A track-based alignment for the LHCb tracker at the LHC

Miguel Ruiz Díaz

22th IMPRS seminar in Heidelberg

June 11th, 2025

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

IMPRS for Precision Tests of Fundamental Symmetries INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Outline

- Introduction to track-based alignment
- The LHCb detector and its tracker
- Impact of track-based alignment
- Determination of the alignment precision
- Alignment in 2025
- Summary

What do we need alignment for?

- Ultimate goal of alignment is to find the relative position and orientation of the different detector components
 - Actual detector geometry will always differ from design geometry
 - Essential and often overlooked ingredient to calibrate any particle detector and maximize its performance
- Typical corrections in high energy physics experiments are of O(10-100 μm) → Significant impact on physics precision measurements

Alignment improves track quality and tracking efficiency and has a large impact on mass and momentum resolution

Miguel Ruiz Díaz

The alignment algorithm (1)

Idea: employ information from reconstructed charged particle tracks to determine the position and orientation of the detector elements

Adapted from: [CERN-THESIS-2022-105]

The rotations and translations applied to the detector elements are known as alignment constants

[Nucl.Instrum.Meth.A 600 (2009) 471-477]

- Track residual: distance vector from the extrapolated hit position of a fitted track on the sensor plane to the measured position of the hit associated to the track [CERN-THESIS-2017-076]
- Corrections to the geometry obtained by minimizing the track residuals as a function of the alignment constants
- The algorithm minimizes the global track χ^2 :

$$\chi^{2} = \sum_{i}^{n_{\text{tracks}}} \chi_{i}^{2}(\mathbf{x}_{i}, \alpha)$$
$$\chi_{i}^{2}(\mathbf{x}_{i}, \alpha) = \mathbf{r}(\mathbf{x}_{i}, \alpha)^{\mathrm{T}} V^{-1} \mathbf{r}(\mathbf{x}_{i}, \alpha)$$

x_i: vector of track parameters for track i
 α: set of alignment constants
 r: vector of track residuals
 V: covariance matrix of track residuals

The alignment algorithm (2)

Minimization is done iteratively:

- 1. Perform the track fit assuming an initial detector geometry with set of alignment constants α_0
- 2. Compute **derivatives of the track residuals** with respect to the alignment constants
- 3. Update alignment constants minimizing the global track χ^2

4. Calculate the **change in the global track** χ^2 to evaluate the convergence

- 5. After convergence update detector geometry if the changes on the alignment constants are significant
 - Decision to update the alignment based on expected alignment precision → Varies for each detector element and dof

Weak modes and constraints

- In real-life scenarios we need to deal with complex high-dimensional χ^2 functions
 - Latest alignment of the LHCb tracker in 2024 involved 6686 degrees-of-freedom (dof) correlated with each other!
- Weak modes: unconstrained alignment modes with (almost) no impact on track residuals
 - Lead to misaligned configurations with potentially large biases on track properties
- Add constraints to the global track χ^2 to improve the convergence:
 - Lagrange constraints: remove known weak modes by fixing the change on certain combinations of dof

$$\chi^2_{\text{lagrange}} = \lambda f(\alpha_{\text{weak}})$$

• **Survey constraints:** employ information from detector survey measurements

$$\chi^2_{\rm survey} = \left(\frac{\alpha - \alpha_{\rm survey}}{\sigma(\alpha_{\rm survey})}\right)^2$$

• Mass and vertex constraints: χ^2 contributions from fits to primary and secondary vertices and gaussian constraints to the known masses of particle candidates [Nucl.Instrum.Meth.A 712 (2013) 48-55]

Real tracks Biased tracks

Typical weak mode for the LHCb tracking system known as "curvature bias"

Miguel Ruiz Díaz

Outline

- Introduction to track-based alignment
- The LHCb detector and its tracker
- Impact of track-based alignment
- Determination of the alignment precision
- Alignment in 2025
- Summary

The Upgrade I LHCb detector

The **LHCb experiment** is a dedicated flavor physics experiment operating at the Large Hadron Collider (LHC) at CERN:

- Asymmetric forward spectrometer
- Tracks are fitted from hits recorded on the various tracking detectors employing a Kalman filter [Journal of Basic Engineering 82 (1960) 35]
- Charged particle trajectories are bent by a **dipole magnet** → Curvature provides a **measurement of the momentum**
- Ring Imaging Cherenkov (RICH) detectors provide Particle
 IDentification (PID) information for charged particles
- Energy measurements are provided by the calorimeter system
- Low interacting muons are detected and identified at the muon stations

LHCb detector after Upgrade I

The tracking system

Upstream Tracker

- Silicon strip detector with sensors assembled in modules on both faces of vertical staves
- ≤50 μm hit resolution in the x axis

M4

Scintillating Fiber Tracker (SciFi)

- 5 m long scintillating fibers arranged into modules in the vertical direction
- Modules split into halves by a mirror to increase light yield collected by Silicon Photomultipliers
- ≤100 μm hit resolution in the x axis

Heidelberg University

x-y plane

[arXiv:2305.10515]

Miguel Ruiz Díaz

Real-time alignment and calibration

- Full software-based trigger system → Offline-level event reconstruction performed in real time → Alignment and calibration corrections computed in real time by automatized jobs
- Alignment automatically updated if the variation of alignment constants exceed certain thresholds → See later!

Outline

- Introduction to track-based alignment
- The LHCb detector and its tracker
- Impact of track-based alignment
- Determination of the alignment precision
- Alignment in 2025
- Summary

Impact on track and vertex quality

Plots from the **2022 commissioning** period after the **first alignment with data from Run 3**

Impact on mass distributions

Outline

- Introduction to track-based alignment
- The LHCb detector and its tracker
- Impact of track-based alignment
- Determination of the alignment precision
- Alignment in 2025
- Summary

Determining the alignment precision

Knowing the expected alignment precision is crucial to assess if changes on the conditions are significant. We have two sources of information:

Data driven approach

Run alignment jobs on data samples taken with the same detector conditions and extract alignment precision from the spread of the constants

Simulation based approach

Employ simulated data injecting random misalignments on the geometry to evaluate the ability of the alignment to correct for them. Distribution of the constants after alignment provides a measurement of the precision

Determining the alignment precision

Knowing the expected alignment precision is crucial to assess if changes on the conditions are significant. We have two sources of information:

Data driven approach

Run alignment jobs on data samples taken with the same detector conditions and extract alignment precision from the spread of the constants

Simulation based approach

Employ simulated data injecting random misalignments on the geometry to evaluate the ability of the alignment to correct for them. Distribution of the constants after alignment provides a measurement of the precision

I will present the results of the simulation based method to estimate the expected alignment precision for the SciFi tracker

Input random misalignments

Most important dof

- Layer halves: shifts along the x and the z axes (Tx and Tz)
- Modules: shifts along the x axis and rotations around z (Tx and Rz)
- Module halves: symmetric rotations around x (Rx) → Bending of modules about the center

Heidelberg University

Miguel Ruiz Díaz

Half-layers and modules Tx

Heidelberg University

16

Miguel Ruiz Díaz

Correlation with module position

Precision on Tx alignment for modules in different positions

- Alignment precision much lower for the outermost modules
 - Limited amount of statistics in MC simulated samples
 - Modules populated by low momentum tracks with a larger bending angles -> Less sensitive to misalignments
- Same trend for all dof

Heidelberg University

Last station excluded

Summary of the results

	Half-layers			Modules		
Configurations	T1	T2	T3	T1	T2	T3
Half-layers TxTz	3.2 ± 0.2	6.9 ± 0.4	42 ± 1	15.7 ± 0.2	18.5 ± 0.2	36.7 ± 0.7
Modules TxRz						
Half-layers Tx						
Modules TxRz	1.1 ± 0.1	7.2 ± 0.3	35 ± 2	15.2 ± 0.3	17.9 ± 0.3	33.5 ± 0.6
Half-modules Rx						
Half-layers TxTz						
Modules TxRz	2.2 ± 0.1	6.5 ± 0.3	37 ± 1	15.7 ± 0.2	18.2 ± 0.1	32.0 ± 0.6
Half-modules Rx						

All numbers for modules computed excluding the outermost modules

Overall good sensitivity to align modules and layer halves

- \circ 2-40 µm for layers and 15-35 µm for modules in the x direction
- Well below the SciFi hit resolution \rightarrow ~100 μ m
- Decided to employ a threshold of 40 µm to automatically update the alignment of layer halves in real time
 - Ongoing studies to establish a strategy for the real-time alignment of modules

Outline

- Introduction to track-based alignment
- The LHCb detector and its tracker
- Impact of track-based alignment
- Determination of the alignment precision

• Alignment in 2025

• Summary

Re-alignment of the tracking system in 2025

- Beam collisions resumed at the LHC at the beginning of May after the end of the 2024 data-taking period in December
- Experts carried out various interventions on the tracking system → Need new alignment to account for changes in the detector

Alignment corrections evaluated in two steps

First alignment

- Correct for misalignments in the x-y plane expected from hardware interventions
- Employed a sample from $J/\psi \rightarrow \mu\mu$ candidates collected within the first days of data-taking
- Preferable to use $J/\psi \rightarrow \mu\mu$ data with mass and vertex constraints for the first alignment instead of $D^0 \rightarrow K\pi$ because its sensitivity to misalignments is enhanced due to the larger momentum of the daughter tracks

Second alignment

- Include remaining dof and detector components to obtain finer corrections and account for misalignments in z
- Employ a mixture of $J/\psi \rightarrow \mu\mu$ and $D^0 \rightarrow K\pi$ candidates with mass and vertex constraints
- Data for the second alignment collected within ~1 week after the first alignment update
- Applied on top of the first alignment

Improvement on track quality

Distribution of χ^2 /ndof from track fit

Largest impact from UT and SciFi → Expected from hardware intervention and confirmed after alignment

Miguel Ruiz Díaz

Monitoring global alignment between sub-detectors

UT - SciFi

- Alignment from 2024
- New alignment

- The y axes show average shifts in x between segments of full tracks and tracks fitted from hits on each pair of sub-detectors and matched to the full tracks
- Shifts shown as a function of the track q/p → Proportional to the track curvature
- Main effects:
 - Global shift in x between VELO and UT corrected after alignment
 - Relative rotation between UT and SciFi also corrected after alignment

Heidelberg University

Outline

- Introduction to track-based alignment
- The LHCb detector and its tracker
- Impact of track-based alignment
- Determination of the alignment precision
- Alignment in 2025
- Summary

23

Summary

- **Track-based alignment** is a crucial ingredient to operate any particle physics detector
 - Apply corrections to account for mismatches between the design and the actual detector geometry
- We compute corrections by **minimizing the track residuals** as a function of parameters related to the detector geometry
- The algorithm is applied to the LHCb tracking system \rightarrow Alignment needs to be precise down to the level of ~10 μ m
- Studied the precision of the SciFi alignment on MC-simulated data
 - Precision of 2-40 μ m for layers and 15-35 μ m for modules in the x direction
 - Some loss in performance for the outermost modules
 - Values employed to determine thresholds for automatic alignment updates
- Alignment algorithm applied to correct for movements on the detector after the technical stop in 2025

Thank you!

Backup

First alignment with 2025 data

- Some changes are expected with respect to 2024 alignment due to operations carried out during YETS
- First version of the tracker alignment in 2025 computed from 7k events from $J/\psi \rightarrow \mu\mu$ data collected during the first fill with stable beams
 - Preferred to use $J/\psi \rightarrow \mu\mu$ rather than the usual $D^0 \rightarrow K\pi$ as they are better to constrain weak modes due to the larger track momentum
- Some considerations:
 - The starting position were the alignment constants obtained last year with $Z^0 \rightarrow \mu\mu$ data \rightarrow Best alignment we had in 2024
 - Main expected differences with respect to 2024:
 - VELO: global orientation and internal alignment will be different because of operations during YETS and removal of shims
 - UT: possible movements in x and rotations around z of layer halves due to opening and closing
 - SciFi: shifts in x at the level of layer halves for the same reason
 - We do not expect changes on the internal dof of UT and SciFi but it is better to re-align them together with half-layers due to correlations
 - We need high momentum tracks to align detectors in z
- Alignment configuration employed to compute first constants:
 - **VELO:**
 - Global: RxRyRz
 - Right half: $TxTyTzRxRyRz \rightarrow$ Velo drift mostly on the right half \rightarrow Align only the right half wrt the left half to mitigate it
 - **UT**:
 - Half-layers: TxRz
 - Staves: TxRz
 - SciFi:
 - Half-layers: Tx
 - Modules: TxRz
- Plan to re-align detectors in z as well as VELO modules and sensors when we have enough statistics with high momentum tracks

- Overall improvement on track quality compared to the starting conditions
- This reflects movements of the detectors during YETS that had to be corrected by alignment

TrackMonitor_BestTracks/ Long residuals

- Visible improvements on UT and SciFi residuals
- VELO residuals are also expected to • improve once we re-align VELO modules

 Better track χ² across the whole momentum range for UT-SciFi and SciFi-Muon track segments

(10³

Matching plots for VELO-UT segments become much flatter and centered around 0 → much better VELO-UT relative global alignment

.

Configuration 1: CFrames Tz

Counts

Input misalignments

Heidelberg University

Bias on the z scale: CFrames Tz

- Alignment dof: Tz for CFrames
- Quite strong momentum dependence → Large z bias of ~ 800 µm almost completely gone when using tracks with p > 50 GeV
- Clear indication that something is biasing the reconstruction of low momentum tracks
 - Wrong estimation of scattering corrections
 - Inaccuracies in the magnetic field integration during tracking
 - o ...
- Bias present in both samples but **smaller when employing Z^0 \rightarrow** Larger amount of high momentum tracks

Heidelberg University

Overall size of the bias

We can achieve a similar performance as with Z^0 employing **D**⁰ + J/ ψ with a tight momentum cut of ~50 GeV

Modules Rz

