

Max-Planck-Institut für Kernphysik Heidelberg INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Radon Assay and Reduction in XENON1T

Stefan Brünner

July 8, 2016

Dark Matter – The unsolved Mystery

analysis of comsic microwave background

evidences on different scales

galaxy rotation curves

gravitational lensing

structure formation

Dark Matter - Detection Strategies

XENON Dark Matter Project

liquid xenon for direct WIMP detection

(Weakly Interacting Massive Particles)

XENON10 (2006) 25kg liquid xenon

XENON100 (2008)

160kg liquid xenon

3t liquid xenon

Two-phase TPC detection principle

Two-phase TPC (Time Projection Chamber)

3D-position reconstruction (define fiducial volume for background discrimination) S2/S1 ratio allows nuclear- and electronic-recoil discrimination

XENON100 – No Hint for Dark Matter

Sensitivity on WIMP-nucleon cross-section:

spin-independent: $\sigma_{\text{WIMP-nucleon}} = 2.0 \times 10^{-45} \text{ cm}^2 (\text{m}_{\chi} = 55 \text{ GeV/c}^2)$ spin-dependent: $\sigma_{\text{WIMP-neutron}} = 3.5 \times 10^{-40} \text{ cm}^2 (\text{m}_{\chi} = 45 \text{ GeV/c}^2)$

Background: 5.3 x 10⁻³ evts/kg/keV/day

excellent MC/data agreement

XENON100 TPC

XENON1T

Sensitivity goal: $\sigma_{_{WIMP-nucleon}} = 1.6 \times 10^{-47} \text{ cm}^2$

Background goal: 1.8 x 10⁻⁴ evts/kg/keV/day

XENON1T – Background expectation

Intrinsic Background Source ²²²Rn

Intrinsic Background

Rn distributes homogeneously in the LXe target Radon progenies (²¹⁴Pb) can induce background No shielding possible!

Emanation as radon source

Traces of ²³⁸U in every material

Radioactive noble gas ²²²Rn emanates from detector materials

Emanation is a permanent source of Rn

Mitigating Background - Radon Screening

Careful material selection to avoid emanation

Measurement of bulk impurities (spectrometry) often not sufficient

Radon screening at MPIK

Measurement of the radon emanation rate of every detector material

Emanation vessel with sample

Miniaturized Porportional Counter

Background: ~1 count/day Sensitivity: ~20 µBq

Electrostatic Rn-Monitor

Ionized Rn progenies are drifted towards a PIN diode Sensitivity: ~1 mBq

8

Gas-Line for counter filling

XENON1T – Emanation results

Integral measurement of the cryostat including TPC

preliminary result:

(19 +/- 4) mBq

Radon Distillation – Online Radon removal

Krypton distillation

Successfully used in XENON100 Distillation column for XENON1T Purification to ppq-level (x 10⁻¹⁵)

Special case: Radon distillation

Continuous distillation during detector operation No 'off gas' allowed (no loss of xenon) Radon is dropped out only by radioactive decay

Online radon removal system

Part of the existing gas purification loop Needs to handle gas flow of ~100 slpm

Separate radon from xenon

Radon retains in the removal system for several half-lives

Drops out naturally from system by radioactive decay

Saturation vapor-pressures of noble gases

The HeXe Setup – probe Rn distillation

Single-stage distillation

Measurement of radon depletion in the boil-off gas phase Cold-head for xenon liquefaction Bell-structure separates gas volume

11

The Heidelberg Xenon system (HeXe)

The HeXe Setup – probe Rn distillation

Measurement procedure

Fill HeXe with radon enriched xenon which is liquefied at the cold-head Recuperate the boil-off xenon inside the bell-structure with a regulated mass-flow through a radon monitor Electrostatic radon monitor measures continuously the radon activity concentration in the xenon gas

The HeXe Setup – probe Rn distillation

	hat structure	no hat structure
	rad. mon.	rad. mon.
13	prop. counter	prop. counter
xe_run1	$4.6 \pm 0.1^{stat} \pm 0.3^{sys}$	$5.5\pm0.1^{stat}\pm1^{sys}$
	3.6 ± 0.4	-
xe_run2	$5.3 \pm 0.1^{stat} \pm 0.3^{sys}$	$6.0\pm0.1^{stat}\pm1^{sys}$
	4.9 ± 0.6	-
xe_run3	-	$7.7\pm0.1^{stat}\pm0.4^{sys}$
	=	8 ± 1
xe_run4	-	$3.7\pm0.1^{stat}\pm0.4^{sys}$
	_	-

Measured reduction factor $R = Rn_{liquid} / Rn_{gas}$

Proof of radon reduction in boil-off gas!

Radon reduction by a factor ~5 measured

Complementary measurements with proportional counters confirm results

Measurements at higher recuperation flows of up to 6 slpm show same reduction factor

Systematic 'bell-effect' still under investigation

Online Rn-distillation at XENON100

Rn-detector XENON100

Alpha-peaks of ²²²Rn and progenies easy to identify BiPo analysis for complementary radon monitoring

Extension of gas purification loop

Integration of XENON1T krypton column in purification loop Integration of a radon emanation source

XENON100 distillation campaign setup

Online Rn-distillation at XENON100

The radon emanation source

Radon emanation source

426 viton O-rings as radon source

~70 mBq activity brought into XENON100 TPC

Rn-distillation setup at XENON100

Operation of Kr-column

XENON1T phase I krypton column

'Inverse' operation with respect to Kr distillation Rn is enriched in the liquid reservoir (reboiler)

Purified xenon from the columns top is pumped back into XENON100

Situation at XENON100 during the distillation campaign

Online Rn-distillation at XENON100

Online Rn-distillation at XENON100

Type I and Type II emanation sources

Type I: sources inside the detector Type II: sources placed directly before removal system

Online Rn-distillation demonstrated

Distillation column reduces radon by a **factor of 75 (95% CL)** Reduction of type I sources strongly dependent on flow

Model of Rn concentration in XENON100

Summary

Radon is the dominating source of background (ER) in XENON1T

Emanation measurements to find only detector materials having low radon emanation Unique radon screening facility at MPIK

Radon removal by cryogenic distillation

Xenon boil-off gas is depleted in radon with respect to the liquid phase.

Online radon removal system demonstrated with XENON100

Integration of a cryogenic distillation column into the XENON100 gas purification loop Radon activity concentration could be reduced by a factor of 20 inside XENON100

THANK YOU FOR YOUR ATTENTION

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Measure Rn-Emanation at the μBq Level

Recent XENON100 Results

Exclution of Leptophilic Dark Matter

Selection of 70 live days of electronic recoil XENON100 data, where DAMA signal is highest

mixed Mirror DM: 3.6σ Exclusion Luminous DM: 4.6σ Exclusion Axial-vector coupling: 4.4σ Exclusion

Recent XENON100 Results

Search for Event Rate Modulation

The DM interpretation of DAMA/ LIBRA annual modulation as being due to WIMPs electron scattering through axial vector coupling is disfavored at 4.8-σ from a PL analysis

