approx 10^5 \) \(\Hbar \) atoms at 100 mK
– about 2 weeks of beam time
Outline

- Motivation / Prospects for anti-gravity
- AEGIS principle and setup
- Current status
- Conclusions and outlook
AEGIS construction 2010–2012

September 2011

December 2012
Magnets and traps

• 5 T magnet (capture) and 1 T magnet (H recombination) installed and commissioned

• All traps completed & commissioned

• Beam times May & Dec. 2012:
 – Successful \bar{p} stacking (4 shots, $4 \times 10^5 \bar{p}$)
 – Storage of cooled \bar{p} ($\tau = 570$ s)

About 1.3×10^5 p caught at 9kV per AD bunch $\sim 3 \times 10^7$
Moiré $\bar{\text{H}}$ detector

- Requirement: Detect $\bar{\text{H}}$ annihilations with resolution $\Delta t \approx 1 \, \mu s$, $\Delta x \approx 10 \, \mu m$

- Currently favored design:

 - Time of flight from 1D Si strip
 - High spatial resolution provided by emulsion
 - 2D Si tracker correlates emulsion tracks with timed events
Moiré \bar{H} detector

- Nuclear emulsions:
 - 90 μm thick gels on glass substrate (0.5...1 mm thick)
 - Based on technology developed for OPERA, modified for vacuum operation and tested at low temp
 - Off-line analysis by automatic 3D scanning

Intrinsic resolution 58 nm
Vertex resolution \approx 1.4...2.3 μm
Moiré deflectometer

- Deflectometer test setup

- Stability of gratings measured with laser: 30 nm over 1 h
- Prototype deflectometer commissioned with metastable Ar atoms
 → first gravity measurement
Moiré deflectometer

- December 2012:
 Deflectometry measurement with $\bar{\rho}$ in “mini moiré” setup
 - $d = 40 \, \mu m$, $L = 25 \, mm$
 - $100 \, keV \bar{\rho}$, 7 h exposure
 - Reference measurement with laser light in Talbot-Lau regime

Result:
- Phase shift: $10.0 \, \mu m \pm 0.9 \, \mu m \text{(Stat.)}$
 $\pm 6.3 \, \mu m \text{ (Sys.)}$
- Force: $F = 540 \pm 50 \pm 340 \, aN$, corresponds to magnetic field $\approx 8 \, G$

[Aghion et al., submitted 2013]
Outline

- Motivation / Prospects for anti-gravity
- AEGIS principle and setup
- Current status
- Conclusions and outlook
Conclusions & outlook

• the weak equivalence principle has never been tested for antimatter
• depending on the chosen model, effect could be nil or dramatic
• the AEGIS experiment intends to measure g of antihydrogen to few percent precision
• construction and commissioning of AEGIS apparatus largely completed
• next milestones:
 – 2013 / first half 2014: Commissioning of all remaining components;
 – from second half 2014: First antimatter gravity experiment