The challenge of accelerating particles to 10²⁰ eV

The Hillas Symposium – Heidelberg, Dec.11, 2018

Hillas 84

<u>Hillas</u>: to find which object *might* be a source of UHE cosmic rays:

 $r_{\rm L} \leq L \Rightarrow E \leq 10^{20} \,\mathrm{eV} \, ZB_{\mu \rm G} L_{100 \,\rm kpc}$

1. necessary, but by no means sufficient! 2. watch out for relativistic effects!

 \rightarrow refined criterion:

 $t_{\rm acc} \leq t_{\rm loss}, t_{\rm esc}$

t_{acc} depends on acceleration physics t_{esc} , t_{loss} depends on source physics

 \Rightarrow requires an object by object study... Norman et al. 95

The relativistic Hillas bound

A generic case: acceleration in an outflow

(e.g. Lovelace 76, Norman+ 95, Blandford 00, Waxma 05, Aharonian+ 02, Lyutikov & Ouyed 05, Farrar & Gruzinov 09, M.L. & Waxman 09)

wind

- ightarrow acceleration timescale (comoving frame): $\,t_{
 m acc}\,=\,\mathcal{A}\,\,t_{
 m g}$
- \rightarrow time available for acceleration (comoving frame): $t_{\rm dyn} \approx \frac{R}{\beta \Gamma c}$
- \rightarrow maximal energy: $t_{\rm acc} \leq t_{\rm dyn} \Rightarrow E_{\rm obs} \leq \mathcal{A}^{-1} ZeBR/\beta$
- \rightarrow 'magnetic luminosity' of the source: $L_B = 2\pi R^2 \Theta^2 \frac{B^2}{8\pi} \Gamma^2 \beta c$
- \rightarrow lower bound on magnetic luminosity: $L_B \gtrsim 0.7 \times 10^{45} \, \mathrm{erg/s} \, \Theta^2 \Gamma^2 \beta^3 \, \mathcal{A}^2 \, Z^{-2} \, E_{20}^2$

the bound 10⁴⁵ ergs/s is robust: holds in the sub-relativistic limit, or as $\theta \to 0$ however, the bound applies to stationary flows only...

Lower limit on luminosity of the source:

$$L_{\rm tot} \gtrsim 10^{45} \, {\rm erg/s} \, \left(\frac{t_{\rm acc}}{t_{\rm g}}\right)^2 \left(\frac{E/Z}{10^{20} \, {\rm eV}}\right)^2$$

What is the rigidity of ultra-high energy cosmic rays?

1. <u>Z ~ 1 :</u>

→ sources of E/eZ = 10^{20} V are much more extreme than sources of 10^{19} V particles... e.g.: a few candidate sources for 10^{20} eV protons vs *dozens* of candidate sources of 10^{20} eV iron...

 \rightarrow but, composition data and absence of GZK neutrinos constrain f_p ...

2. <u>Z ∼ 10+ :</u>

 \rightarrow can fit composition data, lack of GZK v, sources less extreme.... but **where are the accompanying protons...** ??

→ and *what about the anisotropies?*

... to match the flux above 10^{19} eV: input rate needed 10^{44} erg/Mpc³/yr (Katz+ 09)

local radio-galaxies barely satisfy the luminosity bound: accelerate Z \sim 10+ nuclei?

What is the rigidity of ultra-high energy cosmic rays?

1. <u>Z ~ 1 :</u>

→ sources of E/eZ = 10^{20} V are much more extreme than sources of 10^{19} V particles... e.g.: a few candidate sources for 10^{20} eV protons vs *dozens* of candidate sources of 10^{20} eV iron...

 \rightarrow but, composition data and absence of GZK neutrinos constrain f_p ...

2. <u>Z ∼ 10+ :</u>

 \rightarrow can fit composition data, lack of GZK v, sources less extreme.... but **where are the accompanying protons...** ??

→ and *what about the anisotropies?*

Anisotropies vs heavy composition at UHE

 \rightarrow if anisotropic signal >E is due to heavy nuclei, one should detect a stronger anisotropy signal associated with protons of same magnetic rigidity at >E/Z eV... argument independent of intervening magnetic fields... (M.L. & Waxman 09, Liu+13)

 \rightarrow if anisotropies are seen at E \sim GZK, but not at E/Z:

- there exist protons at GZK producing the anisotropies...
- or, if Fe at UHE: $Z \gtrsim 1000 Z_0$... if Si at UHE: $Z \gtrsim 1600 Z_0$... if O at UHE: $Z \gtrsim 100 Z_0$... sources with such high metallicities?

The relativistic Hillas bound

A generic case: acceleration in an outflow

(e.g. Lovelace 76, Norman+ 95, Blandford 00, Waxma 05, Aharonian+ 02, Lyutikov & Ouyed 05, Farrar & Gruzinov 09, M.L. & Waxman 09)

wind

- ightarrow acceleration timescale (comoving frame): $\,t_{
 m acc}\,=\,\mathcal{A}\,\,t_{
 m g}$
- \rightarrow time available for acceleration (comoving frame): $t_{\rm dyn} \approx \frac{R}{\beta \Gamma c}$
- \rightarrow maximal energy: $t_{\rm acc} \leq t_{\rm dyn} \Rightarrow E_{\rm obs} \leq \mathcal{A}^{-1} ZeBR/\beta$
- \rightarrow 'magnetic luminosity' of the source: $L_B = 2\pi R^2 \Theta^2 \frac{B^2}{8\pi} \Gamma^2 \beta c$
- \rightarrow lower bound on magnetic luminosity: $L_B \gtrsim 0.7 \times 10^{45} \, \mathrm{erg/s} \, \Theta^2 \Gamma^2 \beta^3 \, \mathcal{A}^2 \, Z^{-2} \, E_{20}^2$

the bound 10⁴⁵ ergs/s is robust: holds in the sub-relativistic limit, or as $\theta \to 0$ however, the bound applies to stationary flows only...

Lower limit on luminosity of the source:

$$L_{\rm tot} \gtrsim 10^{45} \, {\rm erg/s} \, \left(\frac{t_{\rm acc}}{t_{\rm g}}\right)^2 \left(\frac{E/Z}{10^{20} \, {\rm eV}}\right)^2$$

Acceleration scenarios

Fermi type: in highly conducting astrophysical plasmas...

- ightarrow $m{E}$ field is 'motional', i.e. if plasma moves at velocity $m{eta}_{
 m p}$: ${f E} = -m{eta}_{
 m p} imes {f B}$
- \rightarrow need some agent -- e.g. scattering -- to push particles across B, to explore the
- non-uniform E, B configuration!
- \rightarrow examples: turbulent Fermi acceleration
 - Fermi acceleration at shock waves
 - acceleration in sheared velocity fields
 - magnetized rotators

Beyond MHD:

 \rightarrow examples: - reconnection

A ratio $t_{acc} / t_g \sim 1$?

<u>t_{acc} vs t_{scatt}</u>: Fermi acceleration ~ explore a non-uniform/non-constant **E**, **B** configuration... ... define scale length L_{Δ} scale of variation:

$$\frac{t_{\rm acc}}{t_{\rm scatt}} \sim \beta_u^{-2} \begin{cases} \left(\frac{L_{\Delta}}{t_{\rm scatt}}\right)^2 & (t_{\rm scatt} \ll L_{\Delta}) \\ \\ \mathcal{O}(1) & (t_{\rm scatt} \gg L_{\Delta}) \end{cases}$$

e.g. shear, non-res. turbulence

e.g. shock, resonant turbulence

<u>t_{scatt} vs t_g</u>: a problem of particle transport in turbulence...

1.0

0.1

0.001

 $\delta B/B \sim 1$

0.100

0.010

 $^{1.000}_{c\,t_g/L_{turb}}$

10.000

<u>Note:</u> ... e.m. counterpart from electrons depends on t_{acc}/t_g well below $E_{conf} \sim e B R$

 $\rightarrow magnetization hampers acceleration at u_{sh} = \beta_{sh} \gamma_{sh} \gg 1, ...$... the shock is superluminal: particles are advected on faster than they can scatter ...

→ *if scattering is effective*, relativistic shocks provide very fast acceleration with $t_{acc} \sim t_{scatt}$ in shock rest frame, spectral index ~2.2

... at small background magnetization, accelerated particles self-generate a turbulence of large amplitude...

... but *short precursor scale* \Rightarrow microinstabilities on tiny length scales... *no Bohm...* scattering timescale $\propto E^2$... i.e., $\mathcal{A} \gg 1$

Gamma-ray burst afterglows

20

5

 $\sigma = (u_A/c)^2$

Summary	A. M. Hillas	i seri
	Physics Department, University of Leeds, Leeds L32 751, 228	
	1. WHY BOTHER WITH ULTRA-HIGH-ENERGY COSMIC RAYS?	de la del d
The evidence suggest their identification importance. If they w	ts that at least some of the particles are protons (97), but is not easy. Such an identification is of critical were to turn out to be entirely highly charged nuclei, we	ENERGIES? This
	IS THERE REALLY A SIGNIFICANT ANISOTROPY AT THE question is persistently raised by critics.	
Above 10 ¹⁹ eV, t energy. Haverah Par of particles from considers the most from the Virgo s	the pattern of arrival directions changes rapidly with rk finds that above $\sim 3 \times 10^{19}$ eV there is a large excess high northern galactic latitudes, and Watson (98) likely explanation for this to be a large contribution supercluster.	t i may be
If off the sec	The fast-moving "knots" in radio unusually effective shock waves (87) if they are large enougalaxies in our vicinity are not so active. So, iron nuclei accelerated to 10^{19} eV, but not protons.	galaxies may be ugh. But the radio might possibly be
From Figure and although been fully ex	are 6, it appears that acceleration should be far easier if $v_{\rm S} \sim c$, in this would give a notably flatter spectrum (77), the effect has not explored.	

.