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in SM(+Majorana neutrinos) there are a total of 28 Parameters

neutrinos
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oV, f Gluons
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% Higgs Boson

most of them stem from interactions with the Higgs field, i.e.
flavour parameters

other interactions tightly constrained by symmetry principles
quarks small mixings; leptons large mixings

this talk only leptons, for quarks see next talk




Leptonic Mixing

@ in SM there are three generations of leptons, two mass matrices

(Yo )i (L;H)(L,H) + h.c.

LD
i e 7

o after diagonalization of two mass matrices

VIM MV = diag(m? mi,mQ) and VEM,V, = diag(mi, ma, ms)

@ flavour violation only in charged current interactions, analog of CKM

0
Upmns=| 0 3 3 ,,

0 53 3 \ - s
1y? ‘__?\
= solar-5x107¢

== "') normal
sin? @ = 0.521006  sin 2g = 002003, sin 912 = 0:30.2.5 g



Lepton mixing from discrete groups

residual symmetry of (me me*) e — p(ge)e L — p(yg W\ 5 residual symmetry of my
p(ge)TMeMgp(ge — M, MT complete flavour group p(gy)TMy,O(gy) T
L ) )
Ge=Z3 Gv=Z2XZ>
abelian abelian

(Z2xZ2 most general choice if mixing angles

do not depend on masses & Majorana Vs)
J \ W

(z3 smallest choice, but can|
also be continuous)

-

QT/[)(ge)Q p(ge)dzag 0 Qip(gv)ﬂl/ T P(gy)dz’ag

isaligned non-commuting
symmetries lead to

4 =)
[He, Keum, Volkas '06;
Lam'07,'98; 73 mixing matrix determined from
Altarelli,Feruglio’03] symmetry up to interchanging of
L5 ‘i‘ rows/columns and diagonal phase
Upmns = 2.8y i
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Lepton mixing from discrete groups

residual symmetry of (me me*) e — p(ge)e L — p(g v — o(g)
p(ge)T M M p(ge)* = M, M)} complete flavour group
-

residual symmetry of m,

o(g) Myp(g,) = M,

0 1 0 Sy - U
p(T) =i stis BT (o) =Siel1 | 0
1 VR S
- 0 0 J .
le(ge)Q g€ diag QT p(gu)ﬂ p(gl/)dzag
misaligned non-commuting
symmetries lead to /
~
Lin'10, e mixing matrix determined from
Shimizu, Tanimoto, cos ¢ 0 e“sinf symmetry up to interchanging of
Watanabe'11,Luhn,King’ &N i
1 Herariiia o Upvns = Urpy | 0 1 0 rows/columnsr:;lfric)i(lagonal phase
12,..] —e%sinf 0  cosf
trimaximal mixing(TMM)
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What is the Flavour Group 7

@ we have seen which residual symmetries in the charged lepton and
neufrino sector lead to inferesting mixing patterns

o if all residual symmetries are symmeftries of the entire Lagrangian,

Y

in the case of tri-bimaximal mixing, we find the group

Sy =HETE OIS =18 — (S TSN (B ) — 1)
@ for the case of Gv= (S) =Zz, the symmetry group is

Ay =68, = T (SN0

@ models based on this symmetry often lead to TBM because of
accidental symmetries




Other Candidate Groups

T = 7,.A4

A(27) =2 (Z3 X Z3) X Z3 [Merle,Zwicky 1110.4891]


http://arxiv.org/abs/1110.4891
http://arxiv.org/abs/1110.4891

A, Symmetry Group

A4 is the smallest symmetry group that can lead to TBM mixing:

1-d reps.
correspond to
reps. of Z3

W = ei2m/3

(a1b1 + a2bs + asbs)

(a1b1 B2 oD wagbg) E (a,1bl + wagby + w2agbg)

azby + a1b3
a1ba + a2b;

CL3b1 — ai b3

asbz — azbs ) 1 azbs + azbo

where (a,l, as, a3), (bl, bg, b3) ~ §
albg A a2b1



An A, Prototype model

o (As4Zs) charge assignments: L~ (3,i), e~ (11,-i), u~ (12,-i), 7~ (13-i) ,x~(3,1),
¢~(31-1)1 5"'(1/-1)

@ auxiliary Z, separates neu’rral and charged lep’ron sectors at LO

L= <T> L= <S>

- | -

l[g Jk an'01, Babu, Ma, Valle '03,

Vacuum alignment crucial! «eireeoo:




An A, Prototype model

o (As4Zs) charge assignments: L~ (3,i), e~ (11,-i), u~ (12,-i), 7~ (13-i) ,x~(3,1),
¢~(31-1)1 f"'(l/-l)

@ auxiliary Z, separates neu’rral and charged lep’ron sectors at LO

(p ~(,1,1)
CD) ~(1,0,0)

Z3= (T) Zo= (S)

\ /
TMM
< >
tan 20 ~ \/§C
2a — ¢

[e.g. Ma,Rajasekaran'01, Babu, Ma, Valle ‘03,

VClC uum a l i g nmen 'I' cruc i a l ! Altarelli Feruglio, ‘05,06 ]
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Can Vacuum Alignment be realised?
Vi = mo (xx)1y + M boda NS00y Qo

\_ J

M

o ~(1L1,1)

vacuum unstable

Effect of breaking to Z; in another sector can be included by adding: A2

1% yi :mQ 2_|_m2 2_|_m2 53
Minimization conditions then give: S e YT o

- L y @

0= |=— = — (mZ+v3m%) v + 40" . .
_(’9X1L LS ( i/ fmf“) i " @ This thus requires ma= mg= mc=0,
B g F l.e. all non-trivial contractions

O == —V — —V — 2m2 ’U/ 1
| Ox2 x5 e 2 between ® and y have to vanish
[ 0 & ) In the potential.

O=|—V - —V = (2m?% —m2) v’
_8)(1 8X3 J Xi:U/ ( 5 C)




Can Vacuum Alignment be realized?

@ To get the correct vacuum alignment, one thus needs fo fine-fune the
couplings

Vinix (X, 8) = g, (68)3, (xx)3, + (“lz (¢)1, OX)14 + h-C-) + 03, 2(XxX)3

3 1

@ even if one sets the couplings to zero, they will be generated at one-loop
level

m (#9)1, (xx)1,

flavour conserving

@ one needs a symmetry to enforce V=Vo(P)+V ,( 1)+(PDP):i( 1)
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Can Vacuum Alignment be realized?

@ To get the correct vacuum alignment, one thus needs to fine-tune the
couplings

Viix(X, @) = 63 (#9)3. ()3, + ("‘12 (¢)1, OX)14 + h-C-) + 03, 2(XxX)3

3 1

@ even if one sets the couplings to zero, they will be generated at one-loop
level .
J

natural

RG flow

- A
Cr ~(1,11)

TBM
<(D> ~(]-IO/O)
G J

Ki
@ for a natural model the realizes vacuum alignment, we need to have a
finite portion of parameter space in which TBM vacuum is realized
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Solutions in the Literature

r \
In models with extra dimensions(ED), it is possible
to locate the various fields at different locations in
the ED, thereby forbidding the cross-couplings.
Altarelli, Feruglio 2005
N 7
p

In SUSY, one has to infroduce a continuous
R-symmetry and additional fields with R-
charge 2(driving fields). These fields enter
the superpotential only linearly and allow

the vacuum alignment. , ,
5. Altarelli, Feruglio 2006

-
Babu and Gabriel(2010) proposed the flavour group (S3)*“XAs4, which has the propertie
@ leptons transform only under A4 subgroup

o if one takes ®~16, vacuum alignment possible as V=V(®P)+V(y)+(P ®P)(rxh

@ neutrino masses then generated by coupling to (®*> ~(1,0,0)
-
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Problems with the Solutions

«

In models with extra dimensions(ED), it is possible
to locate the various fields at different locations in
the ED, thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005
\-

-

In SUSY, one has to introduce a continuous
R-symmetry and additional fields with R-
charge 2(driving fields). These fields enter
the superpotential only linearly and allow

the vacuum alignment. : :
il Altarelli, Feruglio 2006

p
Babu and Gabriel(2010) proposed the flavour group (Ss)*XAs, which has the propertie
@ leptons transform only under A4 subgroup

o if one takes ®-16, vacuum alignment possible as V=V(®)+V(y)+(® Py

@ neutrino masses then generated by coupling to {®*) ~(1,0,0)
¥
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Problems with the Solutions :

«

[TeV]

In models with extra dimensions(ED), _
to locate the various fields at differe o
the ED, thereby forbidding the cros -

Altare
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@ leptons transform only under A4 subgroup

o if one takes ®-16, vacuum alignment possible as V=V(®)+V(y)+(® Py

@ neutrino masses then generated by coupling to {®*) ~(1,0,0)
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Problems with ’rhe Soluflons

«

In models with extra dimensions(ED),
to locate the various fields at differe e
the ED, thereby forbidding the cros 0 e R

_--"

0 CMS Preliminary \s=7TeV, [Ldt=11fb"

— 2011 Limits I COF 7,7, tanp=s,u<0 T observe
Vs ---:2010 Limits DO 7,7, tanp=3, u<0 2211 22 sd expected (n

tanp =10, A =0, u>0 [ LerP2 7

In SUSY, one J:i :
= SynIeIcy ¢ %‘
e i (750)5.SS Dilepton \

charge 2(drivi
the superpote
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Babu and Gabriel(2010) proposed the flavour group (Ss)*XA4, which has the properties
@ leptons transform only under A4 subgroup

o if one takes ®-16, vacuum alignment possible as V=V(®)+V(y)+(® Py

@ neutrino masses then generated by coupling to {®*) ~(1,0,0)
¥ b
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«

In models with extra dimensions(ED),
to locate the various fields at differe e
the ED, thereby forbidding the cros 0 e R
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0 CMS Preliminary \s=7TeV, [Ldt=11fb"

< — 2011 Limits I COF 2.7, tanp=5,u<0 T observe
Vs ---:2010 Limits DO 7,7, tanp=3, u<0 2211 22 sd expected (n

tanp =10, A =0, u>0 [ LerP2 7

In SUSY, one MHTl
Razor(08fb
R—symme’rrY : ._ §

charge 2(drivi
the superpote A
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Yoy e
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4'

NS L
o LI
Y= ofm

a

Model is fine-tuned/needs special UV completion: ) )
: T . : | the properties
different mass entries in neutrino mass matrix stem

from operators of very different mass dimensions
(11)3P4+(11)

-
Babu and Gal(6
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Group extensions and Vacuum alignment

@ To solve the vacuum alignment problem, we extend the flavour group H [e.g. the
successful groups H=A4,T7,5.T" or A(27)].

@ we require the following:

@ lepton structure should be same -> irreps of H should be promoted to irreps
of G, we therefore need a surjective homomorphism € : G = H such that

pG T pH O E! |~§G' )("';G

@ there should be an irrep ®, the product ®" should contain a 3¢

@ renormalizable scalar potential should be of form: V=V(®)+V(y)+(PP)(x.x):.

3=

<T> : . Z2= (S)
TBM




Scan for Small Groups

@ using the computer algebra system GAP and its SmallGroups catalogue, we have
checked all groups with size smaller than 1000 (11,758,814 groups) and we have
found a number of candidates:

& no candidates for T7 or Order of G
201 z

A(27), maybe because 9% | 204 | Qs 1 A4

: __
here 3 is complex and B L B K EEARE T
there are more couplings 52 24 s z
. 1083945 1. 22) % Ay 4
that have to be forbidden - (Zo » Ong) % Zo) % As | 2

(also smaller number of o ue

. . 18133, 20092 Z ><Q8 >454 Z
ssible extensions 2
possible extensions) -
® all candidates in list have 8480 (Z3 x Qg) X Sy

5 — @ annz 5| 7,
non—fr‘IVIal Cenfr‘e(=elemen’rs m 25 X QS % Sy ZlO
that comeey
clements), not necessary true I N - A
for all groups(see e.g. (S3)4xA, | 768 | 1083573, 1085187 | ((Z» x QS % Za) 1 T

studied in Babu/Gabriel 2010)

Groups of the Structure G =NXH, H is
subgroup of G



Scan for Small Groups

@ using the computer algebra system GAP and its SmallGroups catalogue, we have
checked all groups with size smaller than 1000 (11,758,814 groups) and we have
found a number of candidates:

® no candidates for T7 or

A(27), maybe because Quotient Group H | Order of G Structure Description
here 3 is complex and 96 | 201 | Z5.(Z% x Ay)
there are more couplings 4 144 Z3-(Aq x S5)
; 192 1017 Z5.(Dg x A
that have to be forbidden B 2(Ds X 4a)
EEERIGAT
(also smaller number of 114 121, 122
possible extensions) 192 187, 963
192 987, 988 | Zo.((Z3 x Ay) X Z3)
. . . 2
@ all candidates in list have 2 | 14851454 Z2(Zy x 54)
S 192 1492 | Zo.((Z4 x Z3) % Zy)
non-Trivial centre(zelements 192 1007 Z2.(Z2 x Ay)

that commute with all other

elements), NoT necessary frue
for all groups(see e.g. (S3)*XAy
studied in Babu/Gabriel 2010) Groups for which H is not a subgroup of G




Smallest Group

The smallest candidate group that contains A4 as a subgroup
is the semidirect product of the quaternion group Qs

(XREIC — | Ml s - X o5

with A,

WSS~ = (ST

defined by the additional relations

SXS1 = Xp g88c S =V O i e e TYT T =X .
Representations: ot SV X ¢ Su IR RS ey oY T
1=l 1 1 i Yl L S 1
unfaithful A, reps 1w 1 S DRI TR L w?
for leptons, x 1% e 1 1 1 (TR~ ] 1 1 W
3 | VT ST Ay
39 | 3 3 S AW
33 | 3 S| By s Biher ]
34 |3 ST AR Bt ol
3 3 . -1 -1 3 ; : -1 3 -1 .
faithful rep for @ 6 | =/ et -1 -1
49 | 4 W -4 o e -W
43 | 4 w s A i




Smallest Group

The smallest candidate group that contains A; as a subgroup
is the semidirect product of the quaternion group Qs S, ®

(XREIC — | Ml s - X o5

with A, e ©

WSS~ = (ST

defined by the additional relations
SXS ' = X mgE eSS — Vil e e i Ty T — X

Representations: S T X %
1 1 1 1
. s i . . it w 1
3i x3j =171 +1a+13+3;,+35, 1 % 1 1
5 A4 reps AT D O yay) R & 0% 4
3 3 3 (_—/A ) (01 o) (001) (010) (010)
.X.:E /) Ot | £ 00 W50 OF0 " 1
=l =7 _k Y 0 o .0 A Uiy | ) i T G ] R0
Fe=s L .5 i) 0&¥0 1RY BRI A4, O, L 2000
k#1,9 ® ‘ (1)Ll Lo 00 ESROT 150 0 WA =0,
00 T ) 0. 0.7 05l TE i E ) 0 TR

3i X4y =47 +49 +43

Pl 2 . X . faithful representation ® is what
S8 e '—25 T35 1245 T35, we were looking for.

41 X4 =125 +31 4 +325+335 +345 +35,4 (® ®) only contains non-trivial
contraction of the A4 subgroup.



The model

particle SU(3). . SU(2); TSl Qs X Ay Z4
( 1 2 2 3% i
e” + [l 1 1 i 1 qsietlioy il AR
H 1 2 1/2 14

0% 1 1 0 31

P1 1 1 0 47

b2 1 1 0 44 £




The model (x) = (v, v, 0)7,

1 \

particle SU(B)C SU(Z)L U(l)y Qg X Ay 24 <¢1> = ﬁ (CL, a, b7 _b)T7
¢ 1 2 2 31 i 1
e + 1€ + 7° 1 1 1 15 o1 A5 (o) = ﬁ(c, Gl
H 1 % 1/2 14 .
X 1 : . By L | (($102)g, ) = 5(bc — ad,0,0)"
b2 . : ! 41 1| {(¢162)1,) = 5 (ac+ bd)

\ —1 2 )




The model (x) = (v, v, 0)7,

1

particle SU(B)C SU(Z)L U(l)y Qg X Ay 24 <¢1> 5 ﬁ (CL, a, b7 _b)T7
/ 1 2 -1./2 31 1 | VEVs: 1

e’ 4 pSias 1 1 1 14l s A8 (o) = ﬁ(c, Gl
H 1 2 1/ 14 3

X 1 : . By L | ((¢162)3,) = 5(bc — ad,0,0)"

b2 . : ! 41 % <(¢1¢2)11> Z(CLC + bd)

-

LO charged lepton masses:
L£O) =y, () 1, e“H /A + y,(£x) 1, uCH /A + yr (£x) 1, T°H/A + h.c.,

Mep~ | 9o wy, &0 8

Ye WYy WYr




The model (x) = (v, v, 0)7,

1
particle SU(B)C SU(Z)L U(l)y Qg X Ay 24 <¢1> 5 ﬁ (CL, a, b7 _b)T7
l 1 2 -1/2 31 i | VEVs: 1
e + 1€ + 7° 1 1 1 15 o1 A5 (o) = ﬁ(c, Gl
i 1 2 1/2 14 1 .
X 1 : . By L | ((¢162)3,) = 5(bc — ad,0,0)"
b2 . : ! 41 1| {(¢162)1,) = 5 (ac+ bd)

& 1 D
LO charged lepton masses:
L£O) =y, () 1, e“H /A + y,(£x) 1, uCH /A + yr (£x) 1, T°H/A + h.c.,

LO neutral lepton masses:

L) = g, (¢CHIH)q
\ 4
(5 0N
Ye Yu Yr
Mg~ | 4y wy, &0
Ye w2y,u WY r
N> J

1 (9102)1

/A + zq(CH(H)g . - (¢1¢2)§1 " L hc. .

\\

TBM

)

(symmetry U accidental)




The model (x) = (v, v, 0)7,

1
particle SU(B)C SU(Z)L U(l)y Qg X Ay 24 <¢1> 5 ﬁ (CL, a, b7 _b)T7
l 1 2 -1/2 31 i | VEVs: 1
e’ 4 pSias 1 1 1 14l s A8 (o) = ﬁ(c, Gl
H 1 2 1/ 14 3
X 1 : . By L | ((¢162)3,) = 5(bc — ad,0,0)"
b2 . : ! 41 % <(¢1¢2)11> 2(ac+bd)

-

LO charged lepton masses:
LB = ye(éx)ll e“H /A + yu(fx)lgucﬁ//\ i yT(fx)lzchl/A + h.c.,
LO neutral lepton masses:

L) = zo(CHLH)y | (91621 /A +za(CHUH)g - ($162)3 /A3+hc

p
@ additional 4, necessary to get correct symmetry breaking (otherwise only

breaking to As)

@ same # of d.of. as in case of complex triplet and singlef, no additional driving
fields necessary

@ low flavour symmetry breaking scale possible, testable




Scalar Potential & Vacuum Alignment

The most general scalar potential invariant under the flavour symmetry is given by

(X7 ¢1 ¢2) ( ) e V¢<¢17 ¢2) 3 leX(Xa (rbl ¢2)

with
Vo(@1, 62) =p1(6161)1, +aa(dr1d1)], + 2233 ai(9161)3. - (#1013,
; +13($262)1, +Bi(Pad)], + 2233 Bild202)3, - ($202)3,
i +71(6161)1, ($202)1, + ;4% b161)3. - ($262)3.
Ve (X) = p5(xx) 1, T A1, + A1(><><)2l1 + A2 (0x)1,, (XX) lg

I_Vrmx(x, b1, 92) = Gal(drdn)1, ()1, + Gas(@292)1, (001, G

@ Potential has an accidental symmetry [(Qs X As) X As] X Z4

@ invariant under independent transformations of ® and y

@ note that couplings such as X (¢1¢2)§1 are forbidden by the auxiliary Z,
symmetry that separates the charged and neuftral lepton sectors



Scalar Potential & Vacuum Alignment

r A
Minimum Conditions
a(a+ (a —|—b2) S0 (01,2 —bz) -~ (c —|—d2) Sl (02 d2) —|—U1) + I'bed = 0
b (our (a2 + 62) o (a2 = 62) “En (c 5 d2) Ay (02 d2) - Ul) + T'acd =0
c (6+ (02 -+ d2) + B_ (02 = d2) = HR (a + b2) S (a2 - b2) = Ug) +T'abd =0
d (5+ (02 + d2) — B_ (02 = d2) |5 (a = b2) (a2 = b2) - Ug) + Tabc =0
’U/ (4\/_)\1’0 —|—3p1’U —|—2,LL3—|-C13( 2—|—b )+C23(C —|—d2)) ==()
. Y,
@ eleven minimization conditions reduce
to these 5 equations for 5 VEVs there
is therefore generally a solution
@ we have performed a numerical study
to show that there is finite region of
parameter space where the desired
vacuum configuration is the global (v ~(1,0,0)
fl 0 (®1®2) ~(1,0,0)

no TBM

with
=46 =2 for £ =0,
V/3v1+7 e S ) agrd B e

G ~(1,1,1)
(Db ~(1,1,1)

no TBM

(x> ~(1,0,0)
(P, ~(1,1,1)

no TBM




Higher Order Corrections

@ NLO Corrections to vacuum potential

1 5(LM)
o Y Y w {ququ) (¢M¢M)3.} -
L . M—dsg.7=2 J §]_
3
+20 (80732 + 08 (81011, + 057 (620)1, ) o =0fori 2

® leads to shifts in VEVs

(x) = (v + 6vy, 0" + dvg, 0" + duvy) ",

1
(D)= (a+5a1,a—i—5a2,b—|—5a3,—b+5a4)T,

~

(¢hg) = %(C—f—5b1,0+5b2,d+5bg,—d+5b4)T

(& generic size of shifts )
ou U

. W J

(x2) — (x3) = O(1/A?)

; generic size of shifts for scalar potential
VEV allgnmen’r not desfroyed! parameters of order one



Higher Order Corrections

sin’(6,3)

0.30 0.32 0.34 0.36

Sinz( 012)

(b) sin® 62 vs. sin® O3

—_
-
=

S

~

=
L
g

sin?( 60y3)

0.05 0.10
sin:(ﬂn) maxul/A

mMax; uj

(c) sin? 6,3 vs. sin® O3 (d) sin® 6,3 vs. =%

@ sin°6:13=.02 as suggested by T2K can be accommodated at NLO

@ or by introducing additional non-trivial singlet field & ~ (12,i) giving

trimaximal mixing[does not destroy VEV alignment]
[Lin’10, Shimizu, Tanimoto, Watanabe'11,Luhn,King’11]



Flavour Breaking at the Electroweak Scale

@ vacuum alignment mechanisms based on SUSY or extra dimensions require a
high breaking scale

o well motivated from see-saw, GUTs,...
@ hard to test outside of lepton sector, cannot observe driving fields etc.
@ predictive mixing schemes such as TBM ruled out

@ one alternative: build models that break flavour symmetry at accessible
scales, i.e. the electroweak scale. Would want:

@ some predictivity with regards to masses and mixings
@ explanation for smallness of neutrino masses
@ keep LFVs/FCNCs under control

@ dark matter from flavour symmetry?
[MH, M. Lindner, M. Schmidt, in preparation]



Flavour Breaking at the Electroweak Scale

@ the complete laundry list can be achieved by a UV completion of the previous
model, without infroducing new symmetries. The only difference is that y is

an EW doublet, ®s singlet

SUQ). U0y [ Qs Ar] Zi

@ neutrino masses loop suppressed, flavour structure similar to trimaximal mixing

@ LFVs kept small because effective LFV operator @EESaa: 1l cRCIIE)
transforms as (33,1).

@ need four flavon fields to generate invariant operator; therefore two mass
insertions -> highly suppressed LFV rate

@ Dark Matter stabilised by accidental Z:

[MH, M. Lindner, M. Schmidt, in preparation]



Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model
building using discrete groups. It has the features:

@ has access to groups catalogue of GAP, which contains all groups one
would ever want to use

Initialization

In[8):= Needs["Discrete ModelBuildingTools™ "];

In[11]:~ Group = MBloadGAPGroup ["AlternatingGroup(4)"];

starting GAP generating AlternatingGroup(4)...
...finished

StructureDescription:A4
Size of Group:12
Number of irreps: 4

Dimensions of irreps:
1 2 3 4

1 1 1 3

Character Table:
1 1 1

2157
1 1 ¢ 2

2157
1 e 3

1 0




Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model
building using discrete groups. It has the features:

@ has access to groups catalogue of GAP, which contains all groups one
would ever want to use

@ calculate Kronecker products, Clebsch-Gordon coefficients, covariants
formed out of product of any representation etc.

In[193]:~ X = MBgetRepVector [Group, 4, xc] ]
L = MBgetRepVector [Group,, 4,, Lc) n[195]:~ MBmultiply[Group, x, L]

Out[195] {{{w -

— P
44

put(193]= {{}, {}, {}, {{xcl, xc2, xc3}}} V3

1 | g fr— 19
—{2VY3 Lelxel - (3i+V3 | Le2 x€2 - {-31i4+V3 | Le3 '\C3' .
put(1943= {{}, {}, {}, [{Lel, Lc2, Le3}}} {{s ~- XCL =334V 3 JLe2XxCe - (=31 +N 3 13 XC3) 110

1, - -
{{g (24/3 Leixel - (-31+3/3 ) Le2xe2 - (3143 Le3 xe3) }},

in[197]:~ MBmultiply [Group, {Xx, X, X, L, L}] [[1]] [{Le3 xc2, Lel xe3, Le2 xel}, {Le2 xe3, Le3 xel, Lel xc2 )

Out[197]= {{ (Le1? + Le2? + Le3?) xel xe2 xe3},
(Le2 Le3 xel + Lel Led xe2 + Lel Le2 xe3) (xel? + xe2? + xe3?)
Lcl Le3 xc2 xc3? + Le2 xcl (Le3 xc2? + Lel xcl xe3) |
Lc2 Le3 xcl xe3? + Lel /cz (Le3 xcl? + Le2 xc2 xc3)

‘.‘1'3
——{LelLe3 xe2 (- {-31++3 ) xc1? + 23 xc2? - (3143 ) xe3?) +

(5
{
{—_
(=

LC2 (Lelxed (- (3143 | xel® - (-31+ /3 ) xe2® + 23 xe3?)
Le3 xel (23 xe1? - (31443 ) xc2? - (-31 43 xe3?)))},




Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model
building using discrete groups. It has the features:

@ has access to groups catalogue of GAP, which contains all groups one
would ever want fo use

@ calculate Kronecker products, Clebsch-Gordon coefficients, covariants
formed out of product of any representation efc.

@ reduce set covariants to a smaller set of independent covariants

@ calculate flavon potentials

In[200]):~ MBgetFlavonPotential [Group, x, 4, 2]

A2nl (xcl? + xc2? + xc3?)
Out[200]= A3nlxclxc2xc3 + —08M ———

V'3

) 1 ) y 21 1
adnl (xel® + xc2® + xc3%) + 3 A4n2 (xc2® xc3* + xel?® (xc2® + xc3%) )



Mathematica Package Discrete

We have developed a Mathematica Package that can be used to facilitate model
building using discrete groups. It has the features:

@ has access to groups catalogue of GAP, which contains all groups one
would ever want to use

@ calculate Kronecker products, Clebsch-Gordon coefficients, covariants
formed out of product of any representation etc.

@ reduce set covariants to a smaller set of independent covariants
@ calculate flavon potentials

@ available at http://projects.hepforge.org/discrete/
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@ vacuum alignment natural = TBM/TMM predicted at LO
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Thank you for your
attention!



