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Chapter 1

Introduction

Energetic cosmic-ray particles and γ-rays entering the atmosphere initiate particle cascades
which are called extensive air showers (at least in that energy domain where shower parti-
cles reach ground level). Shower particles having a velocity faster than the speed of light
in the medium air emit Cherenkov light. The imaging atmospheric Cherenkov technique
uses large optical telescopes and fast imaging devices (at present: cameras of many pho-
tomultipliers) to detect the showers by their Cherenkov light. If you are not familiar with
the measurement technique, read introductory material like [1] before continuing with this
manual.

For the simulation of the Cherenkov light emission several program packages are avail-
able to simulate air showers. This document describes only one of them, the CORSIKA1

program [2]. Due to its public availability, due to its rich set of interaction model options
and due to the fact that it is used and tested by a large number of physicists, CORSIKA was
chosen as the basis of the air shower simulation. Current simulations are using CORSIKA
version 6.0 and up (frequently used in productions: 6.990, lastest supported version so far:
7.7400) which includes a number of features added by the author of this note to CORSIKA
versions 5.7 through 5.945.

The original CORSIKA Cherenkov option – developed mainly at the University of
Madrid – was aimed at the simulation of the AIROBICC array of non-imaging detec-
tors and requires a rectangular grid of rectangular detectors in a horizontal plane. The
Cherenkov part in CORSIKA was completely revised and a new output interface was de-
veloped, which is activated with the IACT option.

With the IACT option[7], the detector configuration is a 3-dimensional collection of
spheres. For efficiency reasons, an approximation is used: only Cherenkov light within a
given angle (more than 10◦) from the shower axis would be guaranteed to hit detectors out
of the ’detection level’ (as used in CORSIKA). For the anticipated purpose this should not
be a problem at all. Photon bunches are now recorded if they pass within a specified radius
from a detector (telescope) position. The scheme is illustrated in Fig. 1.1. Since the time
required for this part of the simulation is negligible compared to CORSIKA itself, a given
array of telescopes is not only simulated once but many times with (horizontal) random

1CORSIKA is provided by D. Heck and T. Pierog at Karlsruhe Institute of Technology (KIT).

1

https://www.ikp.kit.edu/corsika/


displacements of each array. In contrast to the AIROBICC-style Cherenkov option where
a regular grid of detectors could be displaced with fixed (kind of quasi-random) offsets, the
IACT Cherenkov option generates different pseudo-random offsets for each shower. This
way, showers with cores quite far from the telescope array can be easily taken into account.

For recording the photon bunches and other information not the old-fashioned (op-
erating system, CPU type, and compiler dependent) CORSIKA data format is used but
the eventio [4] format already used for all CRT data and the raw and DST data of the
HEGRA telescope system. Item types 1200 to 1210 are defined for that purpose. The
CORSIKA run and event header and trailer blocks are also included. These give all the
necessary details about the simulated showers. Instead of writing all photon bunches as
they emerge from CORSIKA, all bunches are sorted by telescope and array. They are writ-
ten to the output file only after the simulation of a complete shower. This way, the detector
simulation needs to treat only one telescope at a time.

The second step, the simulation of the detector response, is done by a second program
called sim_telarray [5] 2 (for historical reasons also called sim_hessarray). This
program was originally developed for simulating the HEGRA telescope system and then
adapted to H.E.S.S. by making it much more configurable (mainly at run-time but some
limits related to the amount of memory used need to be configured at compile-time). Where
the term sim_hessarray is used in this note, it denotes the H.E.S.S.-specific variant of
the program. Apart from improved flexibility by moving hard-coded things into more
and more configuration data files, the conversion to output data had to be written from
scratch. The output, apart from additional Monte Carlo data, includes (in a different format)
all kinds of data which can come from the real H.E.S.S. array after merging data blocks
from different computers. Depending on configuration options the output may also include
types of data not produced by H.E.S.S. telescopes, including things anticipated with future
instruments like CTA, for which many extensions have been added.

2Sim_telarray is available from this web page and with additional material from restricted areas for
H.E.S.S. or CTA

2

https://www.cta-observatory.org
https://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/
https://www.mpi-hd.mpg.de/hfm/~bernlohr/HESS/Software/sim_hessarray/
https://www.mpi-hd.mpg.de/hfm/CTA/internal/MC/Software/


Figure 1.1: Scheme of selection of photon bunches for output in the CORSIKA IACT
package.
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Chapter 2

Usage of CORSIKA 6 and 7 with IACT
option

2.1 Compiling CORSIKA versions 6.0 to 6.2xx

First of all, you need to process the modified CORSIKA source code through CMZ1 to
extract the required code version for simulation of Cherenkov telescope arrays. For this
purpose both the CERENKOV and IACT options have to be selected. Other options de-
pend on the wanted interaction options and the machine architecture. The VIEWCONE
option is often very useful for simulation of extended or diffuse emission. The CEFFIC
option is not intended to be used together with later sim_telarray simulations although
its output is compatible with the IACT option. Use the cmz_extract shell script for extrac-
tion, unless you are familiar with CMZ and the CORSIKA options. The compilation is
best done with the supplied Makefile. The syntax is

make target

or, for the VENUS interaction model, simply

make

and should work on a range of systems, including Linux (x86), DEC Unix and HP-UX.
Support for these old CORSIKA versions was dropped after IACT/ATMO package version
1.47. In addition, support for CMZ has been dropped by CERN many years ago (although
it might still work if you happen to have a copy). The rest of this document does not refer
to it anymore.

2.2 Compiling CORSIKA versions 6.5xx to 6.7xxx

After version 6.2xx CORSIKA is made available as a tar file, with build procedures added
on top of GNU autoconf etc.

1The CMZ source code management system is no longer supported.

4
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In contrast to even earlier versions (see above), the CORSIKA versions 6.500 to 6.7xx
include the IACT/ATMO package. Version 1.34 of the latter, bernlohr-1.34.tar.gz, as in-
cluded in CORSIKA 6.500, however has compatibility problems in the core offset correc-
tion. Make sure to use at least version 1.35. Assuming you want to install CORSIKA
version 6.735 with the latest IACT/ATMO package (version 1.36 or newer recommended
instead of 1.35; newer versions having additional features), you need

• corsika-6735.tar.gz (needs a patch to compile) and qgsdat-II-03.gz (for QGSJET-II
only, has to be gunzipped)

• bernlohr-1.44.tar.gz (or any later version of the IACT/ATMO package)

Unpack them like:

tar zxvf corsika-6.735.tar.gz
cd corsika-6735/bernlohr
tar zxvf ../../bernlohr-1.44.tar.gz
cd ..

Use the corsika-install script for an interactive setup of CORSIKA options to be compiled
in, or type the following to compile the default IACT/ATMEXT/VIEWCONE version:

bernlohr/gen_config
./corsika-install < /dev/null

For production use make sure to compile with optimization ’-O2 -fomit-frame-pointer -
march=generic’ (or better ’-march=native’ if to be used on the same CPU type) or such
rather than the ’-O0 -fbounds-check -g’ on which the corsika-install script tries to insist.
Example (assuming bash as your shell, machine-specific options and available FORTRAN
compiler may vary):

if [ "‘uname -m‘" = x86_64 ]; then \
if [ ‘cat /proc/cpuinfo | grep Xeon | wc -l‘ = 0 ]; then \
a=k8; else a=nocona; fi; \
else a=i686; fi
opt="-O2 -fomit-frame-pointer -march=$a" # -m32 # on x86 add: -malign-double
wrn="-Wall -Wunused -Wuninitialized"
export CFLAGS="$opt $wrn"
export CXXFLAGS="$CFLAGS"
export FFLAGS="$wrn $opt -fno-automatic" # no ’-finit-local-zero’ with gfortran < 4.2
export CC=gcc; export CXX=g++; export CPP="gcc -E"
export F77="gfortran -std=legacy -frecord-marker=4" # or: export F77=g77
CORSIKA_USER_COMP=1 ./corsika-install clean < /dev/null
CORSIKA_USER_COMP=1 ./corsika-install < /dev/null

For some interaction models (FLUKA, DPMJET, QGSJET-II, ???) the ’-m32’ flag was
needed on 64-bit machines, at least when compiling with g77. Sometimes the reason for
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that lies in record markers of binary data files which gfortran is able to handle also in 64-bit
mode. To get rid of the -g option, you have to modify the configure script. Look for lines
like

CFLAGS="$CFLAGS -g"
CXXFLAGS="$CXXFLAGS -g"

and
FFLAGS="$FFLAGS -g"

But this has little impact on performance and is not normally done. You will find the
CORSIKA binary in the run sub-directory (name depending on interaction model etc.)

For H.E.S.S. simulations you will also need the atmospheric profiles:

• atmprof10.dat, atmprof11.dat, and atmprof12.dat as well as

• the example INPUTS file INPUTS_example_for_HESS.

In the relevant source web pages for H.E.S.S. and CTA you may also find a full pack-
age with CORSIKA, recent IACT/ATMO package, sim_hessarray/sim_telarray, and the
hessio library, complete and without needing any modules from the HESS source tree: cor-
sika_simtelarray.tar.gz (well, depending on the interaction model you use, you may need
the qgsdat-II-03.gz file as well).

2.3 Compiling CORSIKA versions 6.9xx to 7.7xxx
The CORSIKA versions 6.9xx and newer (at this time at least up to 7.7400) come with
a configuration tool called ’coconut’. You can use that manually to compile specialized
versions. Much easier and with the required compiler directives for IACT simulations
should be the corsika_build_script script. Try:

tar zxvf corsika-6.990.tar.gz
cd corsika-6990
../corsika_build_script

For CTA, a source code package is available with additional build tools, where the
complete installation of CORSIKA and sim_telarray can be as simple as

tar zxvf corsika_simtelarray.tar.gz
# Get or link the qgsdat-II-03 data file here
./build_all prod5 qgs2

The alternate package for the CORSIKA version 7 currently includes the qgsdat-II-04
file in its corsika-7.xxxx.tar.gz package. For automated build of CORSIKA 7.6xxx you
need at least IACT/ATMO package version 1.52, for CORSIKA 7.7xxx you need at least
IACT/ATMO package version 1.60 (or an adapted variant of 1.59).

6



2.4 Running CORSIKA
To run CORSIKA you will need a number of data files available, with the exact files de-
pending on your interaction models. Some of the necessary files would be rebuild by COR-
SIKA if not present – but at a very high computational cost. In the absence of other files,
CORSIKA would immediately exit. So you better check that you have all necessary files
available, either from the CORSIKA tar package or as additional files from the CORSIKA
download site.

If an atmospheric model other than the built-in model is used, you also need the corre-
sponding one of the files

atmprof1.dat
atmprof2.dat
atmprof3.dat
atmprof4.dat
atmprof5.dat
atmprof6.dat
atmprof9.dat
atmprof10.dat
atmprof11.dat
atmprof12.dat

which hold the atmospheric profiles of MODTRAN [10] atmospheric models 1–6, the
Antarctic model (9), and the Windhoek average (10) and seasonal extremes (11 and 12).
If you created your own profile, give it a number above 20. For H.E.S.S., the models 10,
11, and 12 were built, based on balloon soundings from Windhoek. Different experimental
groups (CTA, MAGIC, ...) have additional profiles for their sites, derived either from
radiosonde measurements (plus extrapolation for higher altitudes) or from models.

For running you should first prepare an input file (in the following called INPUTS).
The following gives an example for generating 10 vertical gammas between 100 GeV and
10 TeV:

RUNNR 1001 number of run
EVTNR 1 number of first shower event
NSHOW 10 number of showers to generate
DATBAS yes write a file with parameters used

*
* [ Random number generator: 4 sequences used in IACT mode ]

*
SEED 58485 430 0 seed for 1st random number sequence
SEED 63432 435 0 seed for 2nd random number sequence
SEED 20103 481 0 seed for 3rd random number sequence
SEED 59475 490 0 seed for 4th random number sequence

*
* [ Primary particle options ]

*
PRMPAR 1 particle type of prim. particle

7



ESLOPE -2.0 slope of primary energy spectrum
ERANGE 100 10E3 energy range of primary particle (in GeV)
THETAP 30. 30. range of zenith angle (degree)
PHIP -14. -14. range of azimuth angle (degree):

* from South if PHIP=ARRANG
VIEWCONE 0. 0. can be a cone around fixed THETAP/PHIP

*
* [ Site specific options ]

*
OBSLEV 1800.E2 observation level (in cm)
ATMOSPHERE 10 N table of atmospheric profile

* (10 N: Windhoek average, no refr.)

* ATMOSPHERE 1 N table of atmospheric profile

* (1 N: tropical, no refr.)
MAGNET 12.5 -25.9 magnetic field Gamsberg [H, Z] (muT)
ARRANG -14. rotation of array to north [D] (degree)

*
* [ Cherenkov emission parameters ]

*
CERSIZ 10. bunch size Cherenkov photons
CERFIL F Cherenkov output to extra file
CWAVLG 200. 700. Cherenkov wavelength band

*
* [ H.E.S.S. telescopes ] (x -> North, y -> West)

*
* X Y Z R (all in cm)
TELESCOPE 0 -8485 0 750 Tel. 1
TELESCOPE 8485 0 0 750 Tel. 2
TELESCOPE 0 8485 0 750 Tel. 3
TELESCOPE -8485 0 0 750 Tel. 4

*
CSCAT 10 500e2 0. use shower several times

*
* [Interaction flags]

*
FIXHEI 0. 0 first interaction height & target
FIXCHI 0. starting altitude (g/cm**2)
ELMFLG T T em. interaction flags (NKG,EGS)
RADNKG 200.E2 outer radius for NKG lat.dens.determ.
HADFLG 0 0 0 0 0 0 flags for hadr. interaction
ECUTS 0.3 0.1 0.020 0.020 energy cuts for particles
MUADDI F additional info for muons
MUMULT T muon multiple scattering angle
LONGI F 20. F F longit.distr. & step size & fit
MAXPRT 0 max. number of printed events
ECTMAP 1.E6 cut on gamma factor for printout
STEPFC 1.0 mult. scattering step length fact.

*
* [ Debugging and output options ]

*
DEBUG F 6 F 1000000 debug flag and logical unit for output
DIRECT /dev/null /dev/null means no normal CORSIKA data
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TELFIL iact.dat:100:100:1 Telescope photon bunch output

* (eventio format)

*
* [ This is the end, my friend ]

*
EXIT terminates input

The CORSIKA keywords are described in detail in the CORSIKA User’s Guide[3].
Unused keywords can be commented out with a ’C’ or ’*’ as the first and a blank as the
second character:

C DIRECT /dev/null

The interpretation of the ’DIRECT’ parameter, by the way, has changed with COR-
SIKA 7.5000 and a line like

DIRECT /dev/null

to indicate that none of the normal CORSIKA output file (particle and Cherenkov output)
should actually be written to disk, will no longer work. The same functionality is now
achieved with

DIRECT ./
PAROUT F F

The corsika_autoinputs tool does the replacement automatically when it encoun-
ters an inputs file with the old style but detects CORSIKA 7.5000 or up. Another change
coming with CORSIKA 7.570 is related to the CERFIL keyword which is no longer true
or false but takes numeric values.

Now check that you have enough disk space and memory and you should be ready to
start CORSIKA with, depending on your shell, either:

./corsika <INPUTS >& something.log

(C shell and derivatives) or

./corsika <INPUTS > something.log 2>&1

(with Bourne shell derivatives). This can as well be run in the background. Often though
CORSIKA is not run directly but rather through additional scripts which set up a number of
environment variables, create run-specific data directories, link required data files etc. They
may also involve preprocessing the CORSIKA inputs file (for different random number
seeds, run numbers, and so on). With the CTA simulation source code package installed, it
may be as simple as

NSHOW=1000 ./prod5_baseline_run Paranal gamma South 20
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Keep in mind that each simulation run must have new and independent SEED parame-
ters to avoid having the simulations done again and again. There are different tools avail-
able to generate the SEEDs in an automatic way, e.g. with corsika_autoinputs (part
of sim_telarray), also incrementing run numbers. As a recommended practice, you
should create a new working directory for each CORSIKA run, with symbolic links to
all the necessary data files and the pre-processed INPUTS file and run CORSIKA in this
working directory to avoid any possible conflicts between temporary or permanent output
files produced by different CORSIKA processes running in parallel. Do not forget to clean
up your symlinks after CORSIKA has completed.

Note that unter i*86 (32-bit) Linux, file sizes are limited to 2 Gigabytes unless special
care is taken during compilation. The GNUmakefile in the IACT/ATMO package will try
the -D_FILE_OFFSET_BITS=64 -D_LARGE_FILE_SOURCE compiler flags when
using GNU compilers. Unless you have a very old C library, this should usually be suf-
ficient. If data files are also written by CORSIKA proper (i.e. from Fortran code), the 2
Gigabytes limit may still apply to them. Filesystem-specific limitations on file sizes may
also apply. An unavoidable limitation on 32-bit system remains the 2 GB limit on the data
block size.
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Chapter 3

CORSIKA compilation options specific
to Cherenkov simulation

The CORSIKA source file (corsika.F, to be pre-processed with the C pre-processor)
contains various options which can be selected for compilation, some being compatible
with each other while other options are mutually exclusive. The definitive guide to avail-
able options is the CORSIKA User’s Guide[3] coming with the corresponding source pack-
age. This section only mentions a selection of those most relevant to Cherenkov light sim-
ulation. Most of these options, perhaps with exception of the really IACT-specific ones,
are explained in more detail in the CORSIKA User’s Guide.

ATMEXT
selects code for treatment of the atmosphere according to MODTRAN [10] model
for various atmospheres by tabulated values. ATMEXT is recommended with the
CERENKOV option for careful treatment of refractive index. This option needs
linking with atmo.c routines of the IACT/ATMO (‘bernlohr’) package.
Note: This option is needed for using the tabulated atmospheric profiles for the
H.E.S.S. site.

CEFFIC
selects code to respect the atmospheric absorption, mirror reflectivity, and photo-
multiplier quantum efficiency of Cherenkov light. This option is only available in
connection with the CERENKOV option.
Note: This option was contributed by Whipple/VERITAS collaborations (J. Knapp
and others). Its compatibility with sim_telarray is poorly tested. The pro-
vided extinction tables, mirror transmissions and quantum efficiencies do not ap-
ply for H.E.S.S. It is, therefore, not recommended to use this option together with
sim_hessarray.

CERENKOV
selects code for additional generation of Cherenkov light. It needs the simulation
with EGS4.

11



Note: This option is absolutely unavoidable if you want to get any Cherenkov light
out of CORSIKA. Please note the spelling.

CERWLEN
is a non-standard option, i.e. not enabled by default (available as a patch with COR-
SIKA 6.2, included with CORSIKA proper in 6.5). The index of refraction is made
wavelength dependent. As a consequence, photon bunches will carry a specific wave-
length. Photons of shorter wavelengths (with larger index of refraction) will result in
larger Cherenkov cone opening angles and larger bunch sizes. For very fast particles
this will generally have a small effect (less than 0.03 deg in the opening angle, for
example) but near the Cherenkov threshold the effect can be larger. Boundary cases
are particles only emitting at the shortest wavelength.
This option may also require to use a smaller maximum bunch size (see CERSIZ
keyword) since all photons in a bunch are of the same wavelength and, therefore,
the peak quantum efficiency rather than the average quantum efficiency determines
the maximum acceptable bunch size. (In combination with the CEFFIC option, you
should use a maximum bunch size of 1, as usual.)

CURVED
selects special code to treat showers with large zenith angles θ < 90◦. This option
replaces the outdated HORIZONT option and enables also simulations with EGS4
for Cherenkov light.
Note: This options makes a bit of a difference for 60◦ to 70◦ zenith angle and a
substantial difference for zenith angles well exceeding 70◦. For anything below 60◦

zenith angle, this option is not needed.

IACT
selects code for simulation of Imaging Atmospheric Cherenkov Telescope arrays.
This option is only available in connection with the CERENKOV option and needs
linking with iact.c routines of the IACT/ATMO (‘bernlohr’) package.
Note: For follow-up simulations with sim_telarray this option is absolutely
unavoidable.

IACTEXT
is a non-standard option (like ATMEXT, initially only available as a patch to COR-
SIKA and later with CORSIKA itself). The interface to the TELOUT function is
extended by parameters describing the emitting particle. This extended informa-
tion can be stored as an additional ‘photon bunch’ (after the normal one) with mass,
charge, energy, and emission time replacing the cx, cy, photons, and zem fields,
respectively, and are identified by a wavelength of 9999. The compact output format
is disabled for making that possible.
In addition, all particles arriving at the CORSIKA observation level can be included
in the eventio format output file (since IACT/ATMO package 1.66 even without IAC-
TEXT option), in a photon-bunch like block identified by array and detector numbers
999.
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The x, y, cx, cy, and ctime fields keep the normal sense, with coordinates, direc-
tions and time counted in the CORSIKA detection level reference frame (once per
shower, without random displacements of detector arrays). The particle momentum
is filled into the zem field (negative for upward-moving particles) and the particle
ID is filled into the lambda field. If thinning is used, the particle weight is in the
photons field.

VIEWCONE
selects the primary to come from a cone around a fixed zenith and azimuth angle.
Note: If you want to do simulations of extended or diffuse emission, this option is
highly recommended.

CEROPT
is needed for compiling with the SSE/AVX vector-optimized variant of the
Cherenkov emission. It also requires a patch to CORSIKA and additional code, like
a C implementation of the CERENK subroutine as well as vectorized versions of
mathematical functions. It is not yet covered by the usual build procedure but needs
a custom compilation. It assumes the ATMEXT, CERENKOV, and IACT options.
It is not compatible with any of the CEFFIC, CERWLEN, CURVED, IACTEXT,
THIN, UPWARD, and AUGCERLONG options.

The CORSIKA User’s Guide explains how to select specific options interactively with
the coconut tool, which that then marks for subsequent compilation. Most of the COR-
SIKA options, in particular those relevant with Cherenkov light, can also be activated with
the gen_config script (included with the IACT/ATMO package) which is used by the
build_all and corsika_build_script tools on top of coconut for automated
builds with pre-selected set of options.
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Chapter 4

CORSIKA keywords specific to
Cherenkov simulation

This section explains a number of keywords in the CORSIKA inputs file and their parame-
ters. This is limited to those keywords directly dealing with Cherenkov light, or which are
of particular relevance for Cherenkov simulations, or where complications arise or com-
mon misunderstandings are known to happen. Part of the explanations are drawn from
the CORSIKA User’s Guide (which may contain more concise descriptions in the mean-
time), supplemented by notes more specific to Cherenkov simulations, to the IACT/ATMO
package, or immediately to sim_telarray.

RUNNR : Run number.

RUNNR NRRUN

Format = (A5, I), Default = 1
NRRUN : Run number of this simulation. This number is used to form part of the
name of the various output files.
Limit is: 0 ≤ NRRUN ≤ 999999 (rsp. 0 le NRRUN ≤ 999999999 in case of the
NRREXT option.

PRMPAR : Primary particle ID.

PRMPAR PRMPAR(0)

Format = (A6, I), Default = 14
PRMPAR(0) : Particle type of the primary particle. See the CORSIKA User’s Guide
for particle codes and limits. Not all particle types are suitable as primary parti-
cles (may depend on interaction model). For more details see the CORSIKA User’s
Guide. This keyword is not available in the STACKIN option and may be ignored
with the IACT EXTPRIM input card.

ERANGE : Energy range of primary particle.
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ERANGE LLIMIT ULIMIT

Format = (A6, 2F), Defaults = 1.E4, 1.E4 LLIMIT : Lower limit and ULIMIT : Upper
limit of the primary particle energy range (in GeV). The primary energy is selected
at random out of this interval. If LLIMIT = ULIMIT, the primary energy is fixed at
this value.
The energies are total energies and include the particle rest mass. For more details
see the CORSIKA User’s Guide. This keyword is not available in the STACKIN
option and may be ignored with the IACT EXTPRIM input card.

ESLOPE : Slope of energy spectrum.

ESLOPE PSLOPE

Format = (A6, F), Default = 0.
PSLOPE : Exponent γ of differential primary energy spectrum. The primary energy
is taken at random from an exponential energy spectrum of the form dN/dE0 ∝ Eγ

0.
PSLOPE has no meaning in case of fixed primary energy. The energies are total
energies and include the particle rest mass. This keyword is not available in the
STACKIN option and may be ignored with the IACT EXTPRIM input card.

ATMOSPHERE : Tabulated atmospheric profiles.

ATMOSPHERE IATMOX FREFRX

Format = (A10, I, L), Defaults = 0, F
IATMOX : Use MODTRAN [10] atmospheric model IATMOX = i (in terms of
density and refractive index) instead of CORSIKA built-in model. This requires a
file named atmprofi.dat. Supplied MODTRAN model atmospheres include tropical
(i = 1), mid-latitude summer (2), mid-latitude winter (3), sub-arctic summer (4),
sub-arctic winter (5), and U.S. standard atmosphere 1976 (6). User supplied models
are possible (i≥ 7).
FREFRX : If true, the atmospheric refraction for Cherenkov photons is taken into
account (for plane-parallel atmosphere); if false, refraction is ignored. The value of
this second argument is ignored if the CERENKOV option is not selected.
This keyword is only available in the ATMEXT option.
Note: This parameter is the recommended way of using the atmospheric profile
matching the H.E.S.S. site. Either use the all-year average profile number 10 or the
seasonal extremes (number 11 and 12, respectively). CORSIKA has several other
ways to change the atmospheric profile, but no H.E.S.S.-specific parametrization is
available for the other ways. The atmospheric refraction has a significant impact
on the performance. If refraction is considered unimportant for the purpose of your
simulations, set FREFRX to false.
See also IACT ATMOFILE as an alternative.
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ECUTS : Energy cut-offs.

ECUTS ELCUT(i), i=1... 4

Format = (A5, 4F), Defaults = 0.3, 0.3, 0.003, 0.003
ELCUT(i) : The low energy cut-off (in GeV ) of the particle kinetic energy may be
selected differently for hadrons (i = 1), muons (i = 2), electrons (i = 3), and photons
(i = 4). For nuclei ELCUT(1) is applied to the energy per nucleon.
Limits are: ELCUT(1) ≥ 0.05 ; ELCUT(2) ≥ 0.05; ELCUT(3), ELCUT(4) ≥
0.00005
Note: In contrast to normal CORSIKA recommendations, Cherenkov light simula-
tions require only electrons above the Cherenkov threshold (about 20 MeV). For
gammas you can use the same threshold. For muons, the Cherenkov threshold is
not a good guess because decaying muons may produce local electromagnetic sub-
showers. Therefore, muons (and also nuclei) should be left at a low cut-off, e.g.
200–300 MeV kinetic energy. The latter is not an efficiency problem.

CWAVLG : Cherenkov wavelength band

CWAVLG WAVLGL WAVLGU

Format = (A6, 2F), Defaults = 300., 450.
WAVLGL : Lower limit (in nm) of the wavelength band for Cherenkov radiation
production.
WAVLGU : Upper limit (in nm) of the wavelength band for Cherenkov radiation
production.
Limits are: 100. ≤ WAVLGL < WAVLGU ≤ 2000 (180 nm to 700 nm without
IACT option).

There is actually no good reason why it should be limited to this wavelength range
unless the CEFFIC option is used with the default PMT efficiency (which is cut off
below 700 nm). Well, a good atmospheric Cherenkov detector should better cut off
below 550 nm, in order to improve signal/sqrt(night sky background), but not ev-
ery detector does that. Where a detector has significant sensitivity beyond the limit
imposed by CORSIKA, this limit can later only be circumvented by the telescope
simulation program if the wavelength does not get thrown inside CORSIKA (neither
CEFFIC nor CERWLEN options used for compiling CORSIKA). Such a circumven-
tion would imply scaling every bunch size by a factor

1/λ2
l,new−1/λ2

u,new

1/λ2
l −1/λ2

u
,

where λl and λu stand for the limits imposed in CORSIKA (WAVLGL and
WAVLGU, respectively). Increasing a 250 to 700 nm range to a 250 to 1000 nm
range implies a scale factor of 1.075.

16



CERSIZ : Cherenkov bunch size definition

CERSIZ CERSIZ

Format = (A6, F), Default = 0.
CERSIZ : Defines the maximal bunch size of Cherenkov photons that are treated to-
gether. If set to 0., by the subroutine getbus (with CERENKOV) option) the program
calculates a bunch size which was appropriate for the non-imaging HEGRA AIRO-
BICC array.
Limit is: CERSIZ ≥ 0.
Note: You want to keep the chances of more than one photo-electron from a single
photon bunch to stay rather low. You should typically use a value of 5 with normal
PMTs in your camera and when the CEFFIC option is disabled. With high-efficiency
PMTs a value of 3 to 4 would be more conservative. When the CEFFIC option is
enabled, a value of 1 seems appropriate. When CERWLEN is enabled, a value of
more than 2 cannot be recommended. Although values below 1.0 are possible, they
make no sense.

CERFIL : Cherenkov output steering
In versions prior to 7.570:

CERFIL LCERFI

Format = (A6, L), Default = T
Note: This file is not needed with the IACT option. Ignore it or set CERFIL to false.
Since version 7.570, it is an integer, with the value 1 indicating that Cherenkov pho-
tons should be written to a dedicated file (as before) while a value 0 means that they
are to be written into the particle output file as well (all FORTRAN unformatted se-
quential format). Turning off the CORSIKA particle output with the newer versions
is using the PAROUT data card. In older CORSIKA inputs file you will often see the
cards

DIRECT /dev/null
CERFIL F

to turn off either CORSIKA output. The corsika_autoinputs tool will trans-
late this into its newer equivalent

DIRECT ./
CERFIL 0
PAROUT F F

Check with the CORSIKA User’s Guide of the proper version for details.

CSCAT : Multiple use of Cherenkov events
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CSCAT ICERML XSCATT YSCATT

Format = (A5, I, 2F), Defaults = 1, 0., 0.
ICERML : Number of uses of each event.
XSCATT : Max. scattering of core location in ±X direction (in cm).
YSCATT : Max. scattering of core location in ±Y direction (in cm).
Limits are: 0 ≤ ICERML ≤ 20 ; XSCATT, YSCATT ≥ 0.
In case of IACT option (Cherenkov telescopes) ICERML telescope arrays are simu-
lated randomly in the specified area which is a circle of radius XSCATT, if YSCATT
= 0., or within a rectangle of area 2 XSCATT · 2 YSCATT.
Instead of the flat distribution of impact positions (with VOLUMEDET option in a
plane perpendicular to the direction of the incoming primary particle), a non-uniform
distribution can be enabled with the IACT TELSAMPLE card.

CERQEF : Cherenkov quantum efficiency, atmospheric transmission and mirror reflec-
tivities.
Note: Only available with the CEFFIC option. See the CORSIKA User’s Guide.
There are no instrument-specific data files available for this option – and the files
provided with sim_telarray will, in general, not match the required format.

OBSLEV : The altitude of the observation level(s) above ‘mean sea level’ or the geoid.
Although CORSIKA can handle more than one level, the Cherenkov simulations in
general and the IACT option in particular only use the lowest level, so no point in
specifying more than one level. Units are centimeters while typical notations try to
be more readable by mimiking meters or kilometers like

OBSLEV 1835E2
OBSLEV 2.15e5

for levels of 1835 m and 2150 m a.s.l., respectively. Since the format allows for more
than one level, be careful with comments behind it which might get interpreted as
additional levels. Particles are terminated once they reach the (lowest) observation
level and no Cherenkov light gets emitted below it.

MAGNET Earth’s magnetic field

MAGNET BX BZ

Format = (A6, 2F), Defaults = 20.40, 43.23
BX : Is the horizontal component of the Earth’s magnetic field (in µT) to the x-
direction of the coordinate system (North) (see Fig. 1 of the CORSIKA User’s
Guide) BZ : Is the vertical component of the Earth2̆019s magnetic field (in µT)
downwards. The default values represent the magnetic field for the Karlsruhe lo-
cation. The values of other locations may be obtained from the program Geomag
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which is available on-line in the world wide web 1. The value H of Geomag corre-
sponds with our BX, the value Z with our BZ. For the orientation of the CORSIKA
coordinate system see also Fig. 1 of the CORSIKA User’s Guide.
Limits are: BX, BZ 6= 0.
In addition to the above text from the CORSIKA program, it seems important to
note that Geomag output is in nanoTeslas rather than microTeslas. It also seems
prudent to point out the unusual axes orientations for the field componenets: X is
towards geographic North, Y towards East, and Z is downward! A positive field
inclination means that the field points below the horizon. A positive declination
(positive Y or East component until any future field reversal) means that a compass
would point East of the intended North direction. For example,
geomag70 IGRF13.COF 2020.00 D K1.835 -23.271778 16.500222
would result in the following output for the H.E.S.S. site in 2020:

Geomag v7.0 - Jan 25, 2010

Model: IGRF2020
Latitude: -23.27 deg
Longitude: 16.50 deg
Altitude: 1.83 km
Date of Interest: 2020.00

-------------------------------------------------------------------------------
Date D I H X Y Z F
(yr) (deg min) (deg min) (nT) (nT) (nT) (nT) (nT)
2020.00 -12d 53m -64d 30m 11997.8 11695.9 -2674.3 -25147.9 27863.3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Date dD dI dH dX dY dZ dF
(yr) (min/yr) (min/yr) (nT/yr) (nT/yr) (nT/yr) (nT/yr) (nT/yr)
2020.00 3.2 3.7 -1.3 1.3 11.3 72.4 -65.9
-------------------------------------------------------------------------------

That would correspond to the following inputs cards:

MAGNET 11.9978 -25.1479
ARRANG -12.883

ARRANG : Array rotation (geographic to magnetic North)

ARRANG ARRANG

Format = (A6, F), Default = 0.
ARRANG : Defines a rotation angle (in ◦) between the detector array x-direction and
magnetic north direction; positive if detector array x-direction points to the West.
Limits are: -180. ≤ ARRANG ≤ 180.

Note: This parameter (or the above description taken from the CORSIKA User’s
Guide) is somewhat complicated (and actually was stating just the opposite in earlier
versions). Normally, the geomagnetic ‘declination’ is counted positive if magnetic

1The Geomag program is is available in C and FORTRAN versions and as a Python package. See here
for more information.
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North is east of geographic North. In that case, the ‘array x-direction’ (which is
geographic North for us) is westwards of the magnetic North direction and, thus,
ARRANG positive. Simple rule: use the magnetic declination. Since the PHIP
direction of the primary is the direction of flight and not the arrival direction, the
normal azimuth value (counted eastwards from geographic North) is (modulo 360
degrees)

Az = 180◦+ARRANG−PHIP.

Example: For the H.E.S.S. site in Namibia the geomagnetic declination is about
−14◦ (geomagnetic North is 14◦ west of geographic North), implying ARRANG=
−14. For PHIP=180 (a particle flying towards magnetic South, i.e. coming from
magnetic North) we get Az = −14◦, for PHIP=76 we get Az = 90◦ (which means
coming from geographic East).

CERARY : Cherenkov Detector Array Definition
This parameter is not available when the IACT option is enabled. It is specific to
non-IACT Cherenkov light simulations with a regular and flat detector layout.

TELESCOPE : Cherenkov telescope definition

TELESCOPE X Y Z R

Format = (A5, 4F)
X, Y, Z : Co-ordinates of Cherenkov telescope (in cm). This keyword adds a new
telescope at position X , Y , Z with radius R, within which the telescope is fully con-
tained. At least one telescope has to be specified. Limits are: 0 < R; 1 ≤ number of
telescopes < 1000.
This keyword is only available in the CERENKOV option together with the IACT
option for Cherenkov telescopes.

Note: In contrast to what the full entry from the CORSIKA User’s Guide seems to
imply, X is counted towards geographic North, Y towards geographic West, and Z is
counted upwards from the observation level (see OBSLEV) keyword. Otherwise the
changing geomagnetic field would require new telescope coordinates all the time.

If any detector sphere extends to below the observation level (R > Z), the whole
detector array is lifted up by R− Z, unless the IACT interface is compiled with
IACT_NO_GRID defined (which is typical for the LightEmission package but un-
usual and inefficient for normal IACT array simulations). Instead of defining detec-
tors with fiducial sphere extending to below the observation level, reduce the OB-
SLEV altitude and increase all detector Z values to compensate for that.

TELFIL : Cherenkov telescope data file name

TELFIL TELFNM

20



Format = (A5, A100)
TELFNM : The telescope-specific data are to be written to a file named TELFNM in
eventio format. Lower case characters of TELFNM are not converted to capitals.
If this file exists and is write-enabled, new data is appended. After ending the run
the file will be set read-only to avoid accidental overwriting. If the file name itself
ends in .gz or .bz2 then the output will be compressed on the fly with the gzip
or bzip2 commands, respectively. If starting with a | (after an optional + or -) it
indicates that output should be piped into standard input of another program. The
file name /dev/null suppresses the output file.
This keyword is only available in the CERENKOV option together with the IACT
option for Cherenkov telescopes.

Note: Actually the ‘name’ contains a few tricks, which are explained in full detail
in the IACT reference manual under function telfil_. To summarise the most
important here: A leading ‘+’ means that the non-compact format should be used
instead of the default compact format. A leading ‘-’ means that the compact format
should be used (since IACT/ATMO package version 1.66). The compact format has
a number of limitations (not too large telescope radius times secant of zenith angle,
and so on), explained in detail in the introduction of the IACT reference manual. If
the compact format is specified but its limitations are obviously violated, the non-
compact format is used.

At the beginning or after the ‘+’, a ‘|’ character indicates that output is not written to
a file of the name following but is piped into the telescope simulation program started
by a script of the name following. A script, because no blanks can be embedded in
the file name supplied and, therefore, no command-line options/parameters for the
telescope simulation program can be included here. A colons as separators (keep
in mind: no whitespace allowed), the number and frequency of events to be logged
can be specified (see IACT reference manual for details). See also under IACT
TELFIL, IACT TELOPT, and IACT PRINT_EVENTS parameters.

PHIP : Azimuth angle definition

PHIP PHIPR(1) PHIPR(2)

Format = (A4, 2F), Defaults = 0., 0.
PHIPR(1) : Low edge of azimuth angle range of primary particle (in degrees).
PHIPR(2) : High edge of azimuth angle range of primary particle (in degrees).
The azimuth angle is selected at random out of this interval. If PHIPR(1) =
PHIPR(2), the azimuth angle is fixed at this value. For phi = 0 degrees the shower
axis points to magnetic North, for φ = 90 degrees it points to West, see Fig. 1 in
CORSIKA User’s Guide).
Limits are: -360. ≤ PHIPR(i) ≤ 360.

Note that the azimuth angles in CORSIKA differ from how they are handled in as-
tronomy (and in sim_telarray), by both the zero point and the direction into
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which it gets increased. See also the ARRANG parameter for transforming between
CORSIKA and astronomical azimuth angles.

Note also that, when combined with the VIEWCONE input card, the actual cone is
centered corresponding to the mean of the two values.

THETAP : Zenith angle definition

THETAP THETAPR(1) THETAPR(2)

Format = (A4, 2F), Defaults = 0., 0.
THETPR(1) : Low edge of zenith angle range of primary particle (in degrees ).
THETPR(2) : High edge of zenith angle range of primary particle (in degrees ). The
zenith angle is selected at random out of this interval in a manner which respects
equal particle fluxes from all solid angle elements of the sky and a registration by a
horizontal flat detector arrangement. THETPR is the angle of incidence at a horizon-
tal detector. THETPR(i) = 0. is vertical. If THETPR(1) = THETPR(2), the zenith
angle is fixed at this value. Limits are: 0. ≤ THETPR(i) ≤ 70.

Note that, when combined with the VIEWCONE input card, the actual cone is cen-
tered at a zenith angle corresponding to the mean of the two values.

VIEWCONE : Viewing cone specifications

VIEWCONE VUECON(1) VUECON(2)

Format = (A5, 2F), Defaults = 0., 0.
VUECON(1) : Inner limiting angle of viewing cone (in ◦).
VUECON(2) : Outer limiting angle of viewing cone (in ◦).
The VIEWCONE option selects the direction of primaries in a circular cone around
the fixed primary direction THETPR(1) and PHIPR(1) (see THETAP and PHIP
parameters in the CORSIKA User’s Guide) with the inner opening VUECON(1)
and the outer opening VUECON(2). The zenith angular dependence of the selected
detector geometry is maintained for flat horizontal or spherical detectors (without or
with VOLUMEDET option).
Limits: 0. ≤ VUECON(1) ≤ VUECON(2) < 90. The generation of showers with
angles beyond the range of the program validity is skipped.
This keyword is only available in the VIEWCONE option.

DATBAS : Write data base file

DATBAS FDBASE

Format = (A6, L), Default = F
FDBASE : If true, the essential run parameters are written to file ‘DATnnnnnn.dbase’

22



onto the output directory DSN (see DIRECT). This file may be used to build a data
base for examining the content of an air shower library.
Note: The file written is actually an ASCII text file but tools exist for conversion into
an SQL database. If you plan to use such tools, you should set ‘DATBAS true’
(that is independent of Cherenkov light).

DIRECT : Output directory

DIRECT DSN

Format = (A6, A64), Defaults = ‘anynameupto64characters’
DSN : May be used to define a name of an output directory. Lower case charac-
ters of DSN are not converted to capitals. To suppress the output you might give
/dev/null or use the keyword PAROUT.
Since you don’t need the normal CORSIKA output with the IACT option you better
set ‘DIRECT /dev/null’, but only with CORSIKA version before 7.5000. Start-
ing with version 7.5000 the only accepted way is with

PAROUT F F
DIRECT ./

IACT : Pass-through of parameters to IACT package

IACT iact-keyword iact-parameter

No specific format, depends on actual keyword passed through. Some of the key-
words are also recognized by the CORSIKA inputs handling, e.g. TELFIL, others
are not directly known to CORSIKA code. Examples:

* [ IACT tuning parameters ]

*
* Split data with more than 15 million bunches:
IACT SPLIT_AUTO 15M

* At 32 bytes per bunch this could be up to 500 MB:
IACT IO_BUFFER 1000MB // support up to 1000 MB

* Let photon bunch thinning set in earlier:
IACT MAX_BUNCHES 1000000 // <= a million bunches per telescope

* Importance sampling correction (with extra code):

* IACT TELSAMPLE sampling-config-file

* Disables correction of bending in B field:

* IACT IMPACT_CORRECTION off // not recommended

* TELFIL is possible with and without IACT prefix:

* IACT TELFIL filename.corsika.gz

* TELFIL filename.corsika.gz
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The following list include IACT keywords as known with IACT/ATMO package
version 1.66 (can be UPPER/lower/MiXed case):

IACT TELFIL filename: Passed through by CORSIKA TELFIL parameter. File-
name may be prefixed by ‘+’ to enforce long bunch format, even if automatic de-
tection does not find it necessary, and by ‘|’ to indicate a script to be executed
(no blanks and no shell meta-characters allowed, length restricted by CORSIKA
input card handling). It may also optionally be followed (without blanks) by sev-
eral colon-separated numbers (see IACT/ATMO package README file for details).
It is recommended to use the IACT TELOPT, IACT PRINT_EVENTS, IACT
INTERNAL_BUNCHES, and IACT IO_BUFFER settings rather than appending
these numbers in the old style to the file name.

IACT TELOPT text: Command line options to be appended to an external pro-
gram/script in TELFIL to receive IACT data, as in:

TELFIL +|my_simulation_script.sh
IACT TELOPT -c my_configuration.cfg

It can include blanks but no shell meta-characters.

IACT PRINT_EVENTS numbers: Up to five numbers indicating how after and at
which initial offset to print event info into the log output (see IACT/ATMO pack-
age README file for details).

IACT INTERNAL_BUNCHES nbunch: Number of bunches to be held in memory per
telescope before starting to push them to a (per-telescope) temporary file.

IACT MAX_BUNCHES nbunch: Maximum number of bunches that can be kept per
telescope, including in temporary files. Telescopes for which this limit is exceeded
will have the number of bunches reduced in increasing powers of two (by discarding
every second bunch and adding its bunch size to the bunch kept).

IACT IO_BUFFER size: Maximum size of data blocks written by the IACT module.
Size should be directly followed by a unit as in ‘800MB’ or ‘8GiB’.

IACT SPLIT_AUTO nbunch: If the full data block for the entire array would exceed
the given number of bunches, it gets split up into separate blocks per individual tele-
scope, in order to avoid exceeding the hard I/O buffer size limit. Example solution:

IACT SPLIT_AUTO 15M // Split data with more than 15 million bunches
IACT IO_BUFFER 1000MB // At 32 bytes per bunch this could be up to 500 MB
IACT MAX_BUNCHES 1000000 // Let photon bunch thinning set in earlier.

IACT SPLIT-ALWAYS : Always split IACT output data to data blocks for individual
telescopes.
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IACT SETENV variable value: Set an environment variable to the given value. This can
later be expanded internally, e.g. in TELFIL, or externally in the script passing the
output data along.

IACT ATMOSPHERE natmo: Also passed through by CORSIKA ATMOSPHERE
parameter. Tabulated atmosphere number to be loaded from a file
atmprof<natmo>.dat interpolated and fit.

IACT ATMOFILE filename: Use a specific file name with the tabulated atmosphere
rather than being limited by a small range (1-98) of possible ATMOSPHERE numbers.
The atmosphere number will be recorded as ‘99’ in the output, indicating the custom
filename.

IACT EXTPRIM filename: Instead of using the primary particle energies and directions
randomly generated in CORSIKA internally, they will be loaded from an external
file. Also allows for a mix of different primary particle types in the same simulation
run. See IACT/ATMO package README file for details. Beware of re-using the
same file for multiple simulation runs – like you should beware of re-using the same
SEED values again.

IACT TELSAMPLE details: Instead of a uniform sampling of the CSCAT random
telescope array offsets within the given range, this allows for a non-uniform (“im-
portance”) sampling which may be dependent on energy alone or energy and zenith
angle. Possible variants:

IACT TELSAMPLE fixed:k,r1,r2
IACT TELSAMPLE 1d:fname-with-E-k-r1-r2
IACT TELSAMPLE 2d:fname-with-E-theta-k-r1-r2

where the first variant works without any extra file while the 1-D and 2-D external
file variants with specific formats from which the actual sampling parameters for a
given primary particle of energy E and zenith angle theta are interpolated (linearly
in log(E) although the file lists E and not log(E), and linearly in theta). The r1 and
r2 values are fractions of the CSCAT radius R, with flat distribution inside r1R and
outside r2R, and a power-law drop with k < 0 inbetween. See Figure 4.1 for example
distributions. The corresponding 1-d TELSAMPLE file reads:

# E k r1 r2
1.0 -5 0.1 0.3
10. -5 0.15 0.3
100. -5 0.2 0.4
1e3 -4 0.3 0.6
1e4 -3 0.5 1.0
1e5 -2 1.0 1.0
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Sampled distributions Weight corrected distributions

Low energy

Medium energy

High energy

Figure 4.1: An example of energy-dependent non-uniform core-position sampling via
IACT TELSAMPLE, with the distributions generated core positions on the left side and
the corrected distributions (each event with its ‘area weight’ as recorded in the data) on the
right side. While the low-energy showers are highly concentrated at small core distances,
the high-energies are much more uniformly distributed. Such a set-up should be particu-
larly useful for an installation with a few large telescope (for low energy showers) in the
center and many smaller telescopes (not sensitive to low energy showers) distributed over
a larger area.
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IACT STORE-PARTICLES bool
The IACT interface can store the particles reaching observation level just as well
as the CORSIKA native FORTRAN output. It used to be available only with the
(compile-time) IACTEXT option and only if the PAROUT input card enabled par-
ticle output. Since the FORTRAN output cannot be disabled anymore with the DI-
RECT input card (since version 7.5), this means that the particle output would be
written to two files or none. With IACT/ATMO package version 1.66, this behaviour
was changed (also requiring a patch to CORSIKA, for the time being). There is no
dependency on the IACTEXT option anymore and no dependency on the PAROUT
card. Instead, the new input card (default value: false) can be used to enable particle
output in the IACT output only. It also works with the SSE/AVX vector-optimized
CORSIKA variant (CEROPT option).

IACT STORE-EMITTER bool
When compiled with the IACTEXT option, the IACT interface also obtains informa-
tion about the particles emitting Cherenkov photons. Writing this information used
to be enabled by compiling the IACT interface with STORE_EMITTER defined.
With IACT/ATMO package version 1.66, this feature can be enabled at run time if
built with IACTEXT option (as otherweise the information is not there). The de-
fault value is true only if compiled with STORE_EMITTER defined. Otherwise, no
extra information about the emitting particles gets written unless explicitly enabled.
Since the CEROPT variant is not compatible with IACTEXT, no extra information
can be recorded with it. Trying to enable it without IACTEXT will result in an error
message but will otherwise be ignored.
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Chapter 5

The pfp pre-processor for CORSIKA
inputs and corsika_autoinputs

5.1 pfp

The sim_telarray program by defaults pre-processes its configuration with a custom
pre-processor termed ‘ pfp ’ (orignally: Portable Fortran Preprocessor). This tool has
a syntax very similar to the C/C++ compiler pre-processor, although with some noteable
differences. Among these differences is the (so far) case-insensitivity of its keywords,
the macro substitution using a more explicit syntax, and the evaluation of (floating-point)
numerical expressions. The same pre-processor is also routinely used for CORSIKA input
files, using one template for multiple purposes, like different primary types and zenith
angles, with dependent settings of energy ranges, CSCAT radius etc. The following shows
a few example features frequently used from (selected parts of) such templates:

RUNNR 12345

*
#ifdef PRIMARY_SILICON
PRMPAR 2814 // Particle type of prim. particle (2814: silicon)
ERANGE 0.05E3 5000E3 // Energy range of primary (in GeV): silicon
NSHOW 2500 // Number of showers to generate
IACT setenv PRMNAME silicon
#define DIFFUSE 1
#endif

*
#if defined(EMIN) && defined(EMAX)
ERANGE $(EMIN)E3 $(EMAX)E3 // Requires EMIN and EMAX in units of TeV.
#endif

*
#if defined(VIEWCONE)
VIEWCONE 0. $(VIEWCONE) // Custom viewcone setting
#elif defined(DIFFUSE)
VIEWCONE 0. 10. // Diffuse components (gammas, electrons, protons & nuclei)
#else
VIEWCONE 0. 0. // Fixed THETAP/PHIP (gamma point source)
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#endif

*
#if defined(HAVE_MATHEVAL) && defined(YEAR)

* Correct B field evaluated for $(YEAR):
MAGNET $[11.930-0.0336*($(YEAR)-2020)] $[-25.310+0.0358*($(YEAR)-2020)]
# define BFDECL $[-12.750+0.102*($(YEAR)-2020)]
ARRANG $(BFDECL)
# define PHIP_SOUTH $(BFDECL)
# define PHIP_EAST $[$(BFDECL)+90]
# define PHIP_NORTH $[$(BFDECL)+180]
# define PHIP_WEST $[$(BFDECL)+270]
#else

* Without pre-processor math expression evaluation use B field for 2020.0:
MAGNET 11.930 -25.310 // Magnetic field (H, Zdown) at H.E.S.S. site
ARRANG -12.750 // B field declination = array rotation
# define PHIP_SOUTH -12.750
# define PHIP_EAST 77.250
# define PHIP_NORTH 167.250
# define PHIP_WEST 257.250
#endif

*
#if defined(FROM_SOUTH)
PHIP $(PHIP_SOUTH) $(PHIP_SOUTH) // CORSIKA azimuth for primaries coming from South.
IACT setenv AZM 180 // Corresponding astronomical azimuth.
#elif defined(FROM_EAST)
PHIP $(PHIP_EAST) $(PHIP_EAST) // CORSIKA azimuth, from East.
IACT setenv AZM 90 // Corresponding astronomical azimuth.
#elif defined(FROM_WEST)
PHIP $(PHIP_WEST) $(PHIP_WEST) // CORSIKA azimuth angles, from West.
IACT setenv AZM 270 // Corresponding astronomical azimuth.
#else
PHIP $(PHIP_NORTH) $(PHIP_NORTH) // CORSIKA azimuth angles, from North.
IACT setenv AZM 0 // Corresponding astronomical azimuth.
#endif

*
#ifndef ZA
# define ZA 20
#endif
IACT setenv ZA $(ZA)
THETAP $(ZA) $(ZA)

*
TELFIL run${RUNNR}_${PRMNAME}_za${ZA}deg_azm${AZM}deg.corsika.zst

That shows only one example of a primary particle type covered by the template. Note
the different type of parentheses/brackets/braces following the dollar signs. The parenthe-
sis $(...) is used for the expansion of pre-processor macros (#define in the file or the
pre-processor started with a corresponding -D... option). The brace ${...} expands
an environment variable, either set externally beforehand, through the IACT setenv
inputs line, or automatically set by the IACT module processing of some CORSIKA in-
put parameters, like RUNNR as an example. Finally, the bracket $[...] denotes a nu-
merical (and/or logical) expression evaluation, which allows for macro expansion inside.
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(Environment variable expansion is tricky in these expressions, as interpretation of the
IACT setenv would only by done when CORSIKA is running and, thus, too late for
the pre-processor which has to be run before CORSIKA.) Since older versions of pfp
may come without that feature, and also current versions if compiled by older C compil-
ers (using pre-C99 language standards), the availability of the feature can be tested by the
HAVE_MATHEVAL macro. The example includes a fall-back.

5.2 Corsika_autoinputs

The corsika_autoinputs both finishes the set-up of the CORSIKA inputs with a
unique (usually: incremented) run number and SEEDS input cards with randomly gener-
ated values.

Depending on how simulation jobs are organized, the run number can be
auto-incremented (all jobs having access to the same CORSIKA_DATA directory
and file-locking will work) or defined ahead of submitting a simulation job.
With corsika_autoinputs a pre-defined run number would be set with the
--run-number or -R option (not the --run option, which tells which program to run
as CORSIKA. Try with the --help option for more details).

CORSIKA uses several independent sequences of pseudo-random numbers, from a
generator based on an older CERN Library function. For the same seed values, as given
with four ‘SEED’ lines in the input file, the same sequences will result. Running CORSIKA
with the same seeds for those would result in the same events in every run – a mistake all
too easy to make. Therefore, corsika_autoinputs re-generates these seeds, based
on its own, not reproducible random numbers. In order to force a reproducible CORSIKA
simulation, corsika_autoinputs can be told, with the --keep-seeds option, to
leave the ‘SEED’ lines in the original input file intact.

A few version-specific problems are also spotted and fixed.
Corsika_autoinputsalso creates the working directory for CORSIKA under
CORSIKA_DATA and populates it with symbolic links to the needed data files from
CORSIKA_PATH.
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Chapter 6

CORSIKA IACT files without
CORSIKA – the LightEmission package

Either as part of sim_telarray or as a stand-alone package, there is a library and a
number of useful (or example) applications available which emulate the IACT output from
CORSIKA and can be used as input to sim_telarray or other Cherenkov light detector
simulation codes. It does not include or depend on any part of CORSIKA itself but only
the IACT/ATMO interface.

The main part of the code is a C++ library that defines and implements a single run per
file, like CORSIKA, and one or multiple ficudial spheres. These fiducial spheres may cor-
respond to telescopes, to a mirror, or to a camera. In the latter cases, the ‘observation level’
corresponds to a plane behind or in front of the mirror or the camera front, and the detector
simulation would skip part of the ray-tracing of incoming photons (see BYPASS_OPTICS
with sim_telarray). A variety of pulsed light sources can be set up with parameters
describing the temporal, spectral, and angular distributions by hardcoded values or read
them from a data file. Since almost everything is covered by the library, the applications
can be very short. A typical application would include:

• Setting up the run, with site altitude, atmospheric profile etc. Example:

Run run(nrun, alt_m*100., atmosphere, cam_fid_cm);
run.SetOutput(filename);

• Setting up one or multiple light sources. Example:

LightSource flasher(
SpaceVect(ff_xy_cm[0],ff_xy_cm[1],ff_dist_cm),
spectrum, pulse, angular);

• Loop over events with each light source emitting photon bunches according to its
set-up. The first event takes care of writing run header etc. Example:
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for ( int iev=0; iev<events; iev++ )
{

// Takes care of writing out photon bunches
// of previous event, if any:
run.NextEvent();

// Emit light for this event (per light source):
flasher.Emit(run, nphot_per_pos, bunch_size, 0.);

}

• Write the last event, run-end etc. and clean up as part of the desctructor of the Run
class:

return 0;

Some of the provided applications are rather useful while others are more a showcase
of other possible uses:

ff-1m Direct flat-field illumination of a Cherenkov camera.

ff-gct Flat-field illumination via reflection on secondary mirror.

pixled Light source in front of individual pixels for trigger logic tests.

xyzls Light sources at arbitrary positions. An example application would be an ‘Illumi-
nator’ sending a light flash from a few hundred meters away towards a Cherenkov
telescope pointed to the Illuminator, resulting in images spread over a large number
of pixels.

fake-muon Cherenkov light by fake muon (or other charged particle). In contrast to COR-
SIKA, we start with the end point and track backwards, including multiple scattering.

octo A light source (on an assumed octocopter) moving unrealistically fast in the sky (in
an ’8’ pattern). Just for demo.

ls-beam A pulsed laser beam as the primary light source with scattered light emitted along
the beam path.

See the LightEmission package documentation for more details.
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Chapter 7

Compilation options for
sim_telarray

The sim_telarray program has a few built-in limits that have been set up originally
for a 16 telescope HESS array. However, the hessio library needed by sim_telarray
had default limits set up for a 4 telescope HESS array, for optimum performance in a mem-
ory constrained environment. Now, simulations are under way with more than 4 telescopes,
with larger telescopes (more mirrors, more pixels, other trigger logic). And memory con-
straints are not so severe as they were a couple of years ago. Default settings now compile
both hessio and sim_telarray for up to 16 telescopes with up to 4096 pixels. Old
settings are used when you build libraries/binaries with

( cd $HESSROOT/hessio && make EXTRA_OPTIONS=’-DHESS_PHASE_1’ )
( cd $HESSROOT/sim_telarray && make EXTRA_OPTIONS=’-DHESS_PHASE_1’ )

If different settings are needed (e.g. more than 16 telescopes), see defini-
tions near the beginning of the header files hessio/hess/io_hess.h (or
hessioxxx/include/io_hess.h, depending on the source code distribution you
use) and sim_telarray/common/mc_aux.h. Some of them can be changed via the
EXTRA_OPTIONS parameter with make while others, less likely to be modified, may
need changes to the mentioned header files.
Example:

( cd $HESSROOT/hessio && make EXTRA_OPTIONS=’-DH_MAX_TEL=64’ )
( cd $HESSROOT/sim_telarray && make \

EXTRA_OPTIONS=’-DMAX_TEL=64 -DH_MAX_TEL=64’ )

Note that sim_telarray must always be built with the same settings of
the H_MAX_... definitions as used for compiling hessio! Since these
definitions depend on the HESS_PHASE_, [NO_]LARGE_TELESCOPE, and
[NO_]SMARTPIXEL definitions, as well as the various CTA* definition used over
time, those must match too.

Most of the changes to mc_aux.h won’t require recompilation of hessio but a few
are only useful if corresponding limits from io_hess.h are overridden to at least the
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same size as in mc_aux.h. A few definitions in mc_aux.h are explained in the following
(and corresponding limits in io_hess.h mentioned, if any):

MAX_ARRAY The maximum number of re-using a shower (as defined in the CORSIKA
input parameter CSCAT) that can be handled by sim_telarray. This limit
should only be changed by compiling with a suitable definition of the MAXI-
MUM_ARRAYS parameter.
Default: 100

MAX_TEL The maximum number of telescopes in the CORSIKA output that can be han-
dled. The H_MAX_TEL definition in io_hess.h should also have a sufficient value
and the MAXIMUM_TELESCOPES run-time parameter may need modification.
Default: 16

MAX_IGNORE The maximum number of telescopes in the CORSIKA output which are
ignored in the telescope simulation.
Default: 15

MAX_MIRRORS The maximum number of mirror tiles per telescope.
Default: 1500 with LARGE_TELESCOPE option (500 otherwise).

MAX_PIXELS The maximum number of pixels per camera. The H_MAX_PIX definition
in io_hess.h should also have a sufficient value.
Default: 4096 with LARGE_TELESCOPE option (960 otherwise).

MAX_FADC_SIGNAL The largest value that can be registered by the (F)ADC in one time
slice.
Default: 2048

MAX_FADC_BINS The maximum number of time slices for which the digitzed signal can
be simulated.
Default: 128

MAX_TRIG_BINS The maximum number of time slices for which the trigger logic can
be simulated. Note that internally these time slices are sub-divided into 2n sub-steps,
depending on the DISC_BITS_...+ definition (n = 0...5).
Default: 128

DISC_BITS_... Normally the logic (comparator or discriminator, telescope trigger)
signals are simulated in 0.5 ns steps, compared to 1 ns for the digitisation. Define one
of DISC_BITS_, DISC_BITS_ DISC_BITS_, DISC_BITS_, DISC_BITS_,
or DISC_BITS_ to simulate logic signals in 1/1, 1/2, 1/4, etc. to 1/32 of the digiti-
sation time step (which is defined by the run-time parameter FADC_MHZ).
Default: DISC_BITS_2 is defined.

MAX_PER_CHANNELS The number of digitizers used in round-robin fashion to digitise
signals of one readout channel.
Default: 1 (and conversion to H.E.S.S. output will not work with any other value).
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WITH_LOW_GAIN_CHANNEL If defined, then each PMT is read out into two channels, a
high-gain and a low-gain channel.
Default: defined (and required for H.E.S.S. output).

WITH_BYPASS_OPTICS Enable the experimental code for bypassing the optics ray-
tracing (activated then at run-time with BYPASS_OPTICS=1 or 2).

RAYTRACING_INTERSECT_RODS If enabled, an addition data file MASTS_FILE can
include obscuring elements, typically support structure elements, of filled cylindrical
geometry.

ADDITIONAL_AFTERPULSING If active, allows using an alternate implementation of
PMT afterpulsing signals at run-time, throwing prompt NSB signals like Cherenkov
signals plus addition signals following an exponential distribution.

EXTRA_CLOUD In addition to the continuous extinction by Rayleigh scattering, Mie scat-
tering and absorption as tabulated, a single geometrically thin absorbing layer of
wavelength-independent (gray) extinction can be added.

STORE_PIX_PHOTONS This option disables the usual optimization short-cuts in the
simulation. All photons get traced down to the pixels, rather than getting rid of most
of them before the ray-tracing. Thus significant impact on CPU time. Only recom-
mended for special simulations if you want to record the number of photons hitting
each pixel (either all photons or only those in the 330-550 nm range, see parameter
SAVE_PHOTONS).

For reasons of convenience a number of preprocessor flags are available to combine
setting the above limits as appropriate for simulations in a certain context. You may want
to set just one of:

HESS_PHASE_ Four telescopes with up to 960 pixels.

HESS_PHASE_ Add support for a fifth telescope with more pixels.

HESS_PHASE_D or HESS_PHASE_=2 HESS CT5 with FlashCam, enabled for 16-bit
read-out (instead of non-linear response).

CTA Up to 100, possibly large telescopes.

CTA_PROD1 or CTA_ULTRA3 Up to 275 telescopes with other limits set to match actual
limits in the CTA Prod-1 MC production (with "ULTRA3" configuration files), in
order to conserve memory.

CTA_PROD2 or CTA_ULTRA5 Up to 200 telescopes for CTA Prod-2 MC production
without SCTs ("ULTRA5" configuration files). CTA_MINI2 is a variant for fewer
telescopes.
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CTA_PROD2_SC Up to 229 telescopes for CTA Prod-2 MC production with SCTs (also
"ULTRA5" configuration files).

CTA_PROD3, CTA_MINI3, CTA_PROD3_SC are similar definitions used the CTA Prod-
3 MC production ("ULTRA6" configuration files).

CTA_PROD3_DEMO is suitable for any specific CTA layout, with or without SCTs (up to
126 telescopes) but not the super-layouts used the Prod-1/2/3/4.

CTA_PROD4 is matched to CTA South baseline layout simulations. Similar for CTA_
PROD5 and CTA_PROD6, except for different limits on the number of telescopes.
Plus mini-array or SCT-enabled variants of those similar to Prod-3.

CTA_MAX and CTA_MAX_SC with limits big enough to include all other simulations
without or with SCTs, respectively, but at a high cost in terms of main memory
usage.

See the mc_aux.h and io_hess.h files for other possibilities. Preprocessor definitions like
MAXIMUM_TELESCOPES, MAXIMUM_PIXELS, and MAXIMUM_SLICES can be used
to tailor the memory usage for specific applications without touching the code. All of
these settings have consistent meanings for the sim_telarray and hessio compila-
tion. Sim_telarray will fail if inconsistent definitions are used.

Note: On i*86 Linux, the Makefile here, as for CORSIKA, takes care of compiling with
support for files exceeding 2 Gigabytes. Actually, this is taken care of by the hessio
library. Since -D_FILE_OFFSET_BITS=64 conflicts at present with ROOT, it uses
-D_LARGEFILE64_SOURCE and uses explicit fopen64 etc. calls. If compiled without
either of these flags, you will not be able to read large CORSIKA files on 32-bit systems.
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Chapter 8

Building sim_telarray

The first step again is compiling. This should be easy if you have all necessary source
code available. With the stand-alone distribution consisting of hessioxxx.tar.gz
and sim_telarray.tar.gz, you unpack the tar files side-by-side, first go into the
hessioxxx directory, make (for possible options see below), then go into the sim_telarray
directory and do the same there. In the H.E.S.S. framework, you should have the
hessio code installed from CVS in hessio. The sim_hessarray.tar.gz
(combining files otherwise found in sim_telarray.tar.gz and sim_telarray_
config.tar.gz) is best installed in the directory referred to by the environment vari-
able HESSROOT, creating a sub-directory sim_telarray, as for the stand-alone distribution.
Apart from that little difference,

make

should be enough to compile and link sim_telarray. The Makefile is made to work
under Linux (and in the old days also DEC Unix) with GNU make, reported to be working
also under Mac OSX but not tested by its author.

There are more bells and whistles for compiling. You can modify the Makefile if you
want other options for diagnostic output, e.g. -DDEBUG_TEST_ALL. But that is the point
where you should have a look into the source code. Generally such extra definitions can be
passed to make without modifying any Makefiles as in

make CDEBUGFLAGS="-g -O0" EXTRA_DEFINES="-DCTA -DDEBUG_TEST_ALL"

Keep in mind that any definitions that change the size of data structures (see compila-
tion options) must be used identical for building hessio(xxx) and sim_telarray. When
changing them, it is recommended to completely rebuild everything in both directories.
You should also be aware that with very big data structures there may be special com-
piler flags necessary (e.g. for the memory model, -mcmodel=large) or there may be
preparations necessary at the OS level before running it, like

ulimit -S -s 12000

if the default stack size limit is smaller (typically 8192).

37



Chapter 9

Usage of sim_telarray

For running sim_telarray like illustrated in [5] you should have the following files
available – assuming you don’t change the name of the configuration file on the command
line or the other names either on the command line or in the configuration file:

hess.cfg General configuration file for H.E.S.S. phase 1.
hess_bestguess.cfg Detailed parameters for all H.E.S.S. phase 1 stages.
atm_trans_1800_1_4_0_0.dat Atmospheric transmission model.
hess_mirrors.dat Mirror positions, sizes, and types.
hess_camera.dat The camera definition (pixels, trigger).
hess_funnels.dat The angular efficiency of funnels.
hess_qe2.dat The quantum efficiency as measured

in Heidelberg (for 〈SCB〉= 11.6 µA/Lm).
hess_reflect.dat The mirror reflectivity.
hess_spe2.dat The single photo-electron response.
hess_disc_shape.dat Pulse shape at the pixel comparators.
hess_fadc_shape.dat Pulse shape at the ADCs.
atmprof*.dat As for the CORSIKA simulations.

For more information on these files see section 11. For most of these files there are
alternatives available to check possible systematics. There are further data files which
are used only with special-purpose compile-time configurations, like the optional (but
very time-consuming) shadowing by masts, spanning rods, and camera lid, reading from
masts.dat.

A large number of additional files were prepared for (and with) the HESS and CTA
communities and distributions of these additional files may be more limited.

For a complete list of possible parameters in the configuration files see section 12. In
addition you might have a file with star positions, perhaps called stars.dat (by default
no such file is read, the name needs to be configured). Such a file would consist of one
line per star, giving the azimuth, altitude and ‘flux’ of the star (the ‘flux’ being roughly
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in units of photoelectrons per nanosecond in a ‘typical’ PM). For details see the STARS
configuration keyword.

Now having all the necessary files starting sim_telarray can be as simple as

sim_telarray

or somewhat more complicated

sim_telarray -C telescope_azimuth=180 \
-C nightsky_background=all:0.17 \
-h test.hdata iact*.dat

The following command line options are recognised:

-c fname Use configuration from file fname.

-h fname Write histograms (in eventio format) to file fname. Conversion of these
histogram files to HBOOK format is done with the hdata2hbook program, to the
ROOT format with hdata2root. Contents can also be extracted as text with the
list_histograms program. The contents of many histogram files (for all match-
ing histograms in them) can be added up with the add_histograms program.

-i fname Use input file fname.

-p fname Write a couple of ASCII tables for plots to fname.

-o fname Write the output telescope raw data to file fname. This is in some eventio
format, depending on compilation flags and configuration options. The same result
is achieved through -C output_file=fname. Note that by default no output
is written.

-r fname Similar to -o but existing output will be replaced. Effectively the same as -o
fname -n.

-n Output to a new file rather than appending to existing file.

-l alpha Set power law index of spectrum to alpha. By appropriate event weights the
generated spectrum is corrected to the desired spectrum as far as the histograms are
concerned.

-C something Interpret something as a configuration statement (like it is interpreted in
the configuration file; it supercedes all corresponding statements in the configuration
file).

-W something This is similar to the ’-C’ option but gets interpreted before the configura-
tion file(s). If the same parameter gets set by the file(s) that will supercede the ’-W’
value. For that reason, it is called a weak configuration setting.
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-Dflag Define a flag or variable for the configuration pre-processor pfp which processes
the main configuration file (example: -DCTA=1).

-Ipath Include files in the main configuration file are searched in path (example:
-Icfg/CTA).

-V or –version Report the version of the code used. This will normally include the date
and time of the last source code change and by whom and where it was made and
built.

For each configuration parameter there are effectively four levels of priority: 1) the
hard-coded defaults as the lowest priority because they get processed first; 2) the weak
command-line settings (’-W’ option) which get processed after the hard-coded defaults but
before any configuration file; 3) the configuration file after it gets pre-processed with the
chosen defines and the chosen pre-processor; 4) the (hard) command-line settings (’-C’ op-
tion) being processed after all others and superceding any prior values. Note that functions
assigned to configuration parameters are called whenever they appear in the correspond-
ing stage. Take as an example the ’SHOW=all’ as a call to the internal ’SHOW’ function.
It does not have a hard-coded default, so never gets called in stage 1. A ’-W show=all’
would show the parameters before processing the configuration file(s). Only ’-C show=all’
will show that status of the configuration after processing the configuration file(s) and after
processing all earlier ’-C’ options.

Any remaining command line arguments are interpreted as file names of input files
containing photon bunches and other data in eventio format.

Note that all files with names ending in .gz, .bz2, .lzo, .lz4, .lzma, .xz, or
.zst are assumed to be compressed and reading/writing will be through on-the-fly de-
compression/compression with the gzip, bzip2, lzop, lz4, lzma, xz, or zstd com-
mands, respectively. This is the case for all input, output, configuration files, histogram
files etc. The necessary programs are assumed to be available on the system.
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Chapter 10

Coordinates and coordinate systems in
the simulations

10.1 Overview
For the most part, the simulation system does not actually deal with geographic or celes-
tial coordinates but assumes a locally flat ‘observation level’ at a given altitude above sea
level. Both CORSIKA and sim_telarray follow a nwu (North/West/Up) coordinate
convention at this point but also differ in their convention and in particular in the usage
of angles. CORSIKA (for efficiency reasons) handles all shower simulations in a system
where the geomagnetic field is in the x-z plane, i.e. the x axis points to geomagnetic North,
with directions towards which the particles (the primary particle, for example) propagate
and the horizontal angle φ (as in input parameter PHIP) counted counter-clockwise from
geomagnetic North. Sim_telarray, on the other hand, has its coordinate system rotated
by the geomagnetic declination angle, with the x axis pointing to geographic North. The
azimuth angle A from where a particle is coming, is counted clockwise from geographic
North, following astronomical conventions. Already at this point some level of detail is
needed for the proper definition of coordinate systems.

Given a geomagnetic field (Bx, By, Bz – note that by convention Bz, for example with the
International Geomagnetic Reference Field IGRF, is given positive when the field points
downward, as typical so far in the Northern hemisphere, x towards North, y towards West,
thus effectively defined in a left-handed system), with a geomagnetic declination angle
∆ counted positive if geomagnetic North is west of geographic North (programmed as:
Delta = atan2(By,Bx)). The CORSIKA φ angle for a particle coming from azimuth
angle A is

φ = ∆+180−A.

For building an observatory of IACTs or any other telescopes (from the infrastructure
point of view) and for operating it (mainly from the point of view of the necessary software
for operating the telescopes, like pointing them in the right direction, and from preparing
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the data for science results) a number of coordinate system get involved. In a very simpli-
fied world, these would be celestial coordinates, Right Ascension (RA, α) and Declination
(Dec, δ), local sky coordinates, Azimuth (Az, A) and Altitude (Alt, a), space coordinates
in the telescopes and around the observatory (x, y, z), as well as the geographical location
of the observatory, (geodetic) Longitude (λ, by international convention counted eastward
from the “Greenwhich” mercator) and Latitude (ϕ).

For a number of reasons, like the motion of the Earth, together with the Moon, around
the Sun, the rotation of the Earth around an axis changing its orientation with respect to
celestial coordinates and also (but far less) its location and orientation with respect to the
Earth’s body, the Earth deforming due to tidal forces from the Moon and the Sun, move-
ment of continental plates, density inhomogeneities in the Earth’s crust and mantle, curva-
ture of the Earth’s surface at the observatory, or bending of telescope structural elements
by gravity, wind loads, and thermal stress the reality gets way more complex than the set of
five coordinate systems introduced in the first paragraph. We will start from the simplified
world and add more details as we go. As a starting point we put an infrastructure person
(engineer, architect, or whatever) in the so-defined “central” location of an observatory,
extending from there.

10.2 Site location and telescope positions
The location of the “central” point of an observatory can be given in different coordinate
system, with respect to some geoid model and geodetic system (or “datum”, as it also gets
called). The most frequent coordinate systems are geodetic longitude and latitude w.r.t.
to some ellipsoid as a geoid model plus height above the geoid model “sea level” or the
Universal Transverse Mercator (UTM) set of coordinates. The most frequently used geoid
and datum is perhaps the World Geodetic System 1984 (WGS84), also used by the Global
Positioning System (GPS). Regional definitions for official maps may differ, for example
by some 200 meters in Australia. Differing definitions, e.g. in what “sea level” means have
caused problems in building bridges between two countries.

Thus coordinates in any system must identify the assumed geoid model and datum. We
suggest sticking to GPS and WGS84 where possible (maps needed for building permits
may differ due to national or state codes requiring a different datum) and never dropping
the assumed geoid/datum. The WGS84 is actually defined by the locations of the GPS
tracking and control stations and regularly updated to be aligned with the International
Terrestrial Reference Frame (ITRF) within 0.1 meters. The actual version of WGS84 used
is indicated by a GPS week number, e.g. “WGS84 (G1150)”. The ITRF itself, based
on GPS, Satellite Laser Ranging (SLR), Very-Long-Baseline Interferometry (VLBI), and
other measurement methods, and balancing the individual continental drift vectors, also
sees occasional revisions, the latest being ITRF2014 although that is not much in use yet.
Where a 0.1 meters accuracy is good enough (which corresponds to a mere 0.02 arc seconds
on an angular scale) the up-to-date representation of WGS84 coordinates with the GPS
is a good enough representation of the ITRF of whatever revision as well. The Galileo
navigation system will also use ITRF (ITRF2005 currently). Site coordinates may need
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occasional updates for continental drift although that is well below a meter per decade
everywhere (most are below half a meter per decade). GPS/Galileo measurements with
suitable devices can be as accurate as about a centimeter although it takes a while.

As far as the UTM system – based on a system developed by the German Airforce
in WW II and further developed by U.S. forces – is concerned, one should be aware of
artefacts coming with the way it tries to map places on an assumed ellipsoid onto flat coor-
dinates. It devides the Earth into 60 longitude zones, each covering 6 degrees in longitude
and then basically wraps a flat grid (think of paper) around the ellipsoid, pole-to-pole along
the mercator for the reference longitude of the zone. As this would overestimate all dis-
tances, it is actually not around the ellipsoid but intersects with it, around 0.9996 times
the geoid size. Depending on where in an UTM zone you are it may then under- or over-
estimate distances. Distances should always be calculated directly in the ellipsoid system.
Also note any altitude values coming with UTM are always above the geoid and not above
the wrapped-around coordinate sheet and that UTM is not suitable around the poles. Coor-
dinate values given with UTM are the “Northing” (N), counted in meters from the Equator
for the northern hemisphere and from the South Pole for the southern hemishere, and the
“Easting” (E), with a value of 500 000 m for the reference longitude and increasing east-
wards. To be unique, the Northing and Easting values must be complemented by the zone
identifier (incremented eastwards from longitude 180, i.e. the first being between longi-
tude 180 and 174 West). CTA-South, at longitude -70.3° (70.3°W), latitude -24.7°(24.7°S)
for example is in longitude zone 19 (from 72°W to 66°W), with suffix letters up to M in-
dicating the Southern Hemisphere (here: 19J), suffix letters N and beyond indicating the
Northern Hemisphere. CTA-North at 28.8°N, 17.9°W is in zone 28R. UTM coordinates
are usually assuming the older GRS80 ellipsoid and not WGS84 but differences between
these two are negligible for the level of accuracy needed with IACTs.

Convenient transformation of coordinates between longitude/latitude and UTM is, for
example, possible with the cs2cs (coordinate-system-to-coordinate-system) program from
the “Proj” software package1 (here assuming WGS84 and CTA-South which is in UTM
zone “19J”):

cs2cs +proj=longlat +datum=WGS84 +to +proj=utm +zone=19 +south

and reverse with

cs2cs -f %.7f +proj=utm +zone=19 +south +to +proj=longlat +datum=WGS84

Note that in Python or C/C++ code using the ’proj’ package, the UTM system for the
Southern site (zone 19J) is also known by the name ‘EPSG:32719’2, that for the Northern
site (zone 28R) by the name ‘EPSG:32628’, while the WGS84 longitude latitude system
is ‘EPSG:4326’. The ITRF 2014 geocentric x/y/z coordinates are known as ‘EPSG:7789’.
When using the corresponding transformations in your own code, keep in mind that 32-bit
floating point numbers are not precise enough. You will need 64-bit values.

1https://github.com/OSGeo/proj.4.git
2See EPSG web site at https://epsg.org/home.html.
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Figure 10.1: Universal Transverse Mercator (UTM) grid system for one longitude zone.

The locations of telescope positions on the observatory site can be in the same coor-
dinate system as the “central” position, longitude/latitude or UTM. They can also be in a
more local system w.r.t. to the “central” position. Whether this is a Local Transverse Mer-
cator system (wrapped around the geoid through the “central” place) or a tangential plane
has negligible impact on X and Y coordinates over the kilometer-scale (or less) extension
of IACT systems. The height h should, for consistency, still be the one above the geoid.
Note that the difference to an Cartesian Z coordinate is about eight centimeters at a kilo-
meter distance from the “central” place – not considered a problem in simulations which
usually assume a flat Earth and atmosphere model. Where higher precision is required the
difference between curved and flat Earth should not be neglected though (like in telescope
pointing).

For consistency with existing simulation programs (like CORSIKA and
sim_telarray) as well as existing analysis packages, we define the site-local
Cartesian coordinate system in the “nwu” (North/West/Up) convention:

X axis points North, Xcentral = 0
Y axis points West, Ycentral = 0
Z axis points Up, Zcentral = hcentral (height above the geoid = “sea level”)

Example transformations between longitude/latitude and Local Transverse Mercator X
and Y , for an assumed central position are obtained with
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cs2cs +proj=longlat +datum=WGS84 +to +proj=tmerc +ellps=WGS84 +da-
tum=WGS84 +lon_=-70.3163449936 +lat_=-24.6834291530 +axis=nwu +units=m
+k_=1.000339223402

for longitude/latitude to X/Y (at CTA-South) and reverse with

cs2cs -f %.7f +proj=tmerc +ellps=WGS84 +datum=WGS84 +lon_=-70.3163449936
+lat_=-24.6834291530 +axis=nwu +units=m +k_=1.000339223402 +to +proj=longlat
+datum=WGS84

The k_0 assignment takes care of the site altitude (think of the transverse Mercator
being a roll of paper wrapped, across the poles, around the ellipsoid; we need an ellipsoid
enlarged here such that it touches the site altitude; k_0=1.0 is sea level). Instead of
Transverse Mercator (’tmerc’ for cs2cs) the Swiss Oblique Mercator (’somerc’) projection
could be used as an alternative, with no noticeable difference at the scale of any IACT
system.3 The most exact transformation would be into the ITRF geocentric x/y/z frame,
subtracting the corresponding reference point x/y/z, followed by rotations according to
geographic longitude and latitude. That would even take the curvature of the Earth into
account.

At this point we still neglect that the Earth does not exactly have the shape of an ellip-
soid (the Earth Gravitational Model, EGM2008, for example, has 2159 spherical harmon-
ics) and that the actual “Up” as defined by the inverse of the direction of local gravity at the
“central” place may differ a bit from the normal to the ellipsoid (by definition given by λ

and ϕ). It can be expected that any such deviation would be corrected for by the telescope
pointing models.

In summary, accurate GPS measurements of a site’s “central” location and perhaps a
few other points on the site, in the WGS84 datum used by GPS are good enough represen-
tations of their positions in the current ITRF, which is the basis of transformations between
terrestrial and celestial reference frames. Coordinates given in the UTM system are not
suitable for evaluating distances due to distortions inherent to the system. Transformations
between UTM and longitude/latitude and, for a given “central” location, also site-local
Cartesian coordinates (in “nwu” convention, X towards North, Y towards West, and Z is
Up) are readily available. For convenience, telescope positions should be listed in all three
system. Note that Earth curvature is not entirely negligible across the site.

3If the Proj package has a projection into a tangential plane, I have not found it yet - but as the comparison
between Transverse Mercator and Swiss Oblique Mercator shows any differences are way below millimeter
level. In the case of a sphere that is easy to calculate. Say at 1 km distance along the surface on a, say,
r = 6371 km sphere its parallel projection onto a tangential plane is 6371 km × sin(1/6371) and its central
projection 6371 km × tan(1/6371), both within 10 micrometers from 1 km. Since the Earth is close enough
to a sphere, this must also hold for the geoid.
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10.3 Coordinate systems on the telescopes
To avoid unnecessary transformations, the definition of Cartesian coordinates in the ab-
sence of any deformations and camera rotation as well as Earth curvature is very simple:

All coordinate systems are aligned when a telescope
points to zenith at azimuth zero (x=North, y=West, z=Up,
telescope points to the North for positive zenith angles).

In particular, it links the ground Cartesian system (X , Y , Z) with any system on the tele-
scope (x, y, z). This convention is used by all current simulation and analysis packages. In
the absence of Geomagnetic Field (GF) declination it also matches the system used inside
the CORSIKA shower simulation package, with output through the IACT/ATMO package
corrected for GF declination being always in the defined coordinate system. Where the z
coordinate of a component is implied by other parameters (e.g. pixel z positions are implied
by the camera curvature), it is sufficient to provide x and y coordinates (note that these are
projections and not measured along a curved surface).

Note that the above definition implies that in a telescope rotated in altitude or zenith
angle to point to the horizon at azimuth zero the x axis now points downwards, the y axis
still points to the West and the z axis now points North.

If pixels in a camera are to be represented in a system where (in the absence of focal
surface curvature) the square or hexagonal pixel shapes are aligned with the system, then
an additional rotation angle between the pixel and camera coordinate system is needed,
with the latter following the general definition. For ray-tracing in simulations, where pixel
shapes are important, this is necessary. For other purposes, like image reconstruction, it
may be optional, i.e. de-rotated pixel positions could be used, but for consistency reasons
the same distinction between pixel and camera coordinate systems is recommended.

Transformations between two directly linked coordinate systems can generally be rep-
resented by the following sequence: a displacement, a rotation around an axis, an optional
intermediate displacement, a rotation around another axis, and a final displacement. The
intermediate displacement is necessary where the two axes do not intersect, e.g. in Alt/Az
telecope mounts where the altitude axis is displaced with respect to the azimuth axis. Oth-
erwise the two rotations can be combined into a single rotation matrix.

While the Earth’s curvature is not very relevant for the telescope Z coordinates in a
site-local Cartesian system, it is relevant for the reconstruction of source positions in the
sky. A kilometer distance on the ground corresponds to about half an arc minute difference
of the Up direction. There are thus two issues involved and decisions to be made:

− Should telescopes be built with each ’azimuth’ axis according to local gravity or
should all azimuth axes be aligned with the central telescope?

− Independent of that (and keeping in mind that alignment will never be perfect) the
pointing corrections for each telescope could correct to a common frame, aligned
with the site-local Cartesian system, or to individual frames for each telescope, ac-
cording to their location.
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The answer to the first question should probably be ’yes’ but may require an additional ef-
fort in the construction phase, and may not have been considered at all by the infrastructure
team. It will reduce the necessary corrections somewhat – but if corrections, for bending,
initial alignment, sagging of foundations etc. are expected to be of that order anyway the
effort during construction may not be worthwhile.

The answer to the second question is almost certainly ’yes’. Otherwise combining the
data from individual telescopes into a common reference frame may be too inconvenient,
error prone or CPU intense. But the alternatives need to be studied. Since simulations are
generally for a flat Earth, the CORSIKA ’CURVED’ option being of no help at the typical
telescope separations, the simulated telescope axes are implicitely aligned in a common
reference frame.

10.4 Telescope pointing considerations

10.4.1 Pointing concepts and corrections

In contrast to the ideal world in which the coordinate systems have been defined, and where
the z axis in the reflector and camera coordinates systems define an optical axis, the real
telescopes will have a deformed reflector, each mirror segment misaligned differently, the
camera support structure bent, resulting in a camera displacement and maybe also a camera
rotation. Even the telescope structure may be bent, not even leaving a fixed orientation of
the azimuth axis. The whole foundation might be sagging on one side over time. As pointed
out previously, the telescope will also not be built with perfect orientation, the real Earth is
not flat (while in simulations it generally is) and local gravity is not perfectly aligned with
the assumed geoid (ellipsoid).

What is important is that the telescopes can be positioned/aligned well enough to a tar-
get in the sky (moving due to Earth rotation) to allow data taking without loss of efficiency.
Since point-spread function, trigger efficiency, etc. change slowly over the field-of-view,
requirements to the accuracy for the nominal positioning are rather loose. For the shower
reconstruction (as part of data reduction), the actual alignment/pointing must be known
well enough that the angular resolution and gamma/hadron discrimination will not suffer,
for each individual measured event. The strictest accuracy is needed for the position of an
identified gamma-ray source in the sky - which will average over many measured events
and will generally combine measurements taken in different observation periods, perhaps
years apart.

The positioning/alignment will need some previously determined coefficients of a
pointing model to achieve a sufficient accuracy, although feedback by optical sensors (e.g.
CCD camera) may be used in addition. The event-wise information will generally need
some hardware support, like shaft encoder, counting motor steps, or whatever, with read-
out at several Hertz but due to telescope inertia not necessary at the actual event rate, using
some interpolation, and it will apply pointing model coefficients updated after the obser-
vations are taken. The source location accuracy is expected to be achieved after systematic
studies with a sample of source known to be point-like and with accurately known po-

47



sitions, e.g. from radio VLBI. This accuracy is thus expected to be improving as more
data is accumulated and more systematic effects get understood - as long as the event-wise
information is good enough.

In any case, the task is to establish a mapping between pixel or camera coordinates
and Alt/Az coordinates in the site-level Cartesian ground-based system. That includes
not only the sky position imaged to the camera center (the optical axis for an idealized
telescope), but also the alignment (camera rotation), the image scale (effective focal length)
and non-linear distortions in the imaging. Whether a common type of pointing model (set
of mapping functions) is applicable for all telescopes – although with type- and telescope-
specific coefficients – or if telescope-type-specific models are needed (e.g. because the
physical model for telescope bending depends on the type of telescope mount) is at this
point not clear.

The image scale and non-linear distortions can be rather tricky in the presence of point-
spread functions which are not radially symmetric. Any image cleaning may cut off more
of the tails of an image on one side than on the other side. The image scale can then depend
on the cleaning, and for shower images (in the Cherenkov camera) may differ from optical
measurements (in CCD or CMOS cameras). For shower images it may even depend on
the image amplitude (more intense images having a smaller fraction getting cut-off by the
cleaning).

An observation made with ray-tracing simulations of the different telescope types in
an IACT system is that using pixel positions using x/y projections result in a much more
linear imaging for non-planar camers (in dual-mirror telescopes) than trying to define pixel
positions along the curved surface. The common alignment of coordinates in the telescope
also has the added benefit that no distinction between single-mirror telescopes (camera
looking towards the primary/only mirror) and dual mirror telescopes (camera looking away
from the primary mirror) is needed.

For the actual image reconstruction there are different ways to apply the necessary
transformations and corrections. Shower images (Hillas parameters etc.) can be recon-
structed in pixel or camera coordinates and the image parameters transformed into a com-
mon system, or every pixel position can be transformed into its corresponding Alt/Az co-
ordinate in the common system. For shower model/template fits the transformation can
be the other way around, starting from the shower model to the corresponding intensity
expected in each pixel. Pointing models must thus work in both directions, with equivalent
results. And they may be updated at a later time, thus the coefficients used so far must be
identifiable. How pointing corrections are applied is not a topic of this paper.

At the end of the event reconstruction, a shower axis (direction and impact position)
in the site-local Cartesian system and the Alt/Az coordinates derived from it are expected.
What is unclear at this moment is where along this path the following corrections get
applied:

− The atmospheric refraction of the shower Cherenkov light is only part of the refrac-
tion of star light as it originates from inside the atmosphere. While the refraction of
star light only depends on ground-level air density (index of refraction, to be precise)
and zenith angle, except near the horizon, the fraction applicable for shower images
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also depends on the depth of shower maximum (and thus in a systematic way on
energy).[13]

− Due to bending of electrons and positrons by the geomagnetic fields, with slightly
more electrons than positrons in the shower, shower images are not only spread out
in the bending plane of the GF but also distorted (major axis not pointing back to
origin).[14, 15, 16, 17]

10.4.2 Parallel, convergent, and divergent pointing

By default, sim_telarray will assume that all telescopes point to the same direction in
the sky (parallel pointing). For small to intermediate telescope arrays, pointing to the same
place in the atmosphere, at a typical height of shower maxima, can improve the telescope
multiplicity in most events, at the expense of losing events with large impact distance
entirely. That is called convergent pointing. On the other hand, the pointing directions
of telescopes can be spread out, increasing with distance from the center of the array, to
increase the overall field-of-view, at the expense of the telescope multiplicity in individual
events. This would be divergent pointing.

The convergent pointing is achieved by pointing all telescopes to a common point on an
axis starting from a reference position (CONVERGENT_POSition) towards the nominal
array viewing direction (TELESCOPE_THETA, TELESCOPE_PHI at global level), see
Figure 10.2. As an extension of that, divergent pointing is achieved by the opposite of the
telescope direction pointing to a common point on that axis, below the observation level.

In sim_telarray there are three possible ways to specifying convergent pointing
in a very convenient way: a) a distance of this common point from the reference position
along the given axis (CONVERGENT_DISTance), b) a height above the observation level
(CONVERGENT_Height) where this common point should be, or c) an atmospheric depth
along an inclined shower axis (CONVERGENT_DEPTH), for a shower coming from the ar-
ray viewing direction. Only one of them is supposed to be activated - the latter choices
taking priority if more than one is non-zero. Negative values activate divergent mode.
While simple convergent or divergent point would have the same parameter for all tele-
scopes, they can be set separately for each telescope (for example depending on telescope
type).

Alternatively, all telescope pointing directions could be set individually in the configu-
ration file to pre-calculated values, depending on the telescope ID (note: in that case neither
TELESCOPE_THETA nor TELESCOPE_PHI must be set on the sim_telarray com-
mand line by the ’-C’ option since that would override the telescope-specific settings).

A question for the practical operation of a telescope array is which way the conver-
gent/divergent pointing can be specified for continuous updating while tracking a source.
For the sim_telarray configuration, basically representing a snapshot in telescope
pointing for each simulation run, that is just a matter of how convenient it is to set up.
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Figure 10.2: Convergent pointing by having all telescopes looking towards the same point
on an axis through a reference position (usually the array center). Either the distance along
this axis, its height above the observation level plane, or the atmospheric depth along the
‘array viewing’ incoming direction can be specified.
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Figure 10.3: Divergent pointing by having all telescopes looking away from the same
point on an axis through a reference position (usually the array center). Either the distance
along this axis (negative), its height below the observation level plane (negative), or an
atmospheric depth along the ‘array viewing’ incoming direction (negative of the value
corresponding to a positive height) can be specified.
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10.5 Celestial coordinates and transformation to/from the
site-local Alt/Az system

The current system for celestial coordinates is Right Ascension α and Declination δ in
the Interational Celestial Reference System (ICRS), with only small deviations from the
system provided with the Fifth Fundamentalkatalog (FK5). It is worth noting that the FK5
predecessor, the FK4, suffered from large-scale measurement biases and transformation
between FK4 and FK5 needs to compensate for the resulting distortions. This is notable
because the system of Galactic coordinates was defined w.r.t. FK4 and the IAU never
re-defined it w.r.t. ICRS. As a result, it generally is ambiguous if compensation for the
FK4/FK5 distortion needs to be taken into account or not. With some astrometric software
a set of transformations like Galactic→ FK4→ FK5→ Galactic does not end up where it
started. Use of Galactic longitude/latitude as primary coordinates is therefore discouraged
and Galactic coordinates should only be used for illustrative purposis.

With the exception of solar system bodies, all targets can be represented by α and δ in
the ICRS system for the epoch of J2000, by their parallax in arc seconds (or its inverse,
the distance in parsec), and by their apparent proper motion in the ICRS J2000 system.
For candidate targets of IACT observations, being at least hundreds of parsecs away the
parallax and proper motion are generally negligible while for some stars used in the de-
termination of pointing model corrections they may be significant. Thus transformations
need to take them into account.

The transformation between instanteneous apparent Alt/Az coordinates in the site-local
Cartesian ground system (linked to the ITRF through GPS/Galileo) and (apart from proper
motion) fixed coordinates in the ICRS follows a procedure defined jointly by the Interna-
tional Astronomical Union (IAU) and the International Union of Geodesy and Geophysics
(IUGG) which in 1987 set up the International Earth Rotation and Reference Sytems Ser-
vice (IERS). The IAU-approved library for this task is called SOFA4 and it comes with a
license prohibiting any modification, not even for getting it compiled on a system not sup-
ported. Without the IAU branding, the same code is the basis for the ERFA library,5 which
is often preferred to SOFA in scientific applications. Other software, if verified against
SOFA, may be suitable as well.

4https://www.iausofa.org/
5https://github.com/liberfa/erfa
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Chapter 11

Data files and important parameters for
sim_telarray

11.1 Configuration files and pre-processing

If the general configuration file (by default hess.cfg or cta.cfg, depending on
compile-time definitions) is not present, the compiled values are used by default. For
telescopes, where no telescope-specific configuration is found, the values from the gen-
eral configuration file or the compiled values apply. Command-line configuration values
specified by the ‘-C’ (configure) option override both compiled values and values from the
general configuration file and any configuration files included from there. Note that the
command line options cannot address individual telescopes. Configuration values from the
‘-W’ (weak configure) command-line option still override compiled values but not values
from the configuration file(s).

Note that all of these files are searched in several directories. Unless the
‘-I’ command line option is used when starting sim_telarray, these include
the current working directory and the directories $(PREFIX)/cfg/common/ and
$(PREFIX)/cfg/hess/ where $(PREFIX) normally is the directory where
sim_telarray was compiled. Other directories like $(PREFIX)/cfg/CTA may also
be included, depending on compile-time options.

The general (or main) configuration file has a special syntax and is pre-processed
through the pfp program, somewhat similar to the C or C++ pre-processor but with more
limited functionality and, in particular, more restrictive macro substitution. Configura-
tion parameter assignments resulting after the pre-processing are described in section 12.
Note that the configuration file has the percent character (%) for starting comments because
the hash character (#), used for comments in configuration data files, is used by the pre-
processor. For the available types of parameters and the syntax to assign actual values, see
Section 12.1.

Some of the configuration data files also have a dedicated syntax, either with special
keywords, like the camera definition file, see section 11.11, or have multiple values on a
line, some of them required and some optional, like the mirror definition file, see section
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11.7. Others are of a simple syntax with two values (x, y) separated by white-space (blank
or tab characters) per non-comment line, suitable for 1-D interpolation. Keep in mind
that some of them are clipped at the defined range (e.g. pulse shapes) while others are
extrapolated with the value at the corresponding edge of the defined range (e.g. reflectivity).

The pfp configuration pre-processor can be exchanged against different programs with
the SIMTEL_CONFIG_PREPROCESSOR environment variable (default setting is “pfp
-v -I.”). A simplistic alternative, only picking the lines for the requested telescope, is
sspp - with a different configuration file syntax, like (illustrating a few possible ways):

(@cfg) global<tab>ARRAY_CONFIG_NAME<tab>Paranal-baseline-prod5
0<tab>ARRAY_WINDOW = 1000
(@cfg) CT17<tab>QE_VARIATION<tab>0.03
17<tab>CAMERA_BODY_SHAPE 2

where <tab> stands for the ASCII character 0x09, which is required between the identifi-
cation field (e.g. global) and the actual configuration line. A conforming configuration
file for sspp use can be generated with sim_telarray itself, using the command line
option

-C list=no-internal

and selecting, from its standard output, all lines starting with (@cfg) (a prefix which may
or may not be stripped off).

Any alternate preprocessors have to accept the same syntax like the pfp (or the C
pre-processor cpp) which includes any number of the “-D” (Define), “-U” (Un-define),
and “-I” (Include-path) options, followed by one or two filename parameters (input and
optional output, with “-” standing for standard input/output). Of the “-D” options it must
respect at least the “-DTELESCOPE=...“ definitions.

11.2 Data table 1-D interpolation with the rpolator code
The data tables used by sim_telarray all, except for atmospheric transmission, used
to be read separately for each configured telescope, always one-dimensional (although
some files like single-p.e. response or pulse shapes can have multiple y columns in par-
allel) and were always interpolated linearly. This has changed with introduction of the
rpolator.c interpolation code. The rpolator

• loads files only once (unless different options are used),

• offers different interpolation schemes (see Figure 11.1),

• auto-detects if supporting points are at equidistant positions (resulting in faster
lookup),

• offers mapping between linear and log scales, etc.,
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• can be driven by a special (comment-style) control line in the data file.

The special control line is optional; if present it has to be the first line in the data file,
with the following syntax:

#@RPOL@[ymarkup] ndim options

For the ymarkup and ndim parts see Section 11.3. For one-dimensional tables ndim
should be 1.
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Figure 11.1: Interpolation schemes available with rpolator.c for 1-D tables.

The #@RPOL@ header line may also include a number of options, after the string
“OPTIONS:´´ (all uppercase), if any. The function call to load the data table may ex-
tend on these options or override them. Known options (case ignored) include

CLIP or CLIP=1 or CLIP=on or CLIP=yes to enable clipping. Interpolation returns zero
for lookups outside of the range provided in the table.

NOCLIP or CLIP=0 or CLIP=off or CLIP=no to disable clipping, using the value on the
corresponding boundary to extrapolate with a constant.

ZXMAX or ZXMIN to indicate that for 2-D tables also the upper and lower bounds of the
projection onto each x value are made available.
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XCOL= or YCOL= or ZCOL= the index (starting at 1) of the column with the x or y or
z values for format 3 or format 1 (only XCOL and YCOL) if the corresponding data
is not in the natural columns 1, 2, and 3. You could re-use the same multi-column
file for multiple 1-D interpolation purposes, e.g. for high-gain channel pulse shape
using columns 1 and 2 and low-gain channel pulse shape using columns 1 and 3.

COLS= or COLUMNS= to give the expected number of columns for format 2, which
can avoid having to re-allocate memory for the data, as long as the given number is
accurate. Otherwise not needed.

SCHEME= to assign the interpolation scheme to use. A value of 0 indicates to use the
nearest neighbour, 1 to use linear interpolation, 2 to use piece-wise polynomial inter-
polation of 2nd to 3rd order (only available for 1-D). Cubic splines (1-D) are avail-
able in two variants: natural csplines (second derivative goes to zero at the bound-
aries) or clamped csplines (first derivative goes to zero at the boundaries). Where
the requested scheme is not available, it falls back to linear interpolation - which is
also the default. For tables on a 2-D grid (see next section) it is always bi-linear
interpolation.

XLOG or YLOG or ZLOG to internally convert values in the given coordinate to loga-
rithmic units. Where enabled, any user-provided x or y values are first converted to
log units before the interpolation and z values resulting from the interpolation are
converted from log to linear before returning it. This may be useful if the underlying
relation is more linear in the chosen log units but the calling function is not aware of
it.

XSCALE= or YSCALE= or ZSCALE= to scale the chosen values by a given factor right
after reading the table. Interpolation has to use the scaled values. A special scaling
factor is deg2rad for pi/180 to show human-readable values in degrees in the table
but internally use radians to avoid extra multiplications (rad2deg scales the other
way round).

VERBOSE= to set the level of verbosity from rpolator functions.

ROWS= and COLS= (or COLUMNS=) may be useful as hints on how many rows and
columns of data to expect which can avoid or reduce memory re-allocations while
reading the table but is not really necessary.

Typically, the appropriate options are provided by the calling function to load a table.
Note that a given table name with given caller options is only loaded once, sharing the
pointer for all telescope types using the same table and options (lacking smart pointers in
C no complete removal from memory is supported). In addition to a #@RPOL@ line in
the file (first processed, has lowest priority) and options provided by the calling function,
the user can also include options by attaching them to the real file name after #rpol: (in
a shell environment typically making it necessary to enclose the file name in quotes; no
quotes needed in sim_telarray configuration files). Example file name with options:
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/tmp/c3.lis#rpol:scheme=3,clip. This method is interpreted as the last one
and thus would override conflicting options provided in the file itself or by the calling
function.

The rpolist application is available to show information on what format a table is
found, to list the values found in it (note: log settings get reverted for that) in a uniform
two or three column format suitable for easy plotting, and two test-evaluate interpolation
from the given table. This application can also do the interpolation. The curves in Figure
11.1 were, for example, obtained, from x = 1 to 5 in ∆x steps of 0.01 with

rpolist -s <n> --ex 1,5,0.01 /tmp/c3.lis

where for <n> the values from 0, ..., 4 were used to illustrate the different schemes. A
more explicit way to set the interpolation scheme would be

rpolist -o scheme=<n> --ex 1,5,0.01 /tmp/c3.lis

and like any other option that can also be attached to the file name:

rpolist --ex 1,5,0.01 "/tmp/c3.lis#rpol:scheme=<n>"

11.3 Switching from 1-D to 2-D table interpolation
Some of these traditionally simple data files are in the process of being upgraded to optional
2-D tables in the sense that existing 1-D tables are interpreted as they used to be while
actual 2-D tables (different formats possible, with three values x, y, z being one possibility)
enable an additional dimension for interpolation (angle of incidence for reflectvity and filter
transmission, signal intensity for pulse shapes, ...). The optional data-file-driven switch
from 1-D to 2-D is handled by the rpolator code component, given 1-D as the default
format unless the first line of the data file starts with

#@RPOL@[ymarkup] ndim options

with ndim being either 1, 2, or 3. A value of 1 makes it an explicit 1-D table, a value
of 2 a 2-D table with y values in a special line (which may be prefixed by the optional
markup text indicated above as ymarkup), or a values of 3 to make it a 2-D table where
the two lookup coordinates (x, y) and the resulting value (z) are explicit in each line. Since
the 2-D tables can only be above rectangular grids (same intervals for x at any given y and
vice-versa) the third format has to repeat the same x values for every y value and the same
y values for every x value, in a systematic order, or the table is considered invalid. Possible
table formats for a very short 2-D table with just two x values (1.1, 1.2), three y values (2.1,
2.2, 2.3) and six z values (3.1 to 3.6), without options, are:

#@RPOL@ 2
2.1 2.2 2.3
1.1 3.1 3.2 3.3
1.2 3.4 3.5 3.6
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or

#@RPOL@[#YVALUES=] 2
#YVALUES= 2.1 2.2 2.3
1.1 3.1 3.2 3.3
1.2 3.4 3.5 3.6

or

#@RPOL@ 3
1.1 2.1 3.1
1.1 2.2 3.2
1.1 2.3 3.3
1.2 2.1 3.4
1.2 2.2 3.5
1.2 2.3 3.6

or

#@RPOL@ 3
1.1 2.1 3.1
1.2 2.1 3.4
1.1 2.2 3.2
1.2 2.2 3.5
1.1 2.3 3.3
1.2 2.3 3.6

Note that older, not rpolator-enabled, versions of sim_telarray may misinterpret
such tables rather than failing to use them.

11.4 Atmospheric transmission
The table, from which atmospheric transmission values are obtained by interpo-
lation, is configured through the ATMOSPHERIC_TRANSMISSION parameter of
sim_telarray. There are a range of such tables available, all created with the
MODTRAN[10] program. The default table hess_atmo_trans.dat is normally set
up as a symbolic link to the transmission table for maritime haze and sea-level as the bot-
tom of the boundary layer. Figure 11.2 shows a comparison of transmission from 10 km to
1.8 km for a vertical line-of-sight with different tables available for the H.E.S.S. site.

All transmission tables are in steps of 1 nm in wavelength and for a range of arbitrary
altitudes, giving the optical depth for vertical transmission to the observation level. Which
file is actually used, is controlled by the ATMOSPHERIC_TRANSMISSION parameter.
Note that, while these files are handled by dedicated code, they are usable with the rpolator
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maritime haze (1800 m)

desert haze (1800 m)
rural haze (1800 m)
navy maritime haze (1800 m)

default transmission table
(maritime haze, bottom of atm. at 0 m)
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Figure 11.2: Transmission tables for the H.E.S.S. site.

code (and thus the rpolist application) with ndim=2 and a y-axis marker string of ‘# H2=’
(rpolist command line: -n 2 -m ’# H2=’).

The H2 value of the transmission table should not be above the CORSIKA observation
level – or you will get a warning that you seem to have an underground installation. For
best results, it should also not be far below the observation level.

11.5 Atmospheric density profile

The tables with the atmospheric density profile are an important ingredient for the COR-
SIKA simulation (see the ATMOSPHERE / IACT ATMOSPHERE / IACT ATMOFILE pa-
rameters there), but may play a role as well in the telescope simulation. If the convergent
tracking is specified and the level, where the lines-of-sight of the individual telescopes
should intersect, is given in terms of the atmospheric depth (CONVERGENT_Depth pa-
rameter, in g/cm2 vertically), the same table applies for finding the corresponding height.
The same procedure would apply in the analysis of simulated data if CORSIKA was using
the FIXCHI parameter to start the primary particle inside the atmosphere, passed along as
start_depth (hessio) or start_grammage (pyeventio) variable. A similar lookup,
although along the inclined arrival direction, applies for the data variables describing the
shower maximum (Xmax for particles, Cmax for Cherenkov light).

Which file got used by CORSIKA used to be encoded (only) in the CORSIKA run
header data block, in case of a ATMOSPHERE line in the CORSIKA inputs. That would
indicate an atmospheric profile number, for a file atmprof%d.dat located in the include
paths, with %d replaced by the profile number as used in CORSIKA. With the newer IACT
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ATMOFILE as a more flexible alternative to ATMOSPHERE / IACT ATMOSPHERE, this
would not work anymore (indicated as atmosphere number 99). Neither would it work if a
parametrized rather than a tabulated density profile was specified in CORSIKA (indicated
as atmosphere number zero). A special case is the CORSIKA default profile, corresponding
to the U.S. Standard Atmosphere, which is represented by atmprof6.dat.

The actually used atmospheric profile is passed now from the CORSIKA IACT inter-
face (since version 1.60) in the data stream down to sim_telarray, even if no density
table but a parametrized 5-layer description was used. Where available, it includes both
the table data and the 5-layer parameters. It also gets passed from sim_telarray
into its output file. (Where older data or older software versions do not provide that
data block, sim_telarray may be looking for the file again. Fortunately, all older
sim_telarray productions used the ATMOSPHERE line in the CORSIKA input and the
corresponding atmprof%d.dat gets loaded automatically.)

Note that interpolation of tabulated profile needs to take advantage of the approximately
exponential density profile, also for the tabulated atmospheric depth (grammage), by inter-
polation height versus log(density), or log(grammage). At the top of the atmosphere, this
breaks down as the assumed grammage goes gradually to zero while the density jumps to
zero. There are specialized interpolation functions available where the generic rpolator
would fail. Without those functions, using linear interpolation in height versus density (or
grammage) in the first interval below the top of the atmosphere and linear interpolation in
height versus log(density) (or log(grammage)) in the second interval should work. Below
that, a natural cubic spline in height versus log(density) (or log(grammage)), set up without
the two upper height levels, would be the best solution.

11.6 Assumptions and parameters defining the telescope
geometry in sim_telarray

The geometry of the telescope components in sim_telarray is simplified on purpose.
Most components that are not active in the optical path, like camera support etc., get ig-
nored in normal operation, for efficiency reasons. The ratio between the effective mirror
area in accurate ray-tracing versus the simplified-shadowing ray-tracing can be applied as a
radially symmetric function of incidence angle (see TELESCOPE_TRANSMISSION) but
could also be represented as a 2-D tabulated map of degraded efficiency at the primary or
secondary mirror, or at the camera level.

The only element always casting a shadow is the camera box, which may come in cir-
cular, hexagonal, or square shape and with either a finite depth or just as a single layer. In
dual-mirror telescopes, the shadowing by the outline of the secondary mirror would also be
included but not the details of its segmentation (for example not rays coming through the
gaps between segments). The shadowing (circular) area corresponding to the secondary
mirror can be enlarged or reduced w.r.t. the actual secondary, and displaced along the opti-
cal axis, for a better match with shadowing by the actual telescope structure. Another com-
ponent only available with dual-mirror telescopes is a cylindrical or conical baffle around
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Figure 11.3: Relevant geometrical parameters for dual-mirror telescopes in
sim_telarray (graphics courtesy G. Maier, DESY). Note that the z axis as used
in the simulation is along the optical axis (here towards the upper right), the x axis is in
the plane of the telescope tilting (as used in this illustration), perpendicular to the optical
axis (here in the plane of the illustration towards the lower right) while the y axis, also
perpendicular to the optical axis, can be thought as going into the plane of this illustration.

the secondary, typically used for reducing nightsky and stray light falling into the camera.
A possible baffle around the primary, which may keep sunlight out in park position during
daytime, is not relevant for the infalling Cherenkov light and not implemented.

The positions of mirror segments and camera pixels are listed in separate data
files. Still, the number of parameters describing the basic telescope geometry is quite
large. Which parameters are actually active for a given telescope type depends on the
MIRROR_CLASS assignment. This includes segmented single reflectors with spherical
surface segments, single parabolic reflectors, Schwarzschild-Couder type dual-mirror tele-
scopes (segmented or non-segmented), as well as Fresnel lens optics. For all of them, the
optical axis and/or the altitude axis can be displaced with respect to the azimuth axis (only
Alt-Az mounts implemented, no equatorial mounts).

The segmented single reflectors, where the MIRROR_LIST table includes every
segment position, size, and shape, the segment heights may follow a spherical or a
parabolic shape, including intermediate radii of curvature. In that case, the parameters
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PARABOLIC_DISH, DISH_SHAPE_LENGTH, and FOCAL_LENGTH complete the shape
of the optics, with a fixed MIRROR_FOCAL_LENGTH for all segments or one calculated
from its distance to the camera center. Or the segments can be completely specified by the
corresponding table, and that may even include separate focal lengths for each mirror seg-
ment. Segments may have a circular, hexagonal, or square shape. On top of that, segments
may come with random displacement, random mis-alignment (zenith-angle dependent),
and random errors in their focal length.

For dual-mirror telescopes, the optical shapes are described by even-order polynomials.
Which can come in a monolithic shape or segmented, with more options for segment shapes
than available with segmented single reflectors. Without segmentation, both the primary
and secondary mirror are assumed to have a circular shape, with a possible hole (thought
as covered in black) in the middle. An example of relevant parameters for dual-mirror
telescopes is shown in Figure 11.3, courtesy of G. Maier.

Deformations of the mirrors (as a whole or individually) and the telescope structure
by gravity and wind load is not included, other than through the zenith-angle-dependent
effective mirror alignment error. Resulting systematic pointing errors from such defor-
mations are assumed to be corrected in the analysis by pointing corrections for the actual
instrument, while no corrections need to be applied to simulated data. Random pointing
errors come in known (measured and can be corrected) and unknown (cannot be corrected)
varieties.

11.7 Mirror positions and sizes

While early versions of sim_telarray (for the HEGRA system) just filled in all possi-
ble mirror positions in a given radial range, all current simulations with sim_hessarray
take positions of each mirror segment individually from a table. This file is only redundant
for dual-mirror telescopes where we have a different way of handling segments; see below.
The mirror definition file like hess_mirrors.dat as well as the corresponding figure
11.4 can be generated with the program plot_mirrors (or the plot alone generated with
draw_mirrors). To account for the positions of the sky CCD camera etc., two mirrors
in this specific example were commented out by hand before drawing. The old-style sim-
ple mirror configuration is no longer available, and specifying a mirror configuration file is
always necessary.

While most mirror configurations consist only of one type of mirrors the configuration
file can handle mirrors of circular, square, or hexagonal type, with a possible grading of
focal lengths etc. Even with multiple shapes and sizes on the same telescope. Which file to
use is controlled through the MIRROR_LIST parameter. The maximum number of mirrors
is defined via MAX_MIRRORS (see [6]).

Each non-empty and not commented-out line the mirror list contains four to six values,
with missing defaults set to column-specific defaults. Some configuration files include
mirror IDs after a comment separator; these IDs are not used by sim_telarray itself.
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Figure 11.4: Layout of the mirror segments on H.E.S.S. CT1 to CT4 (left) and on a CTA
MST (right). This is a bird’s eye view of a telescope pointing upwards and not a view
of a telescope pointed to the horizon. North (x) is up, West (y) is left. When turning
the telescope to point to the horizon, the x axis would be downward, y to the right when
looking from the camera side onto the mirror. The red circle and square represent the
assumed camera bodies, as far as shadowing is concerned.

1. Mirror center x position w.r.t. optical axis; units: cm. For a telescope pointing to the
horizon, x is downward (for coordinate system definitions see Section 10.3).

2. Mirror center y position w.r.t. optical axis; units: cm. For a telescope pointing to the
horizon, and looking from the camera onto the mirror, y is to the right.

3. Flat-to-flat (or circle) diameter; units: cm.
4. Mirror focal length; units: cm. A value of zero here is interpreted as either a) using

the common MIRROR_FOCAL_LENGTH value, if that is non-zero, or b) automat-
ically adapting the mirror focal length to the distance of the segment center from
the camera center, before applying random offsets and randomizing the focal length.
That mentioned distance is determined by the dish shape, depending on the dish
shape type (PARABOLIC_DISH), the nominal focal length (FOCAL_Length) and
the dish curvature (DISH_SHAPE_Length, equal to the radius of curvature for a
spherical dish shape and equal to the paraboloid ‘focal length’ for a parabolic dish).
Note: For positive values, no RANDOM_FOCAL_LENGTH based errors are added in
sim_telarray. For negative values, the sign gets inverted and random errors will
be added.

5. Shape type. 0=circular, 1=hex. with flat side parallel to y, 2=square, 3=other hex.
(default: 0).

6. z position (height above dish backplane); units: cm. Typically omitted (or zero) to
adapt to the dish shape settings.
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7. Optional comment separator (“#”, “%”, or “#%”), protecting against possible future
extensions with more parameters used by sim_telarray.

8. Optional assignment of ID or other values not used by sim_telarray itself.

In configurations with secondary mirror optics, both the primary and the secondary
mirror are treated, at least in a first step, as monolithic, of circular shape, with a cir-
cular non-transparent, non-reflecting (i.e. black) hole. The mirror configuration file
defines just the outer diameters of them, not the diameter of the hole. This file can
actually be bypassed with MIRROR_LIST=none. In that case all relevant parame-
ters are set entirely in the main configuration file, including the PRIMARY_DIAMETER
and SECONDARY_DIAMETER values – which otherwise would be taken from the di-
ameter of the first and second mirror listed (enforcing zero x and y values). Seg-
mented primary and/or secondary mirrors can be specified through optional data files
(PRIMARY_SEGMENTATION, SECONDARY_SEGMENTATION).
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Figure 11.5: Reflectivity of H.E.S.S. mirrors.

11.8 Mirror reflectivity curve
The mirror reflectivity, taken from hess_reflect.dat by default, accounts for the
wavelength dependence of typical H.E.S.S. as taken from the database of mirror mea-
surements, extended with literature data for aluminised mirrors. Steps in that table can
be arbitrary. Linear interpolation is used. Which file to use is controlled through the
MIRROR_REFLECTIVITY parameter. The default reflectivity curve is illustrated in fig-
ure 11.5. With secondary mirror optics, the secondary by default is assumed to have the
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same reflectivity as the primary but that can be changed by specifying the corresponding
data file through the MIRROR_SECONDARY_REFLECTIVITY parameter. Through the
MIRROR_DEGRADED_REFLECTION, MIRROR2_DEGRADED_REFLECTION, and/or
CAMERA_DEGRADED_EFFICIENCY parameters one can adapt to poorer actual reflec-
tivities (actually optical efficiency, including dust in/on a camera), even on a telescope-
by-telescope basis (through ’#if TELESCOPE==n’ in the config file). These param-
eters also change NSB pixel rates and currents in a consistent way. On top of that an
additional position-dependent degradation can be configured for the (primary) mirror as
PRIMARY_DEGRADED_MAP – in case of dual-mirror optics separately also for the sec-
ondary as SECONDARY_DEGRADED_MAP. On top of that a position-dependent degrading
(for example due to dust not settled uniformly or imhomogeneous camera window) can
be set at the camera entry as CAMERA_DEGRADED_MAP. Note that these maps may slow
down the ray-tracing, in particular if non-equidistant tables are used, and its impact on NSB
pixel rates and currents is not taken care of; it needs to be calculated by actual ray-tracing
and then configured with the NSB pixel rate settings.

Figure 11.6: Point spread function on-axis as a function of zenith angle. Plot with measure-
ments from R. Cornils. The dashed line corresponds to the fixed p.s.f. produced by older
versions of this program, the solid lines to the separate components produced by versions
since July 2003.

If the specified reflectivity table is recognized as a 2-D table, the angle of incidence
(in degrees w.r.t. normal incidence) is used as a second dimension in the interpolation, in
addition to the wavelength dependence always used. Note that for 1-D tables the reflectivity
is completely absorbed into the wavelength-dependent efficiency applied, for computing
efficiency reasons, before the start of the ray-tracing instead of during the ray-tracing. For
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2-D tables, the upper envelope in its projection onto the wavelength axis is applied in
this initial step while the ratio of angle-dependent to upper-envelope reflectivity is applied
during the ray-tracing procedure (separate for primary and secondary mirror in case of
dual-mirror telescopes).

11.9 Point spread function
Through the ray-tracing method, the actual point spread function of the telescope
can be reproduced simultaneously on the front of the lid (as used for star ligh mea-
surements with the lid CCD camera) and on the front of the PMT funnels. The
dependence on the angle with respect to the telescope axis is automatically repro-
duced. A defocusing effect on large zenith angle showers on the pixels is also au-
tomatically included (note that pre-defined 2.8 cm difference between lid front and
funnel front is optimized for low zenith angle H.E.S.S.-1 observations). In versions
since July 2003, the zenith angle dependence of the point spread function for stars
on the lid (see Figure 11.6 is included as well. In theses newer versions, this is
achieved through two sets of parameters in MIRROR_ALIGN_RANDOM_HORIzontal
and MIRROR_ALIGN_RANDOM_VERTical separately for y and x components in the
dish coordinate frame, while in earlier version there was only one corresponding constant
parameter in MIRROR_ALIGN_RANDOM_ANGLE.

Other parameters with an impact on the point spread function are the spread in fo-
cal lengths of the mirror tiles, RANDOM_FOCAL_Length, its random displacement
MIRROR_ALIGN_RANDOM_DISTance from the specified dish shape, and in particular
the surface quality described by MIRROR_REFLECTION_RANDOM_Angle.

11.10 Camera masts and other shadowing elements
Although too inefficient for normal use, the ray-tracing method in sim_telarray allows
for explicit simulation of the shadowing effects of camera masts and other such elements,
the camera body and the camera lid. Figure 11.7 shows a resulting shadowing pattern
for light 2◦ off-axis. A -DRAYTRACING_INTERSECT_RODS compiler flag is required
to active this. In that case, geometry definitions of the shadowing elements (except the
camera body) are taken from a file, by default from hess_masts.dat. This is controlled
through the MASTS_File parameter. With normal compilation no such file is used and
only shadowing by the camera is handled explicitly, while shadowing by other elements is
treated by the TELESCOPE_TRANSmission parameter.

11.11 Camera and trigger definition
A camera and trigger configuration (or definition) file sets the pixel type properties, the
camera rotation, the pixel positions prior to this rotation, as well as the trigger topology. A
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Figure 11.7: Shadowing by masts, camera lid etc. in a small H.E.S.S. telescope (left) and in
the big H.E.S.S. telescope CT5 (right). Bird’s eye view from above of telescopes pointing
towards zenith.

camera entrance window or the camera body are not part of it. The file actually used for
that can be changed through the CAMERA_CONFIG_FILE parameter.

The camera and trigger definition file is made up by four types of definitions (counting
all variants of trigger definitions as one type):

Rotate Defines a rotation angle (in degrees) of the whole set of pixels inside the camera,
affecting not just pixel positions but also the edges.

PixType Defines a pixel type, including the geometrical shape (circular, square, hexago-
nal) of the pixel border and of the visible cathode, the size, the depth of light collect-
ing elements (funnels) and their reflectivity (as a number) or angular acceptance (as
a file name).
Example:

PixType 1 0 0 2.100 1 4.150 5.100 "hess_funnels.dat"

Values following the ‘PixType’ keyword denote the pixel type ID, the PMT type (0
for now), the geometry type of the open photocathode area (not used with funnel
efficiency tables), the size of the open photocathode (flat-to-flat for hexagonal and
square geometry types, not used with funnel efficiency tables), the geometry type
of the funnel outer edge, the size of the funnel (flat-to-flat for hexagonal and square
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Figure 11.8: The H.E.S.S. camera in the simulation
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geometry types) and the depth of the funnel (not used with funnel efficiency tables).
If the following parameter is enclosed in double quotes it is assumed to be the name
of file containing funnel efficiency tabulated as a function of the angle to the axis,
averaged around the axis. Otherwise two more values follow: the transparency of a
pixel and the reflectivity of its walls for typical angles of incidence.

Pixel Defines mainly of which pixel type each pixel is and its position in the camera. Also
included is the assignment to electronics channels.
The complete list of the 15 required and optional parameters to the Pixel line include

PixelID A unique integer between zero and npix-1 (see below).

PixelType Corresponds to the PixType line above; must be 1.

Xpix Projected pixel x coordinate (in cm) before camera rotation.

Ypix Projected pixel y coordinate (in cm) before camera rotation.

Module (Optional; default = 0). Module number to which the pixel belongs, used
e.g. for pixel alignment with PIXELS_PARALLEL=2.

Board (Optional; default = 0). Board number.

Channel (Optional; default = 0). Input channel on electronic board; may be used in
future version for electronic cross-talk.

ModuleID (Optional; default = 0). If a module is swapped into a different place
in the camera, its module number (defined by geometry) would change, along
with all pixel coordinates, but the module ID would remain. Not currently used.
Should be hexadecimal, starting with 0x.

OnFlag (Optional; default = 1). A value of zero indicates a turned-off or missing
pixel.

QeRel (Optional; default = 1.0). Quantum efficiency (or photon detection effi-
ciency) of this pixel over the nominal value, before any random fluctuations
get applied.

GainRel (Optional; default = 1.0). Signal gain or amplification in pixel relative to
average before any random fluctuations get applied.

Dz (Optional; default = 0.0). Shift of pixel height w.r.t. nominal focal surface shape
(or module) in centimeters, positive towards the infalling light. No shift is
needed where pixels are aligned module-wise.

PixRot (Optional; default = 0.0). Pixel rotation angle (deg.).

Nx (Optional; default = 0.0). X component of non-standard pointing direction of
pixel axis is indicated by vector (Nx, Ny, 1.0).

Ny (Optional; default = 0.0). Y component of (Nx, Ny, 1.0).

Where an optional value gets used, all preceding values must be present.
Example:
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Pixel 959 1 -65.363 -34.143 59 1 7 0x76 1

The values following the ‘Pixel’ keyword are the pixel ID, the pixel type, and the
x and y coordinates. Further values indicate the pixel module (‘drawer’), the board
number within the module, the channel number on the board, and a group ID in
hexadecimal notation. The group ID (e.g. drawer ID) is not currently used in the
simulation. It may be followed by a flag indicating if the pixel is enabled (1) or dis-
abled (0). Disabled means that high voltage is off and the pixel not considered in the
trigger. If that flag is missing, the pixel is enabled by default. The drawer, board and
channel numbers are only used to indicate the configuration used in the output but
are not used internally (e.g. for crosstalks etc.) The actual number of pixels defined
in the camera configuration file is expected to match the CAMERA_PIXELs (npix)
value in the main configuration and must not exceed the MAX_PIXELS compile-time
limit.

Trigger This keyword used to have the meaning now used with ‘MajorityTrigger‘. Since
different trigger types are now supported with sim_telarray, the meaning of
the ‘Trigger‘ keyword can be assigned. The default meaning is assigned with the
DEFAULT_TRIGger configuration parameter (telescope-specific, typically in the
main configuration file or one of the files included by it). It can be re-assigned in the
camera configuration file discussed here by the DefaultTrigger keyword.

MajorityTrigger Special case for the ‘Trigger‘ keyword which applies only to the ma-
jority trigger logic with comparators or discriminators at the signal line from each
photo-sensor. By default, the ‘Trigger’ keyword is set to mean the ‘MajorityTrig-
ger’ case. Determines how many of which pixels have to exceed a threshold before
a camera triggers. There can be any number of such trigger statements. A ‘*’ for
the number of pixels required for a trigger means that it will be replaced by the per-
telescope default configured with the TRIGGER_PIXELs parameter. Any non-zero
number in the ‘Trigger’ definition overrides the default value.
Example:

Trigger * of 156 157 183 184 185 212 213

The values following the word ‘of’ are pixel ID numbers. They can be preceded by a
’+’ to indicate that this pixel must have fired, in addition to the requested multiplicity
(e.g. central pixel in the SmartPixel design).
For the majority trigger, a pixel fires when the analog channel signal ex-
ceeds DISCRIMINATOR_THRESHOLD for at least a time DISCRIMINATOR_
TIME_OVER_THRESHOLD (with pixel-to-pixel variation DISCRIMINATOR_
VAR_TIME_OVER_THRESHOLD) and an integrated charge-over-threshold of at
least DISCRIMINATOR_SIGSUM_OVER_THRESHOLD (with pixel-to-pixel vari-
ation DISCRIMINATOR_VAR_SIGSUM_OVER_THRESHOLD). The resulting out-
put signal of amplitude DISCRIMINATOR_OUTPUT_AMPlitude (with pixel-
to-pixel variation DISCRIMINATOR_OUTPUT_VAR_PERCENT, in percent) has
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a (linear) rise time of DISCRIMINATOR_RISE_TIME and a fall time of
DISCRIMINATOR_FALL_TIME, with either a fixed length DISCRIMINATOR_
GATE_LENGTH (discriminator style) or until the analog channel signal falls to a
value DISCRIMINATOR_HYSTERESIS below the threshold value but given mini-
mum length (comparator style) but minimum length as before.
For a resulting camera trigger, the sum of the discriminator/comparator output sig-
nals of the listed pixels has to exceed

(TRIGGER_PIXELS+MULTIPLICITY_OFFSET)∗
DISCRIMINATOR_OUTPUT_AMPlitude

for at least a time TELTRIG_MIN_TIME and at least a charge-over-threshold in-
tegral of TELTRIG_MIN_SIGSUM. All majority (and analog sum) trigger calcula-
tions are done in a factor four finer time intervals than the FADC intervals (depending
on preprocessor definitions during compilation).

AnalogSumTrigger Another special case of the ‘Trigger’ keyword, with identical syn-
tax but trigger conditions determined by other configuration parameters. Basically,
it works by adding up the same signals otherwise used as discriminator input, op-
tionally after clipping the individual signals, and applying a threshold after sum-
mation. There are also optional image shaping options available after signal clip-
ping. See the ASUM_SHAPING_FILE, ASUM_CLIPping, ASUM_THRESHold
and ASUM_OFFSET configuration parameters. Basically, the shaped signal (can
thus differ from the relevant pulse shape of a competing majority trigger, may be
shifted by the given time offset) and clipped at a maximum amplitude; then the re-
sulting signals of the listed pixels are added up and compared to the threshold. The
only parameter shared between analog sum and majority trigger types is the aver-
age amplitude of the signal per photoelectron, before any shaping and clipping, from
DISCRIMINATOR_AMPLITUDE.

DigitalSumTrigger The third special case of the ‘Trigger‘ keyword. In this case the dis-
criminator input signal is not used at all but only the digitized signal. The operations
applied to that signal are basically equivalent to that applied on the analog signal
for the analog sum trigger, plus some extra features not possible in analog. Cor-
responding configuration parameters include DSUM_PEDSUB (subtract pedestal?),
DSUM_OFFSET (time offset for shaping to apply), DSUM_SHAPING_FILE (shap-
ing kernel from file), DSUM_SHAPING_RENORMalize (auto-normalize ker-
nel), DSUM_CLIPping (after shaping), DSUM_PRE_CLIPping (before shap-
ing), DSUM_IGNORE_BELOW, DSUM_ZERO_CLIP, DSUM_PRESCALE, DSUM_
PRESUM_MAX, DSUM_PRESUM_SHIFT, and DSUM_THRESHold. The relevant
amplitude parameter here is FADC_AMPLITUDE since the trigger operates on the
normal digitized signal. The digital sum trigger does not use the analog channel
signals and ignores all DISCRIMINATOR_... settings.

DefaultTrigger This sets the meaning of the ‘Trigger’ keyword to either ‘Majority’,
‘AnalogSum’ or ‘DigitalSum‘. Example:
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DefaultTrigger AnalogSum
Trigger * of 1 2 3 4 5 6 7

is equivalent to

AnalogSumTrigger * of 1 2 3 4 5 6 7

The majority trigger definition can include a (analog channel) pre-summation of in-
dividual pixels into trigger-level super pixels, like the digital sum trigger can include
a (digital channel) pre-summation. Example:

MajorityTrigger * of 1[2,3,4] 5[6,7,8] 9[10,11,12]
DigitalSumTrigger * of 224[226] 64[65,66] 223[225,227]

Majority super pixels fired will be registered only under the pixel ID of the ‘master’
pixel in front of the (usually comma-separated) list of ‘slave’ pixels inside the square
brackets although all pixels contribute in a symmetric way towards the actual trigger.
Super pixels can also be prefixed by a ‘+’ to indicate that the particular super pixel
is required to have fired for a camera trigger coming from this trigger group.

The total number of trigger group definitions should not exceed the H_MAX_SECTORS
definition in the compilation of the hessio library to avoid loss of trigger information in
the resulting data file. If more than one type of trigger is used for the same camera, the
TRIGGER_DELAY_compensation parameter can be used to adjust systematic differ-
ences in delays between the trigger types (three values in the order: majority, analog sum,
digital sum), as there is only one readout window defined by the earliest trigger (and start-
ing FADC_SUM_OFFSET intervals before that trigger time).

As already mentioned, the maximum number of pixels is defined via MAX_PIXELS
(see [6]). A picture of the H.E.S.S.-I camera in a simulation is shown in figure 11.8.
The default file is hess_camera.dat. An alternative with an angle-independent
funnel efficiency of 73% is found in hess_camera_73.dat An alternate defini-
tion for a Smart-Pixel-like camera with a comparable number of pixels is found in
smartpixel_camera.dat. A collection of camera definitions used for CTA simu-
lations is illustrated in figure 11.9.

11.12 Camera window as a filter
The camera can have a window to hold off dust and humidity from the sensory and electron-
ics. This window also acts as a filter, for example to hold off infrared photons from SiPM
sensors otherwise sensitive in the IR region. If any such filter is used its transmission table
is specified by the CAMERA_FILTER parameter, by default a 1-D table (transmission as
a function of wavelength) and optionally a 2-D table (function of wavelength and angle of
incidence, w.r.t. the pixel orientation). On top of that, a wavelength- and angle-independent
transmission factor can be specified by the CAMERA_TRANSmission parameter.
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Figure 11.9: Different types of cameras in CTA telescopes (not to the same scale).
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Figure 11.10: H.E.S.S. funnel efficiencies
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The impact of the camera window on the photon path due to refraction still
needs to be implemented. The optical properties of the camera window will be de-
fined by the parameters CAMERA_WINDOW_HEIGHT, CAMERA_WINDOW_THICKness,
CAMERA_WINDOW_RADIUS, and CAMERA_WINDOW_REFIDX, with the geometrical
parameters optionally modified by the CAMERA_SCALE_FACTOR parameter. Since Fres-
nel reflection is supposed to be accounted for with CAMERA_TRANSmission and/or
CAMERA_FILTER, no rays reflected on the window surfaces are considered in the optical
ray-tracing.

11.13 Funnel angular response
Light collection in the ‘Winston cone’ funnels is implemented with two different algo-
rithms. The older, used when the pixel type definition (PixType line in the camera con-
figuration file) includes a number for the funnel reflectivity, assumes an efficiency of 100%
if the photon hits the cathode directly. Otherwise it assumes that the photon is reflected ex-
actly once with the given reflectivity and then hits the cathode. The newer algorithm takes
a data table with efficiencies as a function of the angle of incidence but does not distinguish
between direct cathode hits and single/multiple reflections. That version is used when the
pixel type definition includes a file name (enclosed in double quotes) for the funnel reflec-
tivity/efficiency. Neither the depth of the light cone nor the diameter of the open cathode
nor the funnel wall reflectivity are used in this case.

Figure 11.10 shows the efficiencies of two available data files, one with efficiencies
calculated by ray-tracing with 85% reflectivity for the funnel surfaces, taking the reflection
on the glass surface on top of the flat cathode into account, and afterwards correcting
for vertical incidence reflection on the glass surface (which already enters into quantum
efficiency measurements).
Note: The funnel response used in the default camera configuration file was changed in
June 2003 to use hess_funnels_r78.dat instead of hess_funnels.dat. The
newer file was calculated with the actual funnel geometry and 78% reflectivity of funnel
walls.

The PixType also allows for an additional wavelength dependence of the funnel ef-
ficiency (second file name in quotes). This is not interchangeable with the window filter
transmission (see section 11.12). The extra funnel efficiency table is interpreted such that
efficiency factors are not double-counted on top of that in the angle-dependence table (nor-
malized to yield no extra correction for 400 nm wavelength at the expected average inci-
dence angle). The window filter transmission, on the other hand, is always applied as an
extra factor.

11.14 Quantum efficiency curve
Quantum efficiency curves (Q.E. as a function of wavelength) from different sources have
been found to differ by a substantial amount and, thus, are one of the main uncertainty fac-
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tors in absolute sensitivity predictions (after trigger electronics response). The Q.E. curve
to use is also related with the single photo-electron (s.p.e.) response (see next section),
because a fraction of the photo-electrons either doesn’t hit the first dynode at all or is just
reflected inelastically off the first dynode (without any amplification). These effects make
up the collection efficiency.
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Figure 11.11: H.E.S.S. photomultiplier tube quantum efficiency curve

In the sim_telarray simulation the Q.E. curve is meant to account only for the
quantum efficiency itself (i.e. as obtained by measuring cathode currents), while the col-
lection efficiency is dealt separately (see next section). Figure 11.11 demonstrates that the
Q.E. measurements at Heidelberg [11] are consistent with the latest Q.E. curve from Pho-
tonis, if the different absolute sensitivities (as expressed by the Corning Blue (CB) value)
are taken into account. The default Q.E. curve for sim_telarray simulations is taken
from hess_qe2.dat and corresponds to a CB value of 11.6, which is the average from
the PMT database.

The file actually used can be changed through the QUANTUM_EFFiciency parame-
ter.

11.15 Single photo-electron response
The amplitude measurable at the anode varies from photo-electron to photo-electron. This
statistical fluctuation is accounted for through the single photo-electron (s.p.e.) response
table. For the actual amplitudes for each photo-electron random numbers are use which,
on average, represent the specified s.p.e. table. The table used in sim_telarray simu-
lations, as contained in hess_spe2.dat, is based on an electron multiplication Monte
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Carlo program with results adapted to measurements in Heidelberg. The problem with tak-
ing the measurements directly is that some noise is unavoidable and that high-amplitude
signals are, to a large extend, due to multiple photo-electron events because otherwise the
counting rate would be too low. Therefore, the PMT simulation was adapted to the rates
in measurements and then re-ran for single photo-electrons (see figure 11.12). The simu-
lation also reproduces low-amplitude events by inelastic scattering of photo-electrons on
the first dynode and, thus, accounts for most of the effects of the so-called collection ef-
ficiency. The remaining collection efficiency factor (PM_COLLECTION_EFFiciency
parameter) to be used in conjunction with this s.p.e. response table is therefore set to 1.
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Figure 11.12: Single photo-electron response (measured and simulated).

The s.p.e. response table has to be scaled such that its mean value divided by the re-
maining collection efficiency parameter is 1 and, therefore, the average signal of 100 pho-
tons converted to photo-electrons in the cathode is 100 p.e. In contrast, the experimen-
talist determines the s.p.e. response not by its mean value but by the peak. The peak in
hess_spe2.dat is at 1.17, translating the experimental gain value of 2 ·105 (number of
electrons collected at the readout for the most probable case) to a MC gain of 1.72 · 105

(defined as the average number of electrons collected).
The s.p.e. response tables also accounts for afterpulses. Since afterpulses from the

Cherenkov light itself arrives much too late to be registered with the shower, afterpulses
are only taken into account for night-sky background light, where it doesn’t matter if the
original photo-electron was a few hundred nanoseconds earlier.

The file actually used can be changed through the PM_PHOTOELECTRON_SPECTRUM
parameter.
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11.16 Single photo-electron pulse shapes
The pulse shape of the signal at the input of the comparator or discriminator logic is
an important ingredient in simulations but difficult to measure. The length of the pulse
shape of the PMT output itself can be taken as a lower limit to the pulse shape of in-
terest here. Due to preamplifier band width, the pulse shape to be used here might be
somewhat longer. Measurements in Paris and their impact on the effective area of the
H.E.S.S. system are discussed in an internal note[12]. The pulse shapes there are sig-
nificantly smaller than reported by Photonis and as implemented in the old default data
file hess_disc_shape_slow.dat (originally named hess_disc_shape.dat).
The discrepancy still needs to be resolved. As a rule of thumb: shorter pulses corre-
spond to higher amplitudes required to trigger the camera, in a similar but not exactly
the same way for night-sky background and for shower photons. The actual file to be used
is controlled through the DISCRIMINATOR_PULSE_SHAPE parameter. The pulse shape
from the mentioned H.E.S.S. note is available as hess_disc_shape-01-10.datAn-
other alternative available is hess_disc_shape_parismc.dat (originally named
pshape.dat), representing the pulse shape used for intercomparison of different sim-
ulation programs. The available shapes are compared in Figure 11.13, with arbitrary offset
of the time zero point and arbitrary scaling of the amplitudes, since sim_telarray lo-
cates the peak position and shifts the time offset and scales the amplitude accordingly.
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Figure 11.13: Several configurations for the pulse shape at the comparator.

A similar file is used for the pulse shapes seen in the digitized signals. This seems to
be measured to a better extend and is normally taken as hess_fadc_shape.dat. The
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actual file to be used is controlled through the FADC_PULSE_SHAPE parameter, in two
format variants (implicit or explicit time steps) and for either a single or two gains. Note
that any delays between the pulse positions are preserved in the resulting data.

11.17 Random number generators and seeds
In contrast to CORSIKA, sim_telarray is using a single pseudo-random number se-
quence, for multiple purposes. These purposes include the configuration stage with many
randomly chosen parameters, like random mirror panel alignments, random discriminator
output amplitudes. And they also include the event-wise (and photon-by-photon) simula-
tion stage. For some workflows it can be useful to have reproducible telescope configu-
rations but independent event simulation in multiple runs. To cope with such and other
workflows, the random number sequence can be re-initialized after the configuration stage.
By default, no such re-initialisation with a new seed value is enforced. If a second seed
value is given with the RANDOM_SEED parameter (separated by a comma), the first one
will take effect at the start and remain in effect only for the configuration while the second
seed is used to control all random numbers generated after the configuraton stage. Each
parameter can be one of

• the special word auto,

• an integer between 1 and 2147483647,

• a method : filename combination.

The auto choice (a single one being the default) results in a non-reproducible seed
(combining high-precision time, process ID, and, in particular, random content derived
from /dev/urandom).

The integer choice results in a fully reproducible set-up or entirely reproducible simu-
lation (given identical inputs).

The third choice allows to select a number from a text file which contains multiple
pre-defined seed values, one value per non-empty, non-comment line (empty lines and ‘#’
comment lines ignored). The methods available to determine which line to use for a seed,
include:

file-by-run Use the CORSIKA_RUN environment variable. Keep in mind that no input
data has been read at that point and external information on the run number is needed.

file-by-time Use a combination of seconds and microseconds of current time.

file-by-random Use an auto-generated random number (involves /dev/urandom).

The method-specific number, modulo the number of available seeds, determines which of
the pre-generated seeds will be picked and returned as the random seed. Given a file with
50 pre-generated seeds, the file-by-run method would chose the first seed for CORSIKA
run number 1 (or 51, or 101, ...), the second seed for run number 2 (or 52, etc.), and so
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on. The other methods are less predictable but over a large number of simulation runs, all
seeds should be used about as often as all others. The gen_seedlist tool can be used
to generate such seed lists in a convenient way (keep in mind that seeds should be in the
range 1 to 2147483647).

Examples of random seed settings:

RANDOM_SEED = auto
RANDOM_SEED 12345,98765
random_seed = 12345,auto
Random_Seed file-by-run:mylist.dat,auto

In addition to the seeds, the random number generator may be selectable, depending
on compilation options. If sim_telarray was compiled with -DWITH_GSL_RNG and
linked against the GNU Scientific Library, any random number generator available from
the GSL can be selected with the RANDOM_GENERATOR parameter. Otherwise only the
traditional (and default) choice RanLux (in ‘luxury level’ 3) is available. RanLux, like
most other generators, only produces 32-bit floating-point random numbers and is not the
fastest generator but is considered a safe choice. Use other generators at your own risk.

11.18 Random pixel properties
Even though there is some infrastructure in place for different types of pixels in a cam-
era, that was never used and camera configurations are currently limited to a single
PixelType (see CAMERA_CONFIG_FILE). Nevertheless, pixels are not all equal; there
can be a random scatter of a number of properties:

While all pixels (of the same PixelType, in case the single type restricted gets lifted) are
assumed to have the same shape of the quantum efficiency (QE) curve for PMTs or photon
detection efficiency (PDE) curve for SiPMs, as specified by the QUANTUM_EFFiciency
file name, the overall scale can vary randomly (by fraction QE_VARIATION) when the
camera gets defined initially. In a similar way the gain (PMT times electronics) (PM_
AVERAGE_GAIN) can vary by a fraction GAIN_VARIATION and the high voltage with
which a PMT is operated will scatter by a fraction PM_VOLTAGE_VARIATION.

However, these variations are not to be used as independent. There are two possible
camera adjustments: flatfielded or gain adjusted. In a camera with flatfielding the gain is
adjusted such that equal signal results from equal illumination, i.e. higher gain is applied
where the sensor has lower quantum efficiency. Without flatfielding it is assumed that pix-
els are adjusted to equal gains, i.e. equal single-p.e. amplitudes (within errors). Any gain
variation, either random or for flatfielding is assumed to come from voltage adjustments
(and not in the electronics), gain g and voltage U assumed to be related by g ∝ U p where
p is set as PM_GAIN_INDEX. Changing the high voltage of a PMT also changes its tran-
sit time PM_TRANSIT_TIME as proportional to one over the square root of the voltage
(basically assuming a simple resistor chain for the PMT voltage divider). In case of a
PMT with the first dynode stabilized to a fixed voltage, the fixed part of the voltage (third
and, optionally, fourth value in PM_TRANSIT_TIME) and the fixed part of the transit time
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(second value in PM_TRANSIT_TIME) are excluded here. On top of that there may be an
additional random difference in the transit time, as defined by TRANSIT_TIME_ERROR.
If the latter is set to −1, the readout interval is assumed to be adjusted, pixel by pixel, such
that resulting transit time differences are within one readout time slice. For correcting tran-
sit times by electronic means with time steps independent of the sampling frequency the
TRANSIT_TIME_COMPENSATE_STEP and TRANSIT_TIME_COMPENSATE_ERROR
can be used. The resulting transit time difference, after application of compensation if
used, is reported in the calibration data block, but only up to a random accuracy defined by
TRANSIT_TIME_CALIB_ERROR.

Although variations of the high voltage will, in reality, also result in changes in
the p.e.-to-p.e. transit time jitter and in the pulse shape, that depends on the details
of the voltage devider. For simplicity, they are assumed to be the same for all pix-
els. Also the collection efficiency – either implied by the single-p.e. response dis-
tribution (PM_PHOTOELECTRON_SPECTRUM) or explicit on top of that distribution
(PM_COLLECTION_EFFiciency) – is assumed to be independent of the high voltage.
Note that the simulated transit time jitter of Gaussian r.m.s. TRANSIT_TIME_JITTER,
includes effects due to position on the photocathode - which we don’t know since the ray-
tracing ends at the entry to the light cone - and due to the p.e. initial velocity vector.

With the majority trigger logic, there are parameters controlling per-pixel differences in
the required time over threshold (DISCRIMINATOR_VAR_TIME_OVER_THRESHOLD)
and the required charge over threshold (DISCRIMINATOR_VAR_SIGSUM_OVER_
THRESHOLD) as well as the amplitude and (minimum) width of the output sig-
nal (DISCRIMINATOR_OUTPUT_VAR_PERCENT, DISCRIMINATOR_VAR_GATE_
LENGTH).

The baseline of the digitised signal varies from pixel to pixel by FADC_VAR_
PEDESTAL and FADC_LG_VAR_PEDESTAL for high gain and low gain, respec-
tively. A common offset of all pedestals in the camera can be set through
FADC_SYSVAR_PEDESTAL and FADC_LG_SYSVAR_PEDESTAL. Where multiple in-
terlaced FADCs are used for the same channel, each has a separate pedestial, dif-
fering from others in the same channel by FADC_DEV_PEDESTAL. In principle,
pedestals are still assumed to be exactly known, unless FADC_ERR_PEDESTAL /
FADC_LG_ERR_PEDESTAL are greater than zero. Sometimes the true spread of
pedestal values can be a hindrance to effective image cleaning and a homogenisa-
tion or compensation step gets applied after readout, for a smaller spread of appar-
ent pedestals after compensation. See parameters FADC_COMPENSATE_PEDESTAL,
FADC_LG_COMPENSATE_PEDESTAL, FADC_ERR_COMPENSATE_PEDESTAL, and
FADC_LG_ERR_COMPENSATE_PEDESTAL.

Reproducing the same per-pixel settings in a telescope (as well as random misalign-
ments of mirrors etc.) is currently only possible when using a copy of the same random
number status file (RANDOM_STATE) each time or the same RANDOM_SEED (the first
seed, at least). The optional file defined by CHANNEL_SAVE_RESTORE to save such pa-
rameters from one run to another (and otherwise allow independent random numbers) may
not include all relevant variables.

79



Figure 11.14: Ray-tracing with a dual-mirror telescopes.

11.19 Special settings for dual-mirror telescopes

With MIRROR_CLASS=2 a dual-reflector optics gets simulated. The two reflec-
tors of a dual mirror telescope (see Figure 11.14) and also the focal surface
are assumed to follow an even polynomial of the distance to the telescope opti-
cal axis (PRIMARY_MIRROR_PARAMeters, SECONDARY_MIRROR_PARAMeters,
FOCAL_SURFACE_PARAMeters, with the distance to the axis evaluated in units
of PRIMARY_REF_RADIUS, SECONDARY_REF_RADIUS, and FOCAL_SURFACE_
REF_RADIUS, respectively). Apart from that the primary and secondary mirror are de-
fined by an outer diameter (PRIMARY_DIAMETER, SECONDARY_DIAMETER, obsolet-
ing the use of any MIRROR_LIST) and an inner diameter (PRIMARY_HOLE_DIAMETER,
SECONDARY_HOLE_DIAMETER), by an optional file specifying the segmentation
of the reflector (PRIMARY_SEGMENTATION, SECONDARY_SEGMENTATION, see
Figure 11.15), and by extra elements always included as shadowing elements in
the ray-tracing (SECONDARY_SHADOW_DIAMETER, SECONDARY_SHADOW_OFFSET,
SECONDARY_BAFFLE). Pixels in the (normally curved) camera focal surface can
be either parallel to the telescope optical axis (PIXELS_PARALLEL=1, that is
staggered) or aligned to look to the focal surface normal at the pixel position
(PIXELS_PARALLEL=0, see Figure 11.16). Mirror reflectivity curves can be pro-
vided separately for primary (MIRROR_REFLECTIVITY) and secondary (MIRROR_
SECONDARY_REFLECTIVITY, the special value "same" indicates to use the same ta-
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Figure 11.15: Possible but unrealistic segmentation of a dual mirror primary reflector. The
inner circle indicates the hole diameter, the outer circle the mirror diameter (the effective
ray-tracing mirror edge seen just inside that circle is due to the size of the secondary mirror,
as only impact positions of photons traced through the complete optics are shown).
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Figure 11.16: Pixel alignment types in the camera of a dual-mirror telescope with a curved
focal surface. Note that pixels_parallel=1 is the default.
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ble as for the primary). In addition to position dependent mirror degradation on the pri-
mary (PRIMARY_DEGRADED_MAP), similar degradation can be set for the secondary
(SECONDARY_DEGRADED_MAP).

11.20 Fresnel lens telescopes

With MIRROR_CLASS=3 a simplified optical simulation of a thin Fresnel lens is applied.
Instead of actually defining the steps in the optical surface, each photon sees a planar
entrance side and then immediately an inclined surface on the exit side, with the inclination
corresponding to a spherical lens of radius r = f (n−1) for a given focal length f (FOCAL_
LENGTH) and an assumed index of refraction n of the glass, so far assumed as wavelength
independent and set with the LENS_REFIDX_NOMinal parameter. The photons never
encounter the steps seen in a real Fresnel lens, the lens is infinitesimally thin, there are no
internal reflections, except where total reflection prohibits rays leaving the lens on the exit
side, and the effect of diffraction gets ignored. The size and boundary shape of the Fresnel
lens is defined by a single entry in the MIRROR_LIST file. Parameters like RANDOM_
FOCAL_LENGTH and MIRROR_ALIGN_RANDOM_DISTance should be used with care
for the single lens and best set to zero. There are no parameters specific for the Fresnel
lens optics at this point but most of the parameters for single-reflection telescopes apply by
analogy. For example, the MIRROR_REFLECTIVITY table applies for the transmission of
the lens. The CAMERA_BODY_DIAMETER and CAMERA_BODY_SHAPE are not relevant
since no shadowing by the camera applies in this case. A rather unusual (and negative)
value of MIRROR_OFFSET would be needed to place the lens (as “mirror”) in front of
the az/alt axes, while the usual values with other optics classes would have the (primary)
mirror at or behind the axes intersection.

Figure 11.17: Bypassing part or all of the ray-tracing for flatfield calibration devices in a
dual-mirror telescope.
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11.21 Bypassing the ray-tracing
Normal sim_telarray simulations would work with photon bunches hitting a telescope
fiducial sphere, trace them to the primary mirror, then from there to the camera (single re-
flection or Fresnel lens telescope) or to the secondary mirror and then on to the camera
(dual-mirror telescope). For calibration devices, the light source might be inside the tele-
scope or, with parts of a camera, in a laboratory. In such cases, parts or all of the ray-tracing
can be skipped. Either the camera front plane or the plane behind the secondary mirror is
treated as the detector fiducial sphere mid-plane, where the photon bunches get recorded.
From there, the photons only need to be followed from the camera front plane into the pix-
els or from the secondary mirror back-plane to the camera and into the pixels. For a single-
reflection or Fresnel lens telescope, any non-zero value of BYPASS_OPTICS will assume
the photons are in the camera front plane. For a dual-telescope a BYPASS_OPTICS value
of 1 will bypass the first part of the ray-tracing, assuming the photons are on the secondary-
mirror back-plane, while a value of 2 assumes them on the camera front-plane (‘focal
plane’, for a curved camera not coinciding with the actual focal surface which the pixels
would, ideally, follow). Figure 11.17 illustrates the two variants for flatfield calibration
devices.
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Chapter 12

sim_telarray configuration
parameters

12.1 Parameter definitions and parameter syntax
All sim_telarray configuration is processed with the module hconfig.c of the
hessio package. Several lists of structures of type CONFIG_ITEM are declared for this
purpose. Each structure holds

1. Keyword. The uppercase part of the configured name must be given full, the lower-
case part can be abbreviated. These parameter names (or valid abbreviations) may
then be used in upper, lower, or mixed case.

2. Type. Like ’I’ or ’Int’ for integer, ’Double’, ’Func’, ... See below.
3. Number of elements (-1 for functions).
4. Pointer to the variable holding the configuration (NULL for functions).
5. Pointer to configuration functions (NULL for variables).
6. Initial value (initial argument for functions).
7. Lower bound (if present). No boundary applies if missing or empty.
8. Upper bound (if present). No boundary applies if missing or empty.
9. Optional flag bits like, for example, CFG_HARD_BOUND to indicate that any vio-

lation of lower or upper bound (where present) should result in an error. For pa-
rameters defined without CFG_HARD_BOUND, configured values outside the given
boundaries are silently limited to the corresponding boundary.

The parameter type has to match the variable (or array of variables) where it gets stored,
including the size and signed/unsigned of integer types. Some freedom in this matching
exists for logical (boolean) type parameters - which can either be set up as an integer of
size and sign matching the unterlying variable or as a ’Bool’ variant, if that is available for
the corresponding size. The same abbreviation rules apply to the type as to the name, that
is that the upper-case part is required and the rest is optional, all case-insensitive. For a
parameter type internally declared "UInt", acceptable user-level declarations, for example
as in files hess_defaults.h or cta_defaults.h, would include "UI", "uIN", "uint" etc. Exact
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matches would be preferred for readability and safety in case of future changes to the list
of available types. Currently, it covers:

Character Integer value stored in a ’char’ variable (beware of values below zero or above 127
for reasons of portability).

UCharacter Unsigned integer value (0 to 255) stored in an ’unsigned char’ variable.
XCharacter Unsigned integer value of the same size and range as ’UCharacter’ but with values

provided as hexadecimal, for example "4a" for 74.
Short A signed integer stored in a ’short’ variable.

UShort An unsigned integer stored in an ’unsigned short’ variable.
XShort Like ’UShort’ but specified in hexadecimal, for example "ffFF" for 65535.
Integer A signed integer stored in an ’int’ variable.

UInteger An unsigned integer stored in an ’unsigned int’ variable.
XInteger Like ’UInteger’ but specified in hexadecimal.

Long A signed integer stored in a ’long’ variable.
ULong An unsigned integer stored in an ’unsigned long’ variable.
XLong Like ’ULong’ but specified in hexadecimal.

Bool A boolean logical value (0 or 1) stored in a ’bool’ variable type, if such a type is
known to the compiler or in a ’char’ variable, if not. In addition to the "0" and "1"
values, abbreviations of "False", "True", "Yes", "No", "ON", and "OFf" are accept-
able. Other integers are not accepted. These features and restrictions also apply to
potential upper and lower bounds. Listed values and bounds will be shown in integer
representation.

IBool Behaves like the "Bool" type but is stored in an ’int’ variable. Ideal for transition of
an "Integer" parameter with range 0 to 1 to a boolean type, as the underlying variable
remains the same.

UBool Also behaves like the "Bool" type but is stored in an ’unsigned int’ variable.
FLoat A floating-point value stored in a ’float’ variable.

Double (or ’Real’) A floating-point value stored in a ’double’ variable.
Text A zero-terminated character string with a maximum length (in bytes, not counting

the terminating zero byte) not exceeding the given number of elements. The as-
signed ’char *’ array needs to be large enough for that, including the additional final
zero byte. As long as the length restriction is satisfied, it is insensitive to character
encoding.

FUnction Triggers the call of the user-defined or built-in function with the given character
string as its argument. No variables are directly associated with the parameter. Re-
quires a ’-1’ as the number of elements, a NULL pointer for variables, and a non-
NULL function pointer to a matching function.

See the hessio source code documentation for details. Setting a configuration value
in the configuration file can be done by a line like

telescope_altitude 100

or
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Telescope_Altitude=100

The case of the entered keywords is ignored. The equal sign is just an optional placeholder.
Setting a vector of variables may look like any of the following:

mirror_opt = -0.0025, -0.10, 0.0
nightsky_background all: 0.049
mirror_x (9,10,13-14): 53
mirror_opt 3*0

The first form specifies each individual value. Values not entered are unchanged, either at
a value set earlier or - if never set - at the compile-time default value. The second form
sets all elements of a vector, the third form a selected subset of a vector and the fourth a
given number (3) of elements starting with the first. The different addressing schemes can
be combined, even on a single line – but that can be confusing and is not recommended.
Multiple lines are possible:

nightsky_background all: 0.049
nightsky_background (1536-2047): 0.065
nightsky_background (13): 0.040
nightsky_background (14): 0.045
nightsky_background (15): 0.053, (16): 0.052, (17): 0.49
...

The following (somewhat long) listing shows the variable declarations used for
the configuration. See the CONFIG_ITEM structures for the names of all possible
configuration parameters. Note that most lengths are in units of centimeters (as in
CORSIKA) but there are exceptions like in ALTITUDE, CONVERGENT_POSition,
CONVERGENT_DISTance, or CONVERGENT_Height where meters are used. All an-
gles are in degrees. Also note that some default or maximum values may depend on the
presence of preprocessor symbols (e.g. HESS_PHASE1 or CTA_PROD6). Filename pa-
rameters are all indicated as having a maximum length of 4095. That can be system de-
pendent, as the maximum of PATH_MAX, FILENAME_MAX (as defined in system header
files), and 1024, minus one for a trailing zero byte. The system itself may have separate
limits for the pathname part and the filename part, perhaps depending on the filesystem on
which the files are located.

12.2 Global configuration parameters
Global parameters can only be set before the configuration for the individual telescopes is
being processed (TELESCOPE undefined or zero when pre-processing the configuration
file). No telescope-specific values are possible, in contrast to parameters described in the
later sections. Global parameters for meta-information only are described in Subsection
12.4.
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12.2.1 Input and output files
• INPUT_FILE

(type: Text, max. length: 4095, default: "iact.dat")
List of input files, usually taken from command line, following any command line
options.

• PLOT_FILE
(type: Text, max. length: 4095, default: "none" /* e.g. "plot.gpl"*/)
Name of an ASCII format file for miscellaneous information. A value of "none" here
and in the following means that no such file is used.

• HISTOGRAM_FILE
(type: Text, max. length: 4095, default: "ctsim.hdata")
File with histograms (use ’hdata2hbook’ to convert to hbook or ’hdata2root’ to con-
vert to ROOT-format histogram files).

• PHOTOELECTRON_FILE
(type: Text, max. length: 4095, default: "none" /*"iact_pe.dat"*/)
Obsolete, synonym for OUTPUT_FILE.

• OUTPUT_FILE
(type: Text, max. length: 4095, default: "none" /* e.g. "ctsim.dat"*/)
Output in HESS/HEGRA-specific data format.

• IMAGE_FILE
(type: Text, max. length: 4095, default: "none" /* e.g. "image.ps"*/)
File for Postscript camera images. These are the nice plots.

• IMAGING_LIST
(type: Text, max. length: 4095, default: "none" /* e.g. "imaging.lis"*/)
File with camera hit positions of star light photons. Relevant for point-spread func-
tion checks.

• STARS
(type: Text, max. length: 4095, default: "none")
An optional file with a list of stars shining, containing one row per star with az-
imuth, altitude (both in degrees) and weighting factor for the number of photons. An
optional fourth value is the distance of the light source (note: in kilometers) or 0.
(standing for infinity). In addition to ray-tracing evaluation the stars also contribute
to the nighsky background rate in the affected pixels.

• RANDOM_STATE
(type: Text, max. length: 4095, default: "none")
The random number generator in this program can save its internal state at the be-
ginning and/or the end of execution and read it in again when started the next time.
When several runs are done in parallel they may all start with the same random
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number sequence (which may or may not be what you intended). Except for spe-
cial values (see below) this parameter would normally have a file name for stor-
ing/loading the random generator state. Since actual random number seeds are
reported in the data file, there is little remaining use for this feature. The spe-
cial value none does neither write nor read a file (changed 2023-12-14). The
special value init (none before 2023-12-14) would just write the initial state
into a file named telarray_rand.conf.used but not read an existing state
file. The special value auto indicates that the initial state should be written
into telarray_rand.conf.used-pid (pid being the sim_telarray pro-
cess ID). The auto case is also supposed to remove its state file at the end of the
program, unless program execution was interrupted.
Other values, if corresponding to existing files, would restore that into the random
generator state, after applying the (first) seed and obsoleting that. For other names
then none, init, and auto, the actual state is to be saved at the beginning and,
again, at the end of the program. A second RANDOM_SEED value would still get
applied.
The format of these files differs between the built-in Ranlux random generator and
the generators provided through the GNU Scientific Library (GSL). Attempts to load
files written for a different generator may leed to unpredictable results.

12.2.2 Global parameters for general set-up
• MOVIE

(type: IBool, items: 1, default: "0", minimum: "0", maximum: "1")
True if images for a movie to be made (one camera image per sample interval). The
resulting output goes into the file for Postscript camera images (IMAGE_FILE).

• POWER_LAW
(type: Double, items: 1, default: "2.68")
Power law of weighted spectrum. Events will be histogrammed with a weight ac-
cording to the difference between this exponent and the one used for the shower
simulations.

• ALTITUDE
(type: Double, items: 1, default: "1800.", units: meters)
Altitude of observation level [m] above sea level. It is mainly used to check that the
atmospheric transmission table corresponds to the proper altitude.

• CONVERGENT_POSition
(type: Double, items: 3, default: "0., 0., 0.", units: meters)
Reference x/y/z position [m] from where nominal viewing direction is true direction.
x is counted towards North, y towards West, and z upwards from the altitude of
the observation level, just as the telescope positions. By how much the telescope
viewing direction converges towards some point on that axis (or diverges away from
that axis) can be set by one of the telescope-specific parameters CONVERGENT_
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DISTance, CONVERGENT_Height, and CONVERGENT_Depth (and depends
on the telescope position).

• SELECT_LIGHt_component
(type: Int, items: 1, default: "0", minumum: "-1", maximum: "3")
Normal simulations will accept any photon bunch for processing. With non-zero
values of this parameter there are two ways to switch between two classes of light
sources, both aimed at different versions of CORSIKA with fluorescence light emis-
sion but other classes are possible, depending on the data. For a value of ’1’ only
bunches with positive bunch size are accepted (normal Cherenkov bunches, with or
without wavelength), for a value of ’-1’ only bunches with negative bunch size are
accepted (meant to encode fluorescence or other alternate light source). For a value
of ’2’ only bunches with zero wavelength (Cherenkov bunches without wavelength)
are accepted and for a value of ’3’ only bunches with positive wavaelength (either
Cherenkov light generated with CERWLEN enabled in CORSIKA or fluorescence
light) are accepted.

• STAR_PHOTONS
(type: Long, default: "4000")
The number of photons, randomly thrown over 1.2 times the actual telescope diam-
eter and ray-traced to the camera. Mirror reflectivity and quantum efficiencies are
taken as 100 percent for evaluating the resulting currents and random rates per pixel.

• SKY_IS_VARiable
(type: Int, items: 1, default: "0")
If true (non-zero), then sky is recalculated after pointing changes. Note that this can
be very CPU-intense and is also likely to cause problems with the NSB-dependent
pedestal offsets in DC-coupled cameras.

• ONLY_TRIGGERED_ARRAYS
(type: IBool, items: 1, default: "1")
If true (non-zero), then only showers which triggered the array are considered. If you
want to have data also for non-triggered showers, set this to zero.

• ONLY_TRIGGERED_TELESCOPES
(type: IBool, items: 1, default: "1")
If true (non-zero), then only triggered telescopes are read out. If you want to have
data also for non-triggered telescopes, set this to zero.

• ARRAY_TRIGGERs
(type: Text, max. length: 4095, default: "none")
If present (value not "none"), this parameters indicates the name of a file with multi-
ple combinations of telescopes from which a valid stereo trigger is accepted. These
lines can also include specific coincidence gate widths and different telescope multi-
plicities for each line. Example:
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Trigger 2 of 2, 3, 5, 6 to 59, 97 to 168 width 1000

• ARRAY_WINDOW
(type: Double, items: 1, default: "100", units: nanoseconds)
The length of a coincidence window of the default stereo triggers, after correc-
tion of fixed (cable length, focal length, etc.) and variable (view direction) de-
lays. This value is overriden by the values in the file which may be specified by
ARRAY_TRIGGERs.

• ARRAY_CLOCK_WINDOW
(type: Double, items: 1, default: "0.", units: nanoseconds)
The array-wide time values when the readout in each telescope was started may
contain MC-true information in the light arrival zero-point. That is unphysical but
necessary to place the photo-electron lists properly w.r.t. the pulse traces. Otherwise
this value, if non-zero, can be used to scramble any such zero-point information as
single random offset (flat between zero and the given value) will be added to all
telescope readout start values.

• SAVE_CALIBRATION_PE
(type: Int, items: 1, default: "0", minimum: "0", maximum: "1")
Separate from the option to save the list of signal photo-electrons in external events
read from the input (usually shower events), saving the signal photo-electrons pro-
duced by the laser or LED light in internal calibration events can be enabled with
this parameter set to 1. The SAVE_PE_WITH_AMPlitude controls both for ex-
ternal (shower) events and internal calibration events if random amplitudes are to be
reported in addition to times.

• SAVE_PE_WITH_AMPlitude
(type: Int, items: 1, default: "0", minimum: "0", maximum: "3")
True if photo-electron data is to be stored with the resulting amplitudes (in mean-p.e.
units) in addition to the arrival times. Storing of photo-electron data should be acti-
vated separately (see SAVE_PHOTONS (bit 1) and STORE_PHOTOELECTRONS pa-
rameters) but non-zero values of this parameter will also activate SAVE_PHOTONS
bit 1. Storing p.e. in internal calibration events is controlled separately by
SAVE_CALIBRATION_PE.

• SAVE_PHOTONS
(type: Int, items: 1, default: "0", minimum: "0", maximum: "3" or "7")
True if to save photon data (from the CORSIKA photon bunches) and/or the list of
Cherenkov photo-electrons registered to the output file. Set bit 0 on (value 1 or 3)
to save CORSIKA photon bunches and set bit 1 on (value 2 or 3) to save photo-
electrons. If sim_telarray got compiled with -DSTORE_PIX_PHOTONS,
bit 2 can be used to switch between storing of the total number of photons in-
cident onto each pixel (SAVE_PHOTONS=2) to selecting only photons in the
300-550 nm wavelength range (SAVE_PHOTONS=6). When compiling with
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-DSTORE_PIX_PHOTONS=2, bit 2 is always on. (That compile-time option costs
significant CPU time in either case, as the usual short-cuts to bypass ray-tracing for
most photons cannot be applied.)

• CHANNEL_SAVE_RESTORE
(type: Text, max. length: 4095, default: "none")
File to save channel parameter data. If such a file is given and not present, the random
parameters are saved. If the file is present, parameters are restored from it. This is
useful if several simulations should use the same random deviations of quantum
efficiencies, high voltages etc. but differ in other random properties not related to
camera response.

• MAXIMUM_EVENTS
(type: Int, items: 1, default: "0", minimum: "0")
In case a simulation test is not supposed to go over the full length of the input data
but finish up after a given number of events encountered on the input, set a non-zero
value here.

• MAXIMUM_TRIGGERED_EVENTS
(type: Int, items: 1, default: "0", minimum: "0")
In case a simulation test is not supposed to go over the full length of the input data
but finish up after a given number of events have triggered the telescope system, set
a non-zero value here.

• IGNORE_NONTRIGgered_showers
(type: IBool, items: 1, default: "0", minimum: "0", maximum: "1")
If this flag is true (1), Monte Carlo data is only written for showers/events that ac-
tually triggered the telescope system. This may be useful if most simulated showers
are below threshold and the amount of data should be kept as low as possible. The
drawback of setting this flag is that calculations of effective areas, spectra and so
on can be done only on the basis of nominal simulated shower numbers (per core
distance or energy interval) and so on. Studying for example systematic differences
between triggered and non-triggered showers becomes completely impossible.

• MC_ONLY_TRIGGERED_showers
(type: IBool, items: 1, default: "0", minimum: "0", maximum: "1")
An alias to the IGNORE_NONTRIGgered_showers keyword.

• IGNORE_MC_DATA
(type: IBool, items: 1, default: "0", minimum: "0", maximum: "1")
If this flag is true (1), Monte Carlo specific data is omitted from the output, thus
trying to look pretty much like real measured data. This concerns in particular the
amount of data stored.

• IOBUF_MAXimum
(type: Long, items: 1, default: "200000000", minimum: "100000")
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The buffers for input and output of eventio data are limited to a maximum size which
can be defined by this parameter.

• IOBUF_OUTPUT_MAXimum
(type: Long, items: 1, default: "20000000", minimum: "100000")
The maximum size of the I/O buffer for output data, including raw data for all tele-
scopes (in bytes).

• RANDOM_GENERATOR
(type: Text, max. length: 59, default: "Ranlux")
Define the random number generator to be used. Unless compiled with
-DWITH_GSL_RNG the only valid and known generator is "Ranlux". When us-
ing the GNU Scientific Library for random number generators, this can be "Ranlux",
"mt19937", "taus", "Ranlxd2", or "GSL:" plus the name of any other GSL-based gen-
erator, or "GSL_RNG_TYPE" to obtain the generator from the environment variable
of that name.
Note that, although the built-in and the GSL-based Ranlux generator produce the
same sequence of ’flat distribution’ random numbers (for identical seeds), the Gaus-
sian and Poisson distribution numbers are derived in different ways from the flat
distribution numbers. Simulated events will therefore differ.

• RANDOM_SEED
(type: Text, max. length: ..., default: "auto")
Sim_telarray normally generates an automatic random number seed from differ-
ent sources. Each run will then be unique, even with different optics and electronics
random settings. To avoid user mistakes resulting in running again and again with
the same random number sequence this is also the recommended way. If a fixed
random number seed is needed for specific comparisons, debugging, etc., it can be
set as a positive integer in this parameter. As an extension, there can be a comma-
separated second value which – if it is non-empty and not "0" (zero) – is used to
set a new random number generator seed after the configuration stage, with "auto"
or a negative number again resulting in an auto-generated seed value. One possible
application could be "1234,auto" for a user-defined seed in the configuration stage
(reproduceable setup, "1234" just being an example value) but independent NSB
photo-electrons and independent detection efficiencies for each use of the program
in the later stages.
To allow groups of simulation runs to use the same random detector parameters, it
is possible to select pre-configured seeds from a file, following one of several strate-
gies. For each of them, the number of suitable lines in the given text file with one
integer per line is counted. A chosen integer modulo the number of lines determining
which line is to be used. For strategy file-by-run: the chosen integer is based
on the CORSIKA_RUN environment variable. For file-by-time: it is based
on the time (seconds and microseconds), for file-by-random: some data from
/dev/urandom plus time plus process ID get used. A second seed of "auto" is

92



highly recommended in such a case. Example:
random_seed=file-by-run:random_seeds.txt,auto

• ALWAYS_AWEIGHTs
(type: Int, items: 1, default: "0", minimum: "-1", maximum: "1")
If this switch is set to 1, output data always contains the area weights for each MC
event, even if core positions (or actually the array offsets) of the events were thrown
in a uniform distribution over the whole area. When the input data contained no area
weights they are calculated.
If the switch is set to -1, output never contains the area weights for MC events, even
if events were thrown in a non-uniform distribution.
If the switch is set to 0, area weights are written to output if they were found in the
input.

• ALL_WL_RANDOM
(type: IBool, items: 1, default: "0", minimum: "0", maximum: "1")
There is a special variant of CORSIKA to mark direct Cherenkov light by the primary
particles (like iron nuclei) through a wavelength of 1 instead of the usual 0. This
would normally be interpreted as a wavelength of 1 nm, resulting in undetectable
photons. If this variable is set to 1, even non-zero wavelengths are randomized be-
tween the limits. Thus, showers simulated with this special variant of CORSIKA can
be processed once with direct light included and once with direct light ignored.

12.2.3 Atmospheric transparency table filename
The extinction of Cherenkov light (either by absorption or by scattering) is expressed by a
table of optical depths (negative log of the probability to reach ground level) as a function
of wavelength and starting altitude. These are typically based on calculations with the
MODTRAN or 3S tools. These tables can be tweaked for more or less aerosols, additional
absorbing layers etc. without going through MODTRAN or 3S again, for example with
atmtrans_interpol. An experimental and very simple way of including an additional
absorbing layer is available if sim_telarray gets compiled with -DEXTRA_CLOUD
but the recommended way would be to come up with a corresponding transmission table.

• ATMOSPHERIC_TRANSMISSION
(type: Text, max. length: 4095, default: "hess_atmo_trans.dat")
A file with optical thickness as a function of emission altitude and wavelength. There
is a variety of such tables available, all calculated with the MODTRAN program. If
the file contains more levels than supported (MAX_TRANS_HEIGHT), this will
result in a configuration error.
Note: In sim_telarray versions before 2023-08-28, any extra levels got simply
ignored.

• CLOUD_HEIGHT
(type: Double, items: 1, default: "-1000.", minimum: "-1000.", maximum:
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"150000.", units: meters, compilation definition required: EXTRA_CLOUD)
In addition to the optical depth table in the file specified by
ATMOSPHERIC_TRANSMISSION, a geometrically thin layer of wavelength-
indendent (gray) extinction can be added (compilation with -DEXTRA_CLOUD re-
quired). This parameter specifies the height of this layer above sea level. Unit, like
ALTITUDE, is in meters. Values below ALTITUDE indicate that no such layer is
present.

• CLOUD_TRANSMISSION
(type: Double, items: 1, default: "1.0", minimum: "0.0", maximum: "1.0", compila-
tion definition required: EXTRA_CLOUD)
See CLOUD_HEIGHT. This parameter specifies the fraction of light transmitted
through the extra absorbing layer.

12.2.4 Source direction and reference position

• SOURCE_AZIMUTH
(type: Double, items: 1, default: "0.", units: degrees)
Azimuth angle of source or 0. The value ’0.’ has a special meaning: the telescope
azimuth value is used. Azimuth is counted from North towards East. Note that this is
different from the settings in the CORSIKA INPUTS file where azimuth is counted
from magnetic South towards magnetic East. This parameter is only used for shower
analysis, but not for the simulation itself.

• SOURCE_ALTITUDE
(type: Double, items: 1, default: "0.", units: degrees)
Altitude angle of source or 0. See SOURCE_AZIMUTH.

• REFERENCE_POSITION
(type: Double, items: 3, default: "0., 0., 750.", units: centimeters !!)
Reference position with respect to the observation level. This position is used in
calculating the shower core distance from the ‘array’. This distance is used for filling
some histograms.

12.2.5 Other quasi-global parameters

• MAXIMUM_TELESCOPES
(type: Int, items: 1, default: "16", minimum: "1")
The maximum number of telescopes that are configured at program startup. This
should be at least as large as the number of telescopes used in the CORSIKA sim-
ulation and at most as large as the hardcoded limit MAX_TEL (currently by de-
fault 16 but modified by the compile-time configuration options, see mc_aux.h).
If sim_telarray was compiled with HESS_PHASE_1 defined, the default and
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maximum possible is only 4. Other configurations may allow for hundreds of tele-
scopes. For efficiency reasons, it should normally be set to the number of telescopes
simulated with CORSIKA.

• BASE_TELESCOPE_NUMBER
(type: Int, items: 1, default: "1")
The number at which ‘official’ telescope numbers (usually counted in natural num-
bers, i.e. from 1 upwards) start. If a single telescope simulated should correspond to
CT3, you could set this to 3.

12.3 Telescope-specific parameters
These parameters can differ from one telescope to another. Use #if TELESCOPE==...
in the chosen configuration file if individual values are intended. Otherwise they apply
to all telescopes. Note: On the command line, it is not possible to distinguish between
telescopes.

12.3.1 Uncategorized so far (were incorrectly in global section)
• MIN_PHOTONS

(type: Double, items: 1, default: "-1.")
Minimum no. of photons required before doing simulation. Note: This will save
a lot of CPU time when many of the simulated showers are of too low energies or
too far away to trigger the telescopes. In events where a telescope receives less
light, no full simulation is attempted. The number corresponds to the sum over the
CORSIKA photon bunches and thus is before atmospheric absorption, etc. etc. With
H.E.S.S. simulations, I am usually using values between 200 and 500. Optimum
values depend on the wavelength range used, on the radius of the enclosing sphere,
on the trigger thresholds and other parameters. The safe (but inefficient) default is
not to ignore any events. I usually check with fewer showers what the lowest number
of photons is in triggered events, and then leave factor of 2 or so margin.

• MIN_PHOTOELECTRONS
(type: Int, items: 1, default: "-1")
Minimum no. of detected photoelectrons required in a camera before running the
more CPU-intense electronics simulation. Note: This can save CPU time in ad-
dition to MIN_PHOTONS. This cut is applied after ray-tracing all photons to the
pixels and deciding if photons are detected. A MIN_PHOTONS cut is gener-
ally much more effective since it can bypass the complete simulation. A cut in
MIN_PHOTOELECTRONS should be used only in addition to the former. It adds
particularly in efficiency when most photons miss the camera.

• STORE_PHOTOELECTRONS
(type: Int, items: 1, default: "-1")
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While the SAVE_PHOTONS=2 configuration option will save photo-electron data for
all events, this parameter allows to set a lower limit on the number of photo-electrons
which must get registered before deciding to store them. Setting it to a value of zero
or bigger (default: -1) will automatically enable the corresponding SAVE_PHOTONS
bit. It should be cross-checked that the MIN_PHOTONS parameter is unlikely to
result in fewer than the given number of photo-electrons, as no attempt is made to
trace photons through the telescope and produce any photo-electrons if there are too
few photons in the first place.

• TAILCUT_SCALE
(type: Double, items: 1, default: "1.0", minimum: "0.0", maximum: "10")
The special scheme for selecting pixels belonging to a shower image as implemented
in sim_telarray (as opposed to the traditional two-level tailcut scheme) has mul-
tiple thresholds for the various levels of confidence that a pixel actually belongs to
the shower image. Instead of making them individually configurable, a common
scale factor can be applied to all of them.

12.3.2 Telescopes

• TELESCOPE_PHI
(type: Double, items: 1, default: "0")
Azimuth angle of the telescope(s). Unit: degrees from North towards East. When
this is set in the global context, it defines the nominal array pointing position.
Individual telescopes may differ from that, for example when setting up custom
convergent/divergent patterns that cannot be represented by the CONVERGENT_
DISTance, CONVERGENT_Height, and CONVERGENT_DEPTH parameters. If
the parameter is set on the sim_telarray command line with a ’-C’ option, that
would override any individual setting in the configuration file. Make sure to use the
-W option (weak configuration) if you expect values in the configuration file to take
priority.

• TELESCOPE_AZIMUTH
(type: Double, items: 1, default: "0", units: degrees)
This is simply a synonym to TELESCOPE_PHI.

• TELESCOPE_THETA
(type: Double, items: 1, default: "0", units: degrees)
Zenith angle of the telescope. Same rules as for TELESCOPE_PHI for configuration
versus command-line priority.

• TELESCOPE_ALTITUDE
(type: Func) This is an alternative to giving a zenith angle [degrees]
(TELESCOPE_THETA will be set to 90−TELESCOPE_ALTITUDE). Do not con-
fuse this parameter with the (global) site ALTITUDE parameter.
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• TELESCOPE_RANDOM_ANGLE
(type: Double, items: 1, default: "0.001", units: degrees)
Random (known) misalignment of the telescope in each axis [degrees].

• TELESCOPE_RANDOM_ERROR
(type: Double, items: 1, default: "0.001", units: degrees )
Random (unknown) alignment error of the telescope in each axis [degrees].

• CONVERGENT_DISTance
(type: Double, items: 1, default: "0.", units: meters)
Distance from array reference position [m] where viewing directions should inter-
sect. If this distance is negative, the telescopes are aligned for divergent pointing,
to directions opposite to where they would be pointing for convergence at the given
height below observation level.

• CONVERGENT_Height
(type: Double, items: 1, default: "0.", units: meters)
Height above obs. level [m] where viewing directions should intersect. If this height
is negative, the telescopes are aligned for divergent pointing, to directions opposite to
where they would be pointing for convergence at the given height below observation
level. If non-zero, the CONVERGENT_DISTance value gets ignored.

• CONVERGENT_DEPTH
(type: Double, items: 1, default: "0.", units: g/cm2)
Atmospheric depth [g/cm2] where viewing directions should intersect. It is counted
from the top of the atmosphere along the nominal viewing direction of the tele-
scope array. A negative value indicates that divergent pointing is requested. If non-
zero, both CONVERGENT_Height and CONVERGENT_DISTANCE get ignored.
If custom setting of the viewing direction is chosen via TELESCOPE_THETA and
TELESCOPE_PHI, no convergence correction on top of that is likely needed.

• RANDOM_VIEWING_RING
(type: Double, items: 2, default: "all: 0.", minimum: "0.", maximum: "10.", units:
degrees)
Minimum and maximum radius of ring [degrees] around basic phi/theta direction to
which system viewing direction is randomised. Note that this does not have the same
effect as the VIEWCONE option in CORSIKA, in particular near zenith. When there
are stars included in the simulation and their positions on the camera should change
accordingly, you also have to set the SKY_IS_VARiable parameter – but note that
pretty much CPU time is then spent on ray-tracing star light.

• REVERSE_MODE
(type: IBool, items: 1, default: "0", minimum: "0", maximum: "1")
If 1, then reverse positioning is used (telescope altitude angle is beyond zenith posi-
tion).
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• TELESCOPE_TRANSmission
(type: Double, items: MAX_TELTRANS, default: "0.89,0,0,0,0,0")
Accounting for absorption/shadowing by masts and other telescope structure
elements not explicitly included in the sim_telarray ray-tracing. Although
actual absorption varies a bit over the field of view, it is taken as flat in the default
value shown here. A value of 0.89 means that 11% of all light is assumed to be
absorbed by masts. If compiled with the RAYTRACING_INTERSECT_RODS
pre-processor definition, the default value is 1.00, as the absorption should get
calculated explicitly.
New: extension for angle-dependent transmission (effect of shadowing) adds
more parameters. The extra parameters are: function number (0: constant,
1: variable T (θ)) and the necessary parameters. Function number 1 is
T (θ) = p0/(1.+ p2((sinθ)/r3)

p4) for p5 = 0 or T (θ) = p0/(1.+ p2((sinθ)/r3)
p4)p5

for p5 6= 0 where r3 = p3π/180 and p0, p2, p3, p4, p5 are the first, and third to sixth
values; with default values of p4 = 2, p3 = 0.5d/ f when these are missing/zero.
The p5 parameter may not be available/supported and is effectively zero/unused if
not.
This parameter or set of parameters (if angle-dependent) is typically derived by
fitting the ratio of effective geometrical mirror area obtained by a detailed ray-
tracing tool devided by the equivalent area obtained with the simplified ray-tracing
in sim_telarray, as a function of the angle of incidence θ w.r.t. the optical axis.
It is intended as a geometrical factor only. Other (wavelength-independent) factors
decreasing the optical efficiency include MIRROR_DEGRADED_REFLECTION,
MIRROR2_DEGRADED_REFLECTION (dual-mirror telescopes only), and
CAMERA_DEGRADED_EFFICIENCY.

• MASTS_File
(type: Func, default: "hess_masts.dat")
If sim_telarray was compiled with the RAYTRACING_INTERSECT_RODS
pre-processor definition, a file with the geometry of masts and additional elements is
read and explicitly accounted for in the ray-tracing. Since this is very CPU-intense,
it is not recommended for normal use. Note that TELESCOPE_TRANSmission is
ignored then (set to 1.0) in order not to count the masts twice. For efficiency rea-
sons, this parameter is normally not available, and no masts explicitly included in
the raytacing.

12.3.3 Mirrors

Different categories of optical set-ups

• MIRROR_CLASS
(type: Int, items: 1, default: "0", minimum: "0", maximum: "3")
Allows to switch from the usual segmented primary mirror optics with spher-
ical mirror tiles (0) to alternate configurations. This includes a parabolic pri-
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mary (1), made of a single piece, and a secondary mirror optics (2), with pri-
mary and secondary each made of a single piece. Many of the other optics
parameters do not apply when the alternate designs are chosen. For mirror
class 1 only the focal length applies as well as the surface quality. For class
2 not even the focal length applies. For this type, the optical surfaces are en-
tirely defined by polynomials, as set up with PRIMARY_MIRROR_PARAMeters,
SECONDARY_MIRROR_PARAMeters, and FOCAL_SURFACE_PARAMeters.
Segmentation of the primary and secondary reflector is optional and set up with
PRIMARY_SEGMENTATION and SECONDARY_SEGMENTATION. Class 3 repre-
sents a simple Fresnel lens implementation.

• BYPASS_OPTICS
(type: Int, items: 1, default: "0", minimum: "0", maximum: "2")
Experimental, may need special compilation flag. Bypass the ray-tracing in the
telescope reflectors completely or partically. For a single-reflector telescope values
of 1 or 2 both correspond to complete bypassin. For dual-reflector telescopes a value
of 1 bypasses only reflection on the primary mirror, a value of two both reflections.
In case of complete bypassing the camera focal plane is assumed to be at the fiducial
sphere mid-plane (camera looking up), in case of partial bypassing the center of the
secondary is at the center of the fiducial sphere and the secondary is looking up.
These settings only make sense with simulated artificial light sources, e.g. camera
calibration or testing devices, and not with CORSIKA shower simulations.

For most or all types of optical configurations

• FOCAL_Length
(type: Double, items: 1, default: "1500", minimum: "10", maximum: "10000")
Nominal overall focal length of whole telescope. This basically defines the image
scale (near the centre of the field of view). For segmented primary focus telescopes
this determines the alignment of the segments and the separation from the reflector,
at its center to the camera. For secondary mirror configurations this value is not
actually used in the optics simulation but only reported as a nominal value, typically
close to the effective focal length. Unit: cm.

• EFFECTIVE_FOCAL_Length
(type: Double, items: 5, default: "0", minimum: "0", maximum: "10000")
Due to asymmetric image abberations, in particule for single-reflector telescopes,
segmented or not, the inverse image ‘plate scale’ or, more precisely the ratio of off-
center distance in the focal plane (projection for curved focal surface) to the tangent
of the off-axis angle does not match the nominal focal plane very well. This effective
value here should be better suitable for shower reconstruction than the nominal focal
length and is supposed to be based on ray-tracing simulations of point sources, at
distances typical of showers and imaged onto the actual focal surface at the level of
the pixel entrances. Non-zero values will be reported as-is in the output data and
may be used for the built-in reconstruction in sim_telarray. If no value is given,
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sim_telarray may estimate a value, based on optics type and f/D ratio, for
its internal purpose but will not report such an estimate in the output data. Due to
subtle effects of image cleaning (and thus image intensity) on cutting off parts of the
asymmetric point-spread function, analysis programs should use this value or, if not
available, an estimate of it only as a starting point and evaluate the actual analysis-
specific and perhaps image intensity and NSB dependent real effective focal length
by itself.
A single value is sufficient for a axisymmetric PSF distribution. For a mirror more
elongated in one direction than in the other direction, or a mirror offset from the
optical axis, there may be further non-zero values. The complete list:

1. Mean effective length for all directions of incidence.

2. Effective length for incidence directions in mirror/camera x− z plane, if non-
zero.

3. Effective length for incidence directions in mirror/camera y− z plane, if non-
zero.

4. Any displacement along x in the focal plane from asymmetric PSF behavior.

5. Any displacement along y in the focal plane from asymmetric PSF behavior.

Unit for all: cm.

• EFFECTIVE_MIRROR_AREA
(type: Double, items: 1, default: "0", minimum: "0")
Meta-parameter only, not used by sim_telarray. It may be extracted
for use by testeff or other tools and used for scaling the expected
amount of Cherenkov or NSB light. Supposed to correspond to the mirror
area obtained with on-axis sim_telarray PSF ray-tracing, without applying
TELESCOPE_TRANSMISSION and other corrections or effeciency factors. That
means the only shadowing applied at this stage is usually due to camera body and/or
secondardy mirror. Unit: cm2.

• MIRRORS
(type: Int, items: 1, default: "1", minimum: "1", maximum: MAX_MIRRORS)
Number of mirrors on the telescope. In the typical case with a list of mirror positions
etc. (see MIRROR_LIST) this is meant to match the number of mirrors specified in
that file. For secondary-mirror configurations (MIRROR_CLASS=2) it is supposed
to be 2 (segmentation being not counted for that). For single paraboloid mirrors
or Fresnel lens optics, the intended value is 1. Actually, the default value of "1"
is a safe choice, effectively replaced by the real number of mirrors. Therefore, the
recommendation is to leave the default value untouched. Other values might be still
useful as a (limited) safeguard against accidentally using the wrong mirror list.

• MIRROR_REFLECTION_RANDOM_Angle
(type: Double, items: 3, default: "0.0066,0.,0.", minimum: "0.0", maximum: "2.0",
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units: degrees)
Gaussian random fluctuations of reflection angles, due to small-scale surface de-
viations, with one or two components. The first parameter is the projected r.m.s.
of the first component. If two components are used, the second parameter is
the fraction following the second component and the third parameter is the pro-
jected r.m.s. of that second component. The value of 0.0066 degrees together
with RANDOM_FOCAL_Length of 7.4 cm was adapted to measurements of single
H.E.S.S.-I mirror spot sizes in Namibia. Unit: degrees (except for second parame-
ter).

• MIRROR_REFLECTION_RANDOM_Table
(type: Text, max. length: 4095, default: "none")
Not yet implemented. If a file name for a table of random reflec-
tion angle intensities (relative intensity per solid angle versus random an-
gle in degrees) is given, it replaces the normal distribution(s) produced with
MIRROR_REFLECTION_RANDOM_Angle.

• MIRROR_DEGRADED_REFLECTION
(type: Double, items: 1, default: "1.0" /* 1.0 means as good as in reflectivity table
*/, minimum: "0.0", "1.0")
The overall optical efficiency or throughput is by the given factor worse than
the efficiency from nominal tables (same factor at all wavelengths). This might
include actually degraded reflectivity, dust on the mirror(s), or on/in the cam-
era. It used to be the only degradation parameter in older sim_telarray
versions and may still represent the combined effect rather than accounting
for the degraded optical efficiency of the primary mirror (this parameter and
also PRIMARY_DEGRADED_MAP), the optional secondary mirror (MIRROR2_
DEGRADED_REFLECTION and SECONDARY_DEGRADED_MAP), and the camera
(CAMERA_DEGRADED_EFFICIENCY, CAMERA_DEGRADED_MAP) separately.
What matters in normal simulation is only the overall product of the efficiencies.
Breaking it down into mirror(s) and/or camera degradation only matters where
BYPASS_OPTICS becomes involved. Then this parameter is actually interpreted
as being for reflection on the primary mirror (would not be relevant for a flat-fielding
light source directly illuminating the camera or illuminating it via reflection on the
secondary mirror). The nightsky background in each pixel is also scaled by the same
factor (even if the actual simulation bypasses optical ray-tracing). For wavelength-
dependent degradations you need adapted reflectivity, window transmission, light
cone efficiency etc. tables. For a Fresnel-lens telescope, this would correspond to a
degraded optical efficiency of the lens.

• MIRROR2_DEGRADED_REFLECTION
(type: Double, items: 1, default: "1.0" /* 1.0 means as good as in secondary mirror
reflectivity table */, minimum: "0.0", "1.0")
Similar to MIRROR_DEGRADED_REFLECTION but strictly interpreted as being
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for reflection on the secondary mirror of a dual-mirror telescope, and still gets ap-
plied in simulations where only the reflection on the primary mirror is bypassd
(for example a flat-fielding light source illuminating the camera via reflection on
the secondary). For a single-reflector telescope it is always ignored. See also
SECONDARY_DEGRADED_MAP.

• PRIMARY_DEGRADED_MAP
(type: Text, max. length: 4095, default: "none")
An optional position-dependent map of degradation factors for the primary mirror
only. Expected format is the rpolator x/y/z format (nd=3). Acceptable values are in
the range between 0.0 and 1.0. This degradation gets applied on top of MIRROR_
DEGRADED_REFLECTION. Note that the impact of it on the nightsky background
is not automatically accounted for and must be evaluated separately and included in
the configured NSB pixel p.e. rates. Therefore, it is recommended to use a map with
an average efficiency of 1.0 and use MIRROR_DEGRADED_REFLECTION for the
overall degradation.
Tables with equidistant spacing in both x and y are highly recommended because the
interpolation is faster.

• SECONDARY_DEGRADED_MAP
(type: Text, max. length: 4095, default: "none")
Same as PRIMARY_DEGRADED_MAP, applying to the secondary mirror in dual-
mirror optics only. It gets applied on top of MIRROR2_DEGRADED_REFLECTION
in the actual ray-tracing. Like PRIMARY_DEGRADED_MAP it is not applied to scale
down the configured NSB pixel p.e. rates. See recommendations there.

• MIRROR_REFLECTIVITY
(type: Text, max. length: 4095, default: "hess_reflect.dat")
Mirror reflectivity (wavelength dependent) is loaded from the given file. Note that
with secondary mirror optics this is still the reflectivity for one mirror and is thus
applied twice.

• MIRROR_SECONDARY_REFLECTIVITY
(type: Text, max. length: 4095, default: "same")
The reflectivity curve of the secondary reflector in a dual-mirror configuration, by
default assumed to be identical to the primary.

For all kinds of segmented primary mirror configurations

• DISH_SHAPE_Length
(type: Double, items: 1, default: "0", minimum: "0", maximum: "10000", units:
centimeters)
Dish curvature length, best equal to focal length. For a Davies-Cotton dish, this is
radius of the sphere on which the mirror tiles are positioned. For a parabolic dish,
this is the focal length of the paraboloid on which the mirrors are placed. This is not
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normally needed but only when variations to the standard shapes are tried out, e.g.
intermediate shapes between parabolic and Davies-Cotton. For the solid secondary
mirror optics (mirror class 2), this parameter does not apply. Unit: cm. Normally 0
to adapt it to overall focal length.

• MIRROR_FOCAL_Length
(type: Double, items: 1, default: "0", minimum: "10", maximum: "10000", units:
centimeters)
Standard focal length of mirror tiles. This parameter is only used if the focal lengths
of the mirror tiles in the mirror configuration file are 0. For a parabolic dish any
non-zero value will then force all mirror tiles to have the same focal lengths (and
which should then match the average distance of the parabolic dish from the focus,
not exactly the overall focal length). For the solid secondary mirror optics (mirror
class 2), this parameter does not apply. Unit: cm. Normally 0 to adapt it to overall
focal length.

• PARABOLIC_DISH
(type: Int, items: 1, default: "0", minimum: "0", maximum: "1")
Allow replacing spherical dish outline (Davies-Cotton) by a parabolic dish with
isochronous on-axis propagation time but slightly worse off-axis imaging quality.
Mirror tiles still have spherical shape then but their focal lengths are adapted to the
distance from the focus (since the geometric mean of minimum and maximum radius
of curvature of the paraboloid is very close to that distance). For the solid secondary
mirror optics (mirror class 2), this parameter does not apply.

• GRADING_OF_FOCAL_Length
(type: Double, items: 1, default: "0.")
Gradual change of focal length from inner to outer mirrors, starting from Davies-
Cotton design. Not recommended any more. Use explicit values in the mirror list
file instead.

• RANDOM_FOCAL_Length
(type: Double, items: 1, default: "7.4, 0.", units: both centimeters)
Random error in mirror facet focal lengths in a segmented single-dish reflector. Unit:
cm. These parameters get only applied if the focal lengths in the mirror list file
(MIRROR_LIST) are zero (automatic) or negative (individual with error). For posi-
tive focal lengths in that list (definite values) the random focal length value does not
get applied. The first parameter sets a Gaussian distribution, the second a top-hat
distribution – which can be combined. (Historical note: The default value of 7.4 cm
together with MIRROR_REFLECTION_RANDOM_Angle of 0.0066 degrees was
adapted to measurements of single HESS mirror spot sizes in Namibia.)

• FOCUS_OFFSET
(type: Double, items: 4, default: "2.8, 28., 0., 0.", units: cm,degrees,cm,cm)
Distance of the starlight focus from the camera pixels (light guides) entry [cm]. In
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telescopes without dynamic focusing capability (either through mirror alignment and
camera positioning) this is best set such that starlight gets focused onto the camera
lid while showers are focused onto the pixel entry. Positive values indicate that the
pixel entries are – for the incoming light – behind the starlight focal surface, as ap-
propriate for focusing at a finite object distance. For MIRROR_CLASS = 1 or 2 this
is further from the primary mirror, at a distance of focal length plus focus offset from
the (virtual) center of the reflector. For MIRROR_CLASS = 3 it is further from the
secondary mirror and for MIRROR_CLASS = 4 it is further from the Fresnel lens.
The zenith angle dependence is experimental and not used by default. It includes
a reference zenith angle θ0 at which the nominal value applies and a coefficient
for the dependence on the cosine and on the sine of the zenith angle (see also
MIRROR_ALIGN_RANDOM_HORIzontal but note that components are added
linear for the focus offset, as in ∆ f = ∆0 +∆c +∆s, for ∆0 being the first parame-
ter, ∆c(θ) = (cos(θ)− cos(θ0))kc, and ∆s(θ) = (sin(θ)− sin(θ0))ks where θ0 is the
second, kc the third, and ks the fourth parameter.

• MIRROR_OFFSET
(type: Double, items: 1, default: "130.", units: centimeters)
Offset of mirror backplane from fixed point of telescope mount (if axes intersect)
or from the altitude rotation axis, along the direction of the optical axis. Positive
if fixed point (or altitude axis) is between the mirror backplane and the focus or, in
other words, the center of the primary mirror is behind/below the altitude rotation
axis. Unit: cm.

• AXES_OFFSETs
(type: Double, items: 2, default: "0.,0.", units: centimeters)
Geometric offsets to be used in case that the azimuth, altitude, and optical axis do
not intersect at the reference point (the center of the fiducial sphere in CORSIKA
simulations). The first value is a horizontal offset between the (vertical) azimuth
axis and the (horizontal) altitude rotation axis. A positive value corresponds to an
altitude axis towards the reflector. If the altitude axis is on the optical axis, the
second parameter is zero. Otherwise it represents the displacement perpendicular to
the optical axis and the altitude axis of the altitude rotation axis w.r.t to the reflector.
If both values are non-zero but equal, the optical axis coincides with the azimuth axis
for vertical pointing.

• MIRROR_F_SCALE
(type: Double, items: MAX_MIRRORS, default: "all: 1.", minimum: "1.0", maxi-
mum: "1.0")
List of focal length scaling factors (for each mirror individually).

• MIRROR_ALIGN_RANDOM_ANGLE
(type: Double, items: 1, default: "0.0030", units: degrees)
Obsolete parameter now superceded with MIRROR_ALIGN_RANDOM_
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HORIzontal and MIRROR_ALIGN_RANDOM_VERTical. It can be repro-
duced if the third and fourth value of those is set to zero and the first component
of those is set to the same value. Fluctuations of the mirror alignment angle with
respect to nominal alignment. Unit: degrees.

• MIRROR_ALIGN_RANDOM_HORIzontal
(type: Double, items: 4, default: "0.0035, 28., 0.023, 0.0", units: deg/deg/deg/deg)
Fluctuations of the mirror alignment angle with respect to nominal alignment in the
horizontal component (in azimuth or y direction in dish coordinates) are parametrized
by four values. First a constant minimum value σ0, second a zenith angle θ0 a which
the minimum is reached (that is typically where alignments were done), third a term
kc used in σc = (cos(θ)− cos(θ0))kc, and fourth a term ks used in σs = (sin(θ)−
sin(θ0))ks. The three terms are added up as independent (i.e. by squares; therefore
the square of the horizontal mirror alignment error is σ2 = σ2

0+σ2
c +σ2

s ). The default
values are based on a fit to the measured point spread functions of H.E.S.S. CT2 and
CT3 in Namibia, with the single mirror point-spread function adapted beforehand.
Note that, since this affects the angles of the mirrors, the impact on the combined
spot size is twice as large. Units: all in degrees.

• MIRROR_ALIGN_RANDOM_VERTical
(type: Double, items: 4, default: "0.0034, 28., 0.01, 0.0", units: deg/deg/deg/deg)
Fluctuations of the mirror alignment angle with respect to nominal alignment in the
vertical component (in altitude or x direction in dish coordinates). See the MIRROR_
ALIGN_RANDOM_HORIzontal for details. Units: all in degrees.

• MIRROR_ALIGN_RANDOM_DISTance
(type: Double, items: 1, default: "2.0", units: centimeters)
Fluctuations in the aligned distance from the focus. Unit: cm.

• MIRROR_OPT
(type: Double, items: 3, default: "0,0,0")
Optimisation parameters relative to simple Davies-Cotton design. Not used in many
years since there are more explicit ways now to configure the mirror set-up. Depre-
cated.

• FLIP_MIRRORS
(type: Int, items: 1, default: "0", minimum: "0", maximum: "1")
If this parameter is non-zero, the mirror configuration is flipped over the x = y axis,
i.e. the x and y coordinates of each mirror tile are swapped and hexagonal mirrors of
type 1 are changed into type 3, and vice versa. Since off-axis PSF evaluation in the
y-z plane may use this parameter, it is recommended to set up the mirror list file such
that it corresponds to flip_mirrors=0.
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For secondary mirror optics only

• PRIMARY_DIAMETER
(type: Double, items: 1, default: "0.", units: centimeters)
The outer diameter of the primary reflector, only used in case no MIRROR_LIST file
is used (i.e. MIRROR_LIST=none). If the primary mirror is segmented (PRIMARY_
SEGMENTATION), no reflection is possible at a distance from the optical axis of
more than half the diameter, effectively clipping the outer edge of the segments.
Units: in cm.

• PRIMARY_HOLE_DIAMETER
(type: Double, items: 1, default: "0.", units: centimeters)
The primary mirror may have a central hole since the mirror there would be basically
obstructed by a large secondary. With a segmented primary, it effectively clips the
inner edge of the segments. Units: in cm.

• PRIMARY_MIRROR_PARAMeters
(type: Double, items: MAX_NPAR_MIRR, default: "all: 0.", units depend on
PRIMARY_REF_RADIUS)
Defines the position of the primary mirror along the optical axis and its shape. The
first parameter (p0) is the offset of the mirror with respect to the common reference
point defined by MIRROR_OFFSET, with positive values indicating that the centre
of the primary (assuming it has no central hole) is above the reference point. Apart
from that, a parameter pi adds a term pir(2i) to the height of the mirror at radial
offset r. A parabolic primary will have the second parameter (p1) at a positive value
and all further parameters at 0. (which can be omitted since this is the pre-defined
default). Units: all in cm (for radius r also in cm).

• PRIMARY_REF_RADIUS
(type: Double, items: 1, default: "1.0", units: centimeters)
The length scale (in cm) to which the PRIMARY_MIRROR_PARAMeters param-
eters apply. Typical values could be 1.0 or the focal length of the primary. Only
applicable for MIRROR_CLASS=2. Units: in cm.

• PRIMARY_SEGMENTATION
(type: String, default: "none")
The name of a file with the segments or segment groups of the primary reflector. If
not active (value "none") then the primary is assumed to be of one circular piece,
with an optional central hole. The outer and inner diameter still apply, even in case
of segmentation.
The segmentation files (both for primary and secondary) have lines of the following
syntax:

type nseg ...
where ’type’ is one of RINGsegments, SQUAREsegments, (Y)HEXsegments,
CIRCULARsegments, or POLYgonsegments, and ’nseg’ is the number of segments
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(1 except for ring segments). The additional parameters after nseg depends on the
segment type. For RINGsegments (shortest abbreviation: RING, case ignored) it is

RINGsegments nseg rmin rmax dphi [ phi0 [ gap ] ]
(with zero implied for missing phi0 or gap values) and for POLYgonsegments it is

POLYgonsegments 1 rot x1[, ]y1 x2[, ]y2 x3[, ]y3 [ ... ]
listing all the corners (with or without the last one being the same point as the first
one) while for all other types it is

type 1 x y diam [ rot ]
For ring segments ’rmin’ and ’rmax’ are the minimum and maximum projected
radius, ’dphi’ is the azimuthal angle subtended per segment, and ’phi0’ is the angle
where the first segment starts. The ’gap’ parameter specifies a fixed-width gap
between neighbouring segments, with half the gap size being clipped off from
either (azimuth) side of a segment. For the other segment types, always specified
individually (nseg=1), ’x’ and ’y’ are the projected position of the segment center,
’diam’ is the (flat-to-flat for square and hexagon) diameter, measured perpendicular
to the surface normal in the segment center, and ’phi0’ is the rotation angle of the
segment. At angle 0 there are two sides parallel to the x-axis for both SQUARE-
segments and HEXsegments (a corner of the hexagon pointing towards x), and two
sides parallel to the y-axis for YHEXsegments. Any part of a segment inside the
PRIMARY_HOLE_DIAMETER or outside the PRIMARY_DIAMETER is clipped
off.

• SECONDARY_DIAMETER
(type: Double, items: 1, default: "0.", units: centimeters)
The outer diameter of the secondary reflector, only used in case no MIRROR_LIST
file is used (i.e. MIRROR_LIST=none). With a segmented secondary, it effectively
clips the outer edge of the segments. Units: in cm.

• SECONDARY_HOLE_DIAMETER
(type: Double, items: 1, default: "0.", units: centimeters)
The diameter of any non-reflective but not transparent (black) central part of the
secondary mirror in a dual-mirror telescope (with MIRROR_CLASS=2). With a seg-
mented secondary, it effectively clips the inner edge of the segments. Units: in cm.

• SECONDARY_SHADOW_DIAMETER
(type: Double, items: 1, default: "-1.", units: centimeters)
The diameter of any non-reflective but not transparent (black) central part of the
secondary mirror in a dual-mirror telescope (with MIRROR_CLASS=2). A value
of −1 indicates that the same value as for the reflective diameter of the secondary
SECONDARY_DIAMETER is to be used. Units: in cm.

• SECONDARY_SHADOW_OFFSET
(type: Double, items: 1, default: "0.", units: centimeters)
The secondary mirror shadowing element is normally assumed at the level of the

107



edge of the secondary. If this parameter is non-zero, it can be set at any posi-
tion above the center of the primary mirror (with MIRROR_CLASS=2). The ref-
erence point is the same as for primary, secondary, camera, or baffle (correct values
should thus be around the first of the SECONDARY_MIRROR_PARAMeters times
SECONDARY_REF_RADIUS, see also SECONDARY_BAFFLE). Even if placed in
front of the secondary, it will not be used for photons reflected from the primary to
the secondary or from the secondary to the camera, only for the photons incident
onto the primary. Units: in cm.

• SECONDARY_BAFFLE
(type: Double, items: 3 to 5, default: "all: 0.", units: centimeters)
Defines a baffle around the secondary mirror (with MIRROR_CLASS=2) to
keep NSB light from falling directly into the camera. The values are z1,
z2, r1, plus optionally dr and r2. The first two values define the begin-
ning and end of the baffle along the optical axis, counted from the primary
center, which means a z value of SECONDARY_REF_RADIUS times the first
SECONDARY_MIRROR_PARAMeters value is at the height of the center of the
secondary. The radius of an open cylinder or cone shape at the corresponding z val-
ues is set by the r1 and r2 values. For now only cylinder accepted (r2 = r1 or r2 = 0).
The optional dr value specifies the wall thickness of the baffle, with r1 and r2 being
inner radii in case of finite wall thickness. Absence of a baffle is indicated by r1 = 0.
Shadowing by the baffle is applied both to incoming photons and to photons reflected
from the primary to the secondary mirror. Units: all in cm.

• SECONDARY_MIRROR_PARAMeters
(type: Double, items: MAX_NPAR_MIRR, default: "all: 0.", units depend on
SECONDARY_REF_RADIUS)
Defines the position of the secondary mirror along the optical axis and its shape.
They are defined just like PRIMARY_MIRROR_PARAMeters except that the sec-
ondary mirror looks the other way, i.e. p0 will usually be negative since in the coor-
dinate frame of the secondary, it is ‘below’ the common reference point. A concave
secondary, reducing the focal length if placed between the primary and its focus, will
have p1 > 0. A convex secondary (e.g. for Cassegrain or Ritchey-Chrétien optics),
enlarging the focal length, will have p1 < 0. Units: all in cm (for radius r also in
cm).

• SECONDARY_REF_RADIUS
(type: Double, items: 1, default: "1.0", units: centimeters)
The length scale (in cm) to which the SECONDARY_MIRROR_PARAMeters pa-
rameters apply. Typical values could be 1.0 or the focal length of the secondary or
the primary. Only applicable for MIRROR_CLASS=2. Units: in cm.

• SECONDARY_SEGMENTATION
(type: String, default: "none")
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The name of a file with the segments or segment groups of the secondary reflec-
tor. If not active (value "none") then the secondary is assumed to be of one circular
piece, with an optional central hole. The outer and inner diameter still apply, even
in case of segmentation. See PRIMARY_SEGMENTATION for the file syntax, ex-
cept that SECONDARY_DIAMETER applies instead of PRIMARY_DIAMETER and
SECONDARY_HOLE_DIAMETER instead of PRIMARY_HOLE_DIAMETER.

• FOCAL_SURFACE_PARAMeters
(type: Double, items: MAX_NPAR_MIRR, default: "all: 0.", units depend on
FOCAL_SURFACE_REF_RADIUS)
Defines the position of the focal surface along the optical axis and its off-axis
shape. They are defined just like PRIMARY_MIRROR_PARAMeters. The
FOCUS_OFFSET still applies, but with a curved focal surface only in the camera
centre, such that star light would be focused on the camera lid surface but light from
the typical distance of the shower maximum would be focused on the pixel entrance.
Note that this offset may be impractibly small with secondary mirrors reducing the
plate scale. The direction of the incoming rays is not transformed into the normal
plane of the focal surface, thus corresponding to pixels shifted w.r.t. to a plane. Ac-
tual implementations, if really following a curved shape (technically difficult), may
differ. Units: all in cm (for radius r also in cm).

• FOCAL_SURFACE_REF_RADIUS
(type: Double, items: 1, default: "1.0", units: centimeters)
The length scale (in cm) to which the FOCAL_SURFACE_PARAMeters parame-
ters apply. Only applicable for MIRROR_CLASS=2. Units: in cm.

• PIXELS_PARALLEL
(type: Int, items 1, default: "1")
A value of 1 indicates, that pixels are only shifted parallel to the optical axis. Pixel
surfaces remain perpendicular to the optical axis. A value of 0 indicates that the
pixel is oriented such that the surface is aligned with the focal surface (pixel axis
parallel to focal surface normal). A value of 2 places all pixels belonging to the
same module (as configured in ’Pixels’ lines in the CAMERA_CONFIG_FILE) on
a common plane, with its orientation along the normal to the focal surface in the
module center (c.o.g. of pixels) and with zero mean displacements of pixels along
the z axis. A value of 3 (=2+1) has all pixels in a common plane per module and
all of the modules (and thus all of the pixels) looking parallel to the optical axis.
The ‘height’ (in z) of the module is again the average of where individually placed
pixels would be (zero mean displacement in module). An extension to the camera
definition file even allows for pixels to be configured individually and not exactly
following the focal surface (in both height and orientation). Only applicable for
MIRROR_CLASS=2. For an illustration see Figure 11.16.
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For Fresnel-lens optics only

• LENS_REFIDX_NOMinal
(type: Double, items: 1, default: "1.50", minimum: "1.001", maximum: "5.0")
The nominal index of refraction of the material of a Fresnel lens (used for calculating
the necessary radius of curvature) and its actual wavelength-independent index of
refraction in the absence of an actual table of the wavelength dependence. Only
applicable for MIRROR_CLASS=3. Units: in cm.

File with list of individual mirror positions

The actual number of mirrors (unless exceeding MAX_MIRRORS) is just the number of
useful lines in the mirror list file.

• MIRROR_LIST
(type: Text, max. length: 4095, default: "hess_mirrors.dat")
List of mirror positions. If such a file is given, all direct mirror positions are ignored.
Columns in this data file are:

1. mirror x position [cm],

2. mirror y position [cm],

3. flat-to-flat diameter [cm],

4. focal length [cm] (a value of zero will be replaced by the MIRROR_FOCAL_
LENGTH parameter (plus random), positive values are used as-is, negative val-
ues will get a RANDOM_FOCAL_LENGTH added),

5. shape type (0: circular, 1/3: hexagon, 2: square),

6. mirror z position (optional) [cm] (a value of zero means an automati-
cally generated position depending on dish shape type (spherical/parabolic,
PARABOLIC_DISH), nominal focal length (FOCAL_Length) and dish cur-
vature (DISH_SHAPE_Length).

For dual-mirror optics this file can be used to define the diameters of primary and
secondary (circular shape required) but can be turned off (value "none") and these
diameters instead directly set with the PRIMARY_DIAMETER and SECONDARY_
DIAMETER parameters, the recommended procedure. If the mirror list file is used
for dual-mirror optics, the primary is the first mirror in the list, the secondary the
second one, both taken on-axis. For more details and for optional further columns
see Section 11.7.

Direct mirror positions (obsolete and not used in H.E.S.S./CTA simulations)

These parameters, historically used in HEGRA CT simulations, are no longer available.
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• MIRROR_X
(type: Double, items: MAX_MIRRORS, default: "all: 0.")
X position of all mirrors. Unit: cm.

• MIRROR_Y
(type: Double, items: MAX_MIRRORS, default: "all: 0.")
Y position of all mirrors. Unit: cm.

• MIRROR_Diameter
(type: Double, items: MAX_MIRRORS, default: "all: 0")
Diameters of all mirrors. For MIRROR_CLASS=2 and MIRROR_LIST=none, the
diameters of primary and secondary mirrors can be specified here. Unit: cm.

• MIRROR_TYPE
(type: Int, items: MAX_MIRRORS, default: "all: 0", minimum: "0", maximum:
"2")
Type: 0 (circ.), 1 (hex, flat -> x), 2 (hex, flat edge -> y).

12.3.4 Camera

All camera types

• CAMERA_TYPE
(type: Int, items: 1, default: "3", minimum: "3", maximum: "3")
Obsolete and disabled types 1 (hexagonal pixels/camera) and 2 (square) were used
without camera definition file. Only mentioned for historical reasons. For many
years now only type 3 (flexible camera configuration) is available, with pixels etc.
set up in a camera definition file.

• CAMERA_PIXELs
(type: Int, items: 1, default: "960", minimum: "1", maximum: MAX_PIXELS)
Number of pixels in camera (allowed values depend on compile-time definitions).
Must match the number of pixels set up in the camera definition file.

• CAMERA_BODY_SHAPE
(type: Int, items: 1, default: "0", minimum: "0", maximum: "3")
Shape type of camera body (for shadowing). Values as for other shape types: 0=
circular (default), 1= hexagonal with two sides parallel to y axis, 2= square, 3=
hexagonal with two sides parallel to x axis.

• CAMERA_BODY_DIAMETER
(type: Double, items: 1, default: "160", minimum: "0", maximum: "1000", units:
centimeters)
Diameter of camera body (for shadowing). Flat-to-flat for square and hexagonal
shapes. Unit: cm.
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• CAMERA_BODY_OFFSET
(type: Double, items: 1, default: "0", units: centimeters)
While for traditional IACTs, mirrors would generally be aligned such that stars get
focused on the camera lid, thus the camera front by definition being in the (starlight)
focal plane, this is not universally the case. Like FOCUS_OFFSET allows for for
an offset of the pixel entrance, this parameter (not yet implemented) allows for an
offset of the camera body (only used for shadowing). Positive values indicate that
the camera body front is – for the incoming light – behind the starlight focal plane
(MIRROR_CLASS = 1 or 2: further from the primary mirror; MIRROR_CLASS = 3:
further from the secondary mirror). Unit: cm.

• CAMERA_DEPTH
(type: Double, items: 1, default: "0", minimum: "0", maximum: "1000", units:
centimeters)
Depth of a camera body (for shadowing). If non-zero, shadowing is checked both at
the height of the camera front and the camera depth. Unit: cm.

• CAMERA_TRANSmission
(type: Double, items: 1, default: "1.00", minimum: "0.01", maximum: "1.00")
Global and wavelength-independent transmission factor of the camera (including any
plexiglass window).

• CAMERA_FILTER
(type: Text, max. length: 4095, default: "none")
Wavelength dependence of the camera transmission, independent of the pixel type
and the angle of incidence. If a file name is provided, the table (wavelength
and efficiency columns) will be loaded and interpolated. The corresponding ef-
ficiency factors will be applied on top of the global CAMERA_TRANSmission
factor, and on top of any pixel-type dependent efficiency (both angular and by
wavelength), according to the PixType configuration lines in the file specified
by CAMERA_CONFIG_FILE. The file is, by default, assumed to be a 1-D ta-
ble (wavelength-dependent only, in nanometers) but, with a #@RPOL@ header line
(see section 11.3 can be marked and used as a 2-D table (wavelength- and angle-
dependent), with the incidence angles specified in the file in units of degrees but
internally converted to radians.

• CAMERA_WINDOW_HEIGHT
(type: Double, items: 1, default: "0.0", minimum: "0.0")
Height of the inner surface of the camera window above the pixel entrance (or
photo-sensor, if without light cones), at the camera center. If there is a non-unity
CAMERA_SCALE_FACTOR parameter, the scaling gets applied to this and the fol-
lowing window geometry parameters. Not yet implemented. Unit: cm.

• CAMERA_WINDOW_THICKness
(type: Double, items: 1, default: "0.0", minimum: "0.0")
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Thickness of the camera window material, above the the camera center. No impact
on the photon optical path for zero thickness. Not yet implemented. Unit: cm.

• CAMERA_WINDOW_RADIUS
(type: Double, items: 2, default: "0.0", minimum: "0.0")
Use zero radii for flat windows. Otherwise these are the radius of curvature of the
inner surface and, optionally, the outer surface. If the inner surface has a non-zero
radius but the outer a zero radius, the outer radius is supposed to be the inner radius
plus the CAMERA_WINDOW_THICKness, resulting in a curved window of constant
thickness. Not yet implemented. Unit: cm.

• CAMERA_WINDOW_REFIDX
(type: Double, items: 1, default: "1.0", minimum: "1.0")
Index of refraction of the camera window material. No refraction considered for a
value of 1.0 (the index of refraction of air being rather irrelevant for this purpose).
Not yet implemented.

• CAMERA_DEGRADED_EFFICIENCY
(type: Double, items: 1, default: "1.0", minimum: "0.0", "1.0")
While MIRROR_DEGRADED_REFLECTION and MIRROR2_DEGRADED_
REFLECTION no longer have any effect (other than for NSB calculations) if
BYPASS_OPTICS is set to ignore the corresponding optical surface, any degrada-
tion of the camera itself will still take effect. Without any optics bypassing, only
the product of camera, primary and secondary mirror degradation (for dual-mirror
telescopes) or the product of camera and mirror/lens degradation (for all other
telescope types) matters.

• CAMERA_DEGRADED_MAP
(type: Text, max. length: 4095, default: "none")
Like the PRIMARY_DEGRADED_MAP and, for dual-mirror telescopes, the
SECONDARY_DEGRADED_MAP this is a filename for a position-dependent degra-
dation of optical efficiency, in that case at the camera entry (focal plane for single-
reflector or Fresnel lens, focal surface for dual-mirror). Expected format of the file is
the rpolator x/y/z format (nd=3). Acceptable values are in the range between 0.0 and
1.0. This degradation gets applied on top of CAMERA_DEGRADED_EFFICIENCY
and is not accounted for in the NSB pixel p.e. rate calculations (and in particular not
for a localized NSB reduction). Tables with equidistant spacing in both x and y are
highly recommended.

For flexible camera type only

This applies to the H.E.S.S. and CTA variant of the simulation (camera type 3). Camera
type 3 is the only type supported with current versions of sim_telarray.

• CAMERA_CONFIG_FILE
(type: Text, max. length: 4095, default: "hess_camera.dat")
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Additional configuration file for more flexible camera configuration. Pixel types,
positions of all pixels, and the circuitry for trigger decisions is defined there.

• CAMERA_SCALE_FACTOR
(type: Double, items: 1, default: "1.0", minimum: "0.1", maximum: "10")
Scales all pixel positions and sizes from the camera configuration file at the same
time. Useful when changing the focal length and keeping the angular scale of the
camera constant. The same scaling factor also applies to geometrical parameters
of the camera window - but any resulting bulk absorption changes in the window
material require a matching CAMERA_FILTER table.

For fixed hexagonal/square camera types only (obsolete)

This applies to the HEGRA variant of the simulation (camera types 1 and 2). You cannot
set them in current versions of sim_telarray. Obsolete and removed.

• FRONT_VIEW
(type: Int, items: 1, default: "0", minimum: "0", maximum: "1")
Obsolete. Set if camera co-ordinates are as seen from front.

• PIXEL_SIZE
(type: Double, items: 1, default: "3.9", minimum: "0.1", maximum: "100")
Obsolete. Pixel size (flat to flat). U: cm.

• PIXEL_DEPTH
(type: Double, items: 1, default: "4.0", minimum: "0.0", maximum: "100")
Obsolete. Depth of PM below pixel entrance.

• CATHODE_DIAMETER
(type: Double, items: 1, default: "2.1", minimum: "0.1", maximum: "100.")
Obsolete. Photocathode diameter. Unit: cm.

• LIGHTGUIDE_GAP
(type: Double, items: 1, default: "0.01", minimum: "0.", maximum: "1.")
Obsolete. Insensitive gap between the lightguides of neighbouring pixels.

• LIGHTGUIDE_REFlectivity
(type: Double, items: 1, default: "0.85", minimum: "0", "1")
Obsolete. Reflectivity of the light guide material in front of the camera.

12.3.5 Photomultipliers or SiPM sensors
• QUANTUM_EFFiciency

(type: Text, max. length: 4095, default: "hess_qe2.dat")
File name for quantum efficiency curve. Currently only one quantum efficiency curve
is used, even if several different pixel types would be defined.

114



• PM_COLLECTION_EFFiciency
(type: Double, items: 1, default: "1.00", minimum: "0.01", maximum: "1.00")
Photoelectron collection efficiency in the photomultiplier first stage. The default
value of 1.0 is meant to be used together with a single-photo-electron response dis-
tribution which includes the low-amplitude signals.

• PM_AVERAGE_GAIN
(type: Double, items: 1, default: "1.72e5" /* 2e5/1.16 */, minimum: "1e4", maxi-
mum: "3e7") Only used for DC currents from NSB pixel rates.

• QE_VARIATION
(type: Double, items: 1, default: "0.04" /* From HESS PMT database (Corning blue)
*/, "0.0")
Quantum efficiency variation between PMTs. Unit: fraction of average Q.E.

• ADJUST_GAIN
(type: Double, items: 1, default: "1.0", minimum: "0.1", maximum: "10.")
Common multiplicative adjustment for FADC and discriminator/comparator ampli-
tude and PMT gain.

• PM_GAIN_INDEX
(type: Double, items: 1, default: "5.5" /* From HESS PMT database */, minimum:
"0.0", maximum: "15.0") Gain rises as given power of the PMT voltage. A value
of zero turns off any voltage variation to adjust gains for compensating QE, thus not
affecting pixel transit times. For a PMT where the first dynode is stabilized (see
PM_TRANSIT_TIME) this applies only to the variable part of the voltage.

• GAIN_VARIATION
(type: Double, items: 1, default: "0.02", minimum: "0.0")
By how the gain may vary between PMTs after the voltage has been adjusted for
approximately the same gains. Unit: fraction.

• FLATFIELDING
(type: Int, items: 1, default: "1", minimum: "0", maximum: "1")
If enabled, the gains in pixels with higher-than-average QE are decreased to achieve
the same signal from the same illumination. If disabled, the gains are adjusted to
have equal single-p.e. amplitudes.

• PIXEL_CELLS
(type: Int, items: 1, default: "0", minimum: "0")
If this value is non-zero, pixel saturation should correspond to the limited number
of cells in a pixel (of SiPM type) which each can only fire once during the typical
arrival time spread of Cherenkov photons. The presence of a non-zero value does not
imply any microscopic model of the pixel structure.

• PM_VOLTAGE_VARIATION
(type: Double, items: 1, default: "0.03" /* HESS PMT database: 6% */, minimum:
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"0.0")
Variations of transit times are usually caused by needing different voltages to reach
the same gains. Unit: fraction of the total nominal voltage including the voltage
between cathode and first dynode, even if that is stabilized. Example: For PMTs
with a total nominal voltage of 900 V and the first dynode fixed to 300 V, a value
of 0.05 (5%) corresponds to 45 V r.m.s. voltage variation applied to the later stages
of the dynode chain (and its related transit time). Note: The fact that the default
variation is much smaller than found in the H.E.S.S. PMT database ist justified if
PMT are sorted by voltages into drawers.

• PM_TRANSIT_TIME
(type: Double, items: 4, default: "20.,0.,0.,0.", minimum: "0")
Value 1: Total transit time of the PMT at the average/nominal voltage. Value 2:
Fixed transit time between cathode and first dynode, in case of the first dynode being
stabilized. Use zero for a passive divider. Value 3: The fixed voltage (or fraction
of total nominal voltage) applied to a stabilized first dynode. Use zero for a passive
divider. Value 4: Total nominal voltage. If zero (or one), value 3 is assumed to
represent the fraction of the total nominal voltage. Units: nanoseconds, nanoseconds,
Volts or fraction, Volts.

• TRANSIT_TIME_JITTER
(type: Double, items: 1, default: ".75", minimum: "0.0")
Jitter of individual photo-electrons in nanoseconds (r.m.s. value). Unit: nanosec-
onds.

• TRANSIT_TIME_ERROR
(type: Double, items: 1, default: "0.0", minimum: "-1.0")
Extra errors (r.m.s.) in transit time, not related to high voltage. A value of -1 has a
special interpretation (see text). Unit: nanoseconds.

• TRANSIT_TIME_CALIB_ERROR
(type: Double, items: 1, default: "0.0", minimum: "0.0")
Accuracy with which the actual signal delay due to transit time variation and corre-
sponding compensation can be determined. Unit: nanoseconds.

• TRANSIT_TIME_COMPENSATE_STEP
(type: Double, items: 1, default: "0.0", minimum: "0.0")
If signal delays can be compensated independent of the sampling, this is the time step
in which this compensation can be done. A value of zero means no compensation is
applied. The same compensation is applied to all channels. Unit: nanoseconds.

• TRANSIT_TIME_COMPENSATE_ERROR
(type: Double, items: 1, default: "0.0", minimum: "0.0")
An extra error (r.m.s.) in how well the number of steps for transit time compensation
can be determined before the compensation is applied. Unit: nanoseconds.
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• DEAD_PIXELS
(type: Int, items: MAX_DEAD_PIXELS, default: "all: -1")
List of broken pixels. Value of ’-1’ terminates the list.

• DEAD_PIXEL_PROBABILITY
(type: Double, items: 1, default: "0.", minimum: "0.0", maximum: "1.0")
In addition to listed DEAD_PIXELS each pixel has a probability of being completely
dead in all of its channels.

• DEAD_BOARD_PROBABILITY
(type: Double, items: 1, default: "0.", minimum: "0.0", maximum: "1.0")
In addition to listed DEAD_PIXELS and randomly dead pixels according to DEAD_
PIXEL_PROBABILITY all pixels connected to the same board (or card) in the same
module (or drawer) are set as dead according to a given probability.

• DEAD_MODULE_PROBABILITY
(type: Double, items: 1, default: "0.", minimum: "0.0", maximum: "1.0")
In addition to dead pixels and dead boards/cards (see DEAD_BOARD_
PROBABILITY) all pixels in the same module (or drawer) are set as dead according
to a given probability.

• PM_PHOTOELECTRON_SPECTRUM
(type: Text, max. length: 4095, default: "hess_spe2.dat")
File name for single p.e. response distribution. Usually not equidistant.

• PM_SPE_TABLE_SIZE
(type: Int, items: 1, default: "10000", minimum: "1000", maximum: "20000")
Size of look-up table for creating random numbers according to the given single p.e.
spectrum (only used with the VERY_FAST_SPE compile-time option).

• PHOTON_DELAY
(type: Double, items: 1, default: "0.0", units nanoseconds)
An additional delay added to the arrival times of all photons at the photosensors.
Unit: ns.

12.3.6 Additional afterpulsing
The usual photo-electron amplitude spectra include the afterpulsing case folded in in its
third column. In order to be more flexible there is an alternate method to take afterpuls-
ing into account, by separately simulating an exponential amplitude distribution for NSB
photo-electrons. This requires activation of the ADDITIONAL_AFTERPULSING flag at
compile-time.

• AFTERPULSE_ALTERNATE
(type: Int, items: 1, default: "0", minimum: "0", maximum: "1" or "0")
Flag to activate the alternate handling of afterpulse signals. The default
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method is to have a convolved distribution of prompt and afterpulse signals of
NSB photo-electrons. The alternate method (requires compilation with ADDI-
TIONAL_AFTERPULSING defined for the pre-processor) uses the prompt ampli-
tude distribution for the prompt part and additionally throws afterpulses following an
exponential amplitude distribution.

• AFTERPULSE_RATIO
(type: Double, items: 1, default: "0", minimum: "0", maximum: "1")
The fraction of NSB photo-electrons resulting in an additional afterpulse of
more than four (or any other value specified by AFTERPULSE_THRESHOLD)
times the mean amplitude of a single photo-electron. Only applicable if
AFTERPULSE_ALTERNATE is active.

• AFTERPULSE_THRESHOLD
(type: Double, items: 1, default: "4.0", minimum: "0.0")
The amplitude level (in units of the mean amplitude of a p.e.) above which
the afterpulse ratio AFTERPULSE_RATIO is specified. Only applicable if
AFTERPULSE_ALTERNATE is active.

• AFTERPULSE_SCALE
(type: Double, items: 1, default: "7.5", minimum: "0.0", maximum: "50")
The intensity scale (in units of the mean amplitude of a p.e.) of the exponential dis-
tribution of afterpulse amplitudes. Only applicable if AFTERPULSE_ALTERNATE
is active.

• AFTERPULSE_MAX
(type: Double, items: 1, default: "50", minimum: "10", maximum: "200")
The maximum intensity of afterpulse signals (in units of the mean amplitude of a
p.e.). Only applicable if AFTERPULSE_ALTERNATE is active.

12.3.7 Trigger
• SIMPLE_THRESHOLD

(type: Double, items: 1, default: "4.0", minimum: "1", maximum: "10000")
Simple threshold. Unit: p.e.s (used only without full simulation).

• TRIGGER_CURRENT_LIMIT
(type: Double, items: 1, default: "20.0", units: microAmpére)
Pixels above this limit are excluded from the trigger. [micro-Amperes]

• TRIGGER_PIXELs
(type: Int, items: 1, default: "4")
Number of pixels required for single telescope trigger. With flexible camera defini-
tions, this is the default number for the multiplicity required per trigger group (i.e.
‘sector’ in the HESS phase 1 camera design). If the camera definition file contains
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a non-zero number in the definition of any trigger group, that number overrides the
default.

• MULTIPLICITY_OFFSET
(type: Double, items: 1, default: "-0.5", minimum: "-0.5", maximum: "0.5")
This number tells where the actual threshold of the telescope trigger is adjusted rel-
ative to the nominal number of required pixels. The default value of -0.5 means that
with TRIGGER_PIXELs of 4, the sum of pixel discriminator/comparator outputs
must exceed 3.5 times the average output amplitude for the given minimum time and
by the given minimum signal integral in order to accept any ‘sector’ trigger (and
therefore a telescope trigger) with the majority trigger logic.

• TRIGGER_NEIGHBOURs
(type: Int, items: 1, default: "1")
Obsolete. Number of neighboured pixels required for single telescope trigger. With
flexible camera definitions, this number is not used. Obsolete.

• TELTRIG_MIN_TIME
(type: Double, items: 1, default: "1.5", minimum: "0.", maximum: "10.", units:
nanoseconds)
Minimum time of sector trigger over threshold (flexible camera only) [ns].

• TELTRIG_MIN_SIGSUM
(type: Double, items: 1, default: "7.8", minimum: "0.", maximum: "1000.", units:
mV*ns)
Minimum comparator outputs signal sum of sector trigger over threshold (flexible
camera only) [mV times ns], if DISCRIMINATOR_OUTPUT_AMPLITUDE is in
milliVolts. Note that both the minimum time over threshold and the minimum signal
sum have to be satisfied before a trigger is obtained. Normally, either of these values
being non-zero should be sufficient.

• TRIGGER_TELESCOPES
(type: Int, items: 1, default: "2")
Number of telescopes required for the system trigger. If an ARRAY_TRIGGERs
file is specified, differing multiplicities can be specified there for particular telescope
combinations.

• IGNORE_TELESCOPEs
(type: Int, items: MAX_IGNORE, default: "all: -1")
List of telescopes ignored (numbers starting at 1, i.e. CT 1, ...).

• DEFAULT_TRIGger
(type: Text, max. length: 31, default: "Majority")
The default meaning of a "Trigger" line in the camera definition file. If set to "Major-
ity", a "Trigger" line would indicate a "MajorityTrigger", for "AnalogSum" it would
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indicate an "AnalogSumTrigger", and for "DigitalSum" it would indicate a "Digital-
SumTrigger".

• ASUM_SHAPING_FILE
(type: Text, max. length: 4095, default: "none")
The name of an optional file which describes the shaping (convolution) of an input
PMT signal to the resulting signal from which an analog-sum trigger decision may
be derived.

• ASUM_CLIPping
(type: Double, default: "0.", minimum: "0.")
The amplitude level (in the same units as assumed for DISCRIMINATOR_
AMPLITUDE) at which the signal from each pixel (after optional shaping) is clipped
for its contribution to the analog sum trigger. A value of zero indicates no clipping
is applied.

• ASUM_THRESHold
(type: Double, default: "0.", minimum: "0.")
The amplitude level (in the same units as assumed for DISCRIMINATOR_
AMPLITUDE) above which an analog sum is considered to result in a telescope trig-
ger.

• ASUM_OFFSET
(type: Double, default: "0.", minimum: "0.", units: nanoseconds)
Offset in time where shaping convolution is done.

• ASUM_SIGSUM_OVER_THRESHOLD
(type: Double, default: "0.", minimum: "0.")
Not yet implemented. This is analogues to the DISCRIMINATOR_SIGSUM_
OVER_THRESHOLD parameter but applied to the analog sum.

• ASUM_HYSTERESIS
(type: Double, default: "0.", minimum: "0.")
Not yet implemented. This is analogues to the DISCRIMINATOR_HYSTERESIS
parameter but applied to the analog sum. Unit: same as for DISCRIMINATOR_
AMPLITUDE.

• ASUM_NOISE
(type: Double, default: "0.", minimum: "0.")
Not yet implemented. This is white (Gaussian) noise applied to the analog sum,
in the (depending on compilation definitions) typically four times finer time binning
than used for ADC sampling. Unit: same as for DISCRIMINATOR_AMPLITUDE.

• ASUM_SPECTRUM_NOISE
(type: Text, max. length: 4095, default: "none")
Not yet implemented. If white noise is not an adequate description of the noise
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spectrum after the analog sum, a file with a prepared long noise trace can be provided
from which parts at random offsets will be added as noise. If ASUM_NOISE is
non-zero, white noise will still be added. Unit: same as for DISCRIMINATOR_
AMPLITUDE.

• DSUM_PEDSUB
(type: Int, default: "1")
If non-zero, the expected pedestal is first subtracted before any shaping, scaling,
clipping etc. operations. Without pedestal subtraction, shaping kernels with non-
zero sum are not practical.

• DSUM_PRE_CLIPping
(type: Int, default: "0", minimum: "0")
The amplitude level (in ADC counts above pedestal) at which the digitized signal
from each pixel (before optional shaping) is clipped for its contribution to the digital
sum trigger. A value of zero indicates no clipping is applied. Any such clipping
is usually not a good idea, with FADC maximum value defined by FADC_MAX_
SIGNAL anyway.

• DSUM_SHAPING_FILE
(type: Text, max. length: 4095, default: "none")
The name of an optional file which describes the shaping (convolution) of an digi-
tized PMT signal (time step of ADC time slices) to the resulting signal from which
a digital-sum trigger decision may be derived.

• DSUM_SHAPING_RENORMalize
(type: Int, default: "1")
If non-zero, the positive part of the shaping kernel is auto-normalized to a sum of
1.0; if zero, the shaping kernel is used as-is.

• DSUM_OFFSET
(type: Double, default: "0.", minimum: "0.", units: nanoseconds)
Offset in time where digital pulse shaping is done. Time intervals at the start and end
of the simulated time window that are affected by shaping of missing outside signals
are not used for trigger evaluation.

• DSUM_IGNORE_BELOW
(type: Int, default: "0", minimum: "0")
FADC signals (pedestal subtracted and/or shaped) below this value, i.e. in the noise,
do not contribute to the digital signal sum and are set to zero. A value of zero means
that no such lower threshold gets applied.

• DSUM_ZERO_CLIP
(type: Int, default: "0", minimum: "-1", maximum: "1")
With a value of 1 any negative shaped signals are clipped at zero (which a non-zero
DSUM_IGNORE_BELOW does anyway). With a value of −1 negative signals are not
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clipped immediately but together with patch-wise pre-summation they are clipped at
zero after pre-summation. A value of zero means that negative shaped signals are
preserved for the final digital sum.

• DSUM_PRESCALE
(type: Int, size: 2, default: "0,0")
Shaped signals are scaled by first multiplying with the first value (to integer unless
sim_telarray was compiled with -DDSUM_DOUBLE) and then divided by the
second value (discarding remainder again usually). No such scaling is applied if first
and second value are equal.

• DSUM_CLIPping
(type: Int, default: "0", minimum: "0")
The amplitude level (in ADC counts above pedestal) at which the digitized signal
from each pixel (after optional shaping) is clipped for its contribution to the digital
sum trigger. A value of zero indicates no clipping is applied.

• DSUM_PRESUM_SHIFT
(type: Int, default: "0", minimum: "0", maximum: "4")
After a patch-wise pre-summation, the resulting sum may be right-shifted to reduce
the significant number of bits. The presence of patches is indicated in the camera
configuration file in the DigitalSumTrigger lines like
DigitalSumTrigger * of 1[2,3] 4[5,6]
instead of using a plain list of pixel IDs like
DigitalSumTrigger * of 1 2 3 4 5 6

• DSUM_PRESUM_MAX
(type: Int, default: "0", minimum: "0")
After bit-shifting the pre-sum, the resulting value (zero-clipped, typically) may have
the given maximum value to be represented in the available number of bits. A value
of zero implies no maximum to be applied.

• DSUM_THRESHold
(type: Int, default: "0", minimum: "0")
The amplitude level (in ADC counts above pedestal sum) above which a digital
sum is considered to result in a telescope trigger. Note that, like for discrimina-
tor/comparator and analog sum, the signal must exceed (’>’) the threshold here
before we declare the telescope triggered. The assigned threshold value would have
to be one count lower than in a camera-internal trigger implementation (like Flash-
Cam) where reaching (’>=’) the threshold is enough.

• TRIGGER_DELAY_compensation
(type: Double, "default: "all: 0.")
Because the majority trigger, analog sum trigger, and digital sum trigger decisions
result in different times of the trigger decision, this compensation is applied for array-
level coindidences of triggers from telescopes with different trigger types.
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• LONG_EVENT_THRESHold
(type: Int, default: "0", minimum: "0")
Some types of telescopes have conditions where a longer readout period than in
normal events may be asked for. While the actual conditions which may force the
‘long event’ case still need to be worked out, this threshold on the number of trigger
groups fired can be used to test the subsequent handling of the long events case. In the
long event case the length of the readout trace is given by FADC_LONGSUM_BINS
instead of FADC_SUM_BINS and the starting point as FADC_LONGSUM_OFFSET
instead of FADC_SUM_OFFSET before the trigger time.

• MUON_MONO_THRESHolds
(type: Int, items: 2, default: "0,0", minimum: "0")
If the array trigger requires triggers from more than one telescope, the events best
suitable for muon-ring calibration purposes, initiated by isolated muons, would be
severely suppressed. Events with triggers in an extended area of the camera are a
good indicator of muon rings and can be made to pass by stereo event selection.
The first parameter is a threshold on the number of trigger groups fired, the second
a threshold on the number of - yet to be determined - larger regions in which any
trigger groups fired.

• RANDOM_MONO_PROBability
(type: Double, default: "0.", minimum: "0.", maximum: "1.")
A certain fraction of triggered telescope events can be made to randomly pass the
stereo event selection in a way very similar to muon ring candidates do.

12.3.8 Electronics
• NUM_GAINS

(type: Int, items: 1, default: "1" or "2", minimum: "1", maximum: "1" or "2")
Tells through how many different gains the input signal gets digitized (one gain with-
out WITH_LOW_GAIN_CHANNEL defined, two with). Allows to compile for two
gains per pixel but have some telescopes with a single gain. Support for this parame-
ter (added 2014-10-13) can be tested by the configuration file preprocessor, checking
if and how MAX_GAINS is defined.

• CHANNELS_PER_CHIP
(type: Int, items: 1, default: "4", minimum: "0")
Tells how many channels as specified in the camera definition file are assigned to the
same readout chip. This is potentially useful for crosstalk. It is used for the camera
organisation output block.

• DISCRIMINATOR_PULSE_SHAPE
(type: Text, default: "hess_disc_shape.dat")
File name for pulse shape at the discriminator/comparator of an individual pixel.
Note: You must make up your mind which file to choose here. Since the old
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default pulse shape is now known to be definitely too slow, there is no default file
available. See cfg/hess/hess_disc_shape*.dat for available files.

• DISCRIMINATOR_AMPLITUDE
(type: Double, items: 1, default: "1.0", minimum: "0.0", units: typically mV or
some kind of p.e.)
Signal amplitude after amplifier per mean p.e. at the input of the discrimina-
tors/comparators. The unit is arbitrary but the same definition has to be used
for DISCRIMINATOR_THRESHOLD, DISCRIMINATOR_VAR_THRESHOLD,
DISCRIMINATOR_SIGSUM_OVER_THRESHOLD, DISCRIMINATOR_VAR_
SIGSUM_OVER_THRESHOLD, and DISCRIMINATOR_HYSTERESIS with
the majority trigger type and for ASUM_THRESHOLD, ASUM_CLIPping,
ASUM_OFFSET etc. with the analog sum trigger type. For the default value of 1.0,
the unit is the average (not the most probable) amplitude of a single photo-electron,
implying the same being used for thresholds and switching behaviour.

• DISCRIMINATOR_THRESHOLD
(type: Double, items: 1, default: "4.", minimum: "0.0")
Discrim./compar. threshold. Unit: same as for DISCRIMINATOR_AMPLITUDE.

• DISCRIMINATOR_VAR_THRESHOLD
(type: Double, items: 1, default: "0.2", minimum: "0.0")
Channel to channel variations. Unit: same as for DISCRIMINATOR_AMPLITUDE.

• DISCRIMINATOR_SCALE_THRESHOLD
(type: Double, items: 1, default: "1.0", minimum: "0.5", maximum: "2.0")
Scales both the discriminator or comparator threshold and its variation by the same
factor.

• DISCRIMINATOR_NOISE
(type: Double, default: "0.", minimum: "0.")
Not yet implemented. This is white (Gaussian) noise applied to the signal at the
discriminator or comparator input, in the (depending on compilation definitions) typ-
ically four times finer time binning than used for ADC sampling. Unit: same as for
DISCRIMINATOR_AMPLITUDE.

• DISCRIMINATOR_SPECTRUM_NOISE
(type: Text, default: "none")
Not yet implemented. If white noise is not an adequate description of the noise
spectrum at the discriminator/comparator input, a file with a prepared long noise
trace can be provided from which parts at random offsets will be added as noise. If
DISCRIMINATOR_NOISE is non-zero, white noise will still be added. Unit: same
as for DISCRIMINATOR_AMPLITUDE.

• DISCRIMINATOR_GATE_LENGTH
(type: Double, items: 1, default: "2.0", minimum: "0.", maximum: "100")
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Effective discr. gate length [ns]. To achieve a comparator-type response this gate
length must match the time over threshold below. Other positive values represent
a mix between comparator and discriminator (updating discriminator). For a true
discriminator response (fixed gate length independent of time over threshold), use
negative values. Unit: nanoseconds.

• DISCRIMINATOR_VAR_GATE_LENGTH
(type: Double, items: 1, default: "0.1", minimum: "0.", maximum: "100")
Variation of gate length [ns]. In compator-type response, this variable is not used but
only DISCRIMINATOR_VAR_TIME_OVER_THRESHOLD. Unit: nanoseconds.

• DISCRIMINATOR_TIME_OVER_THRESHOLD
(type: Double, items: 1, default: "1.5", minimum: "0.0", maximum: "100")
Time over threshold required before logic response switches to true [ns]. To achieve
a comparator-type response this time must match the gate length above. Note
that in addition a minimum signal integral DISCRIMINATOR_SIGSUM_OVER_
THRESHOLD may be set up. If so, both time over threshold and signal integral con-
ditions have to be met before a ‘true’ output signal starts. Normally, either of them
being non-zero should be sufficient. Unit: nanoseconds.

• DISCRIMINATOR_VAR_TIME_OVER_THRESHOLD
(type: Double, items: 1, default: "0.1", minimum: "0.", maximum: "100")
Pixel-to-pixel variation of it. Unit: nanoseconds.

• DISCRIMINATOR_SIGSUM_OVER_THRESHOLD
(type: Double, items: 1, default: "0.0", minimum: "0.")
Integrated signal required over threshold [mV*ns].
See also DISCRIMINATOR_TIME_OVER_THRESHOLD above for combined
effects. Unit: intended as milliVolts times nanoseconds, but if unit of
DISCRIMINATOR_AMPLITUDE is not milliVolts, it scales accordingly.

• DISCRIMINATOR_VAR_SIGSUM_OVER_THRESHOLD
(type: Double, items: 1, default: "0.0", minimum: "0.")
Pixel-to-pixel variation of it. Unit: as for DISCRIMINATOR_SIGSUM_OVER_
THRESHOLD.

• DISCRIMINATOR_RISE_TIME
(type: Double, items: 1, default: "1.0", minimum: "0.0", maximum: "100.")
Rise time of discr./comp. output [ns]. After the discriminator/comparator logical
output is set true, the output signal linearly rises from 0 to 100% within the given
time period. Unit: nanoseconds.

• DISCRIMINATOR_FALL_TIME
(type: Double, items: 1, default: "1.0", minimum: "0.0", maximum: "100.")
Fall time of discr./comp. output [ns] after the logical output is reset to false. Unit:
nanoseconds.
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• DISCRIMINATOR_HYSTERESIS
(type: Double, items: 1, default: "0.0", minimum: "0.0")
The switching off of a comparator is normally with some hysteresis to avoid oscil-
lating behaviour. As a consequence, the signal has to be below the threshold minus
the hysteresis before it switches off. Units: as for DISCRIMINATOR_THRESHOLD
(nominally: [mV]).

• DISCRIMINATOR_OUTPUT_AMPlitude
(type: Double, items: 1, default: "42.0", minimum: "0.0")
The nominal output amplitude of a pixel discriminator or comparator as seen at the
sector (trigger group) coincidence unit. Unit: Nominally in millVolts.

• DISCRIMINATOR_OUTPUT_VAR_PERCENT
(type: Double, items: 1, default: "10.0", minimum: "0.0", maximum: "50.")
The percentage channel to channel variation of the output amplitude of a pixel dis-
criminator or comparator. [Percent]

• DISC_AC_COUPLED
(type: Int, items: 1, default: "1", minimum: "0", maximum: "1")
If set to 1, then discriminators/comparator are AC coupled and, except for noise,
independent of NSB levels. Setting this to zero is generally not a good idea.

• DISC_BINS
(type: Int, items: 1, default: "20", minimum: "1", maximum: "200")
Number of time bins used for discr./comparator simulation.

• DISC_START
(type: Int, items: 1, default: "0")
No. of bins by which discr./comp. simulation is ahead of FADC. That is mainly
relevant if different time windows are simulated for comparator inputs and digitised
ADC values.

• PIXELTRG_TIME_STEP
(type: Double, items: 1, default: "0.0", minimum: "0.0", units: nanoseconds)
If non-zero, the time between the telescope trigger and the time when the pixel dis-
criminator/comparator fired is recorded under the telescope event in the given time
steps (negative for pixels fired before the telescope trigger; possible delays involved
in a real instrument are not accounted for).

• FAKE_TRIGGER
(type: Int, items: 1, default: "0", units: photoelectrons)
Instead of using the signal-based trigger simulation for deciding if (and when) a
telescope triggers, a highly simplified (or “fake”) trigger decision can be based on
the time-sorted list of MC true photo-electrons in the camera. A non-zero value of
this parameter activates this scheme. The absolute value of this parameter is the
threshold in units of true single p.e. A positive number sets the trigger time to the
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arrival time of the specified p.e. in ascending time order. In other words, a value of
10 will require at least 10 p.e. for a trigger and the trigger time will be the arrival time
of the 10th p.e. plus an offset. A negative number implies that the median arrival
time of all photo-electrons is used instead; a value of -10 still implying a threshold
of 10 p.e.

• FORCE_FAKE_TRIGGER
(type: Int, items: 1, default: "0", minimum: "0", maximum: "1")
The FAKE_TRIGGER parameter does not activate the fake trigger mechanism with
a value of zero (which is the default). Fake triggers can be enforced with FORCE_
FAKE_TRIGGER set to "1", even if there is no signal photo-electron in the camera.
With FORCE_FAKE_TRIGGER=1 and FAKE_TRIGGER=0, the median time is
used if there are any photo-electrons while an arbitrary time gets used without signal
photo-electrons (NSB p.e. do not count for the fake-trigger scheme).

• FAKE_DELAY
(type: Double, items: 1, default: "0.0", units: nanoseconds)
An additional delay applied to the time of fake triggers (see FAKE_TRIGGER), in
addition to that resulting from the optical configuration and the width of the simu-
lated time window. A positive value will result in a later trigger time, thus shift-
ing all signals to earlier times w.r.t. the trigger. This parameter applies only if
FAKE_TRIGGER is non-zero.

12.3.9 (F)ADCs

• FADC_PULSE_SHAPE
(type: Text, default: "hess_fadc_shape.dat")
File name for (F)ADC pulse shape. These files are supported with two format vari-
ants:
a) Implicit time steps, after a line starting with "# T=" plus the given time step (in
nanoseconds) per data line. The high gain pulse shape is in column 1, low gain in
column 2 if the camera has low-gain channels. It is recommended to no longer use
this format variant.
b) Explicit time steps in first column of the data rows, high-gain in column 2 and low
gain (if applicable) in column 3.
Note that the pulse amplitude scale is ignored and the pulses are rescaled to peak
values of FADC_AMPlitude and FADC_LG_AMPlitude, respectively, times
FADC_SENSITIVITY in both cases.

• FADC_MHZ
(type: Double, items: 1, default: "1000", units: MHz or MSamples/s)
FADC frequency. A value of 250 (MHz or million samples per second) corresponds
to an FADC time interval of 4 ns.
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• FADC_BINS
(type: Int, items: 1, default: "20", minimum: "1", maximum: "200")
No. of FADCs bins to be filled. In the first place this means the number of bins
simulated. The median of all Cherenkov light photo-electrons will be near 40% of
the interval length, unless shifted with PHOTON_DELAY. If the FADC_SUM_BINS
is left at 0, this will also be used as the number of bins read out.

• FADC_PER_CHANNEL
(type: Int, items: 1, default: "1", minimum: "1", maximum: "2")
How many FADCs work in parallel with corresponding delays. This is 2 for HEGRA
with two interleaved 60 MHz FADCs to achieve a 120 MHz system. For H.E.S.S.
and all CTA camera types this is 1.

• FADC_NOISE
(type: Double, items: 1, default: "4.0", minimum: "0", maximum: "10")
Gaussian white noise per time bin in digitisation (for high gain channel, if different
gains are used). Unit: ADC counts (r.m.s.).

• FADC_LG_NOISE
(type: Double, items: 1, default: "1.3", minimum: "0", maximum: "10")
Gaussian white noise in digitisation of low-gain channel. Unit: ADC counts (r.m.s.).

• FADC_SPECTRUM_NOISE
(type: Text, default: "none")
Not yet implemented. File name with prepared long noise trace.

• FADC_SPECTRUM_LG_NOISE
(type: Text, default: "none")
Not yet implemented. File name with prepared long noise trace for low-gain chan-
nel.

• FADC_AMPlitude
(type: Double, items: 1, default: "14.0", minimum: "0.0")
Amplitude at ADC/FADC (for high gain channel, if different gains are used). Unit:
arbitrary but FADC_AMPlitude times FADC_SENSITIVITY are ADC counts
maximum amplitude above pedestal (per time slice) for a photo-electron with aver-
age (not most probable) signal. This is after PMT, preamplifier, cable, and shaper
(and, in case of H.E.S.S., the analog ring sampler) at the input of the ADC or FADC.

• FADC_LG_AMPlitude
(type: Double, items: 1, default: "1.0", minimum: "0.0")
The same for the low-gain channel.

• HG_LG_VARiation
(type: Double, items: 1, default: "0.0", minimum: "0.0", maximum: "0.25")
The relative pixel-to-pixel variation in the ratio of high-gain to low-gain amplitudes.
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• FADC_PEDESTAL
(type: Double, items: 1, default: "100.0", minimum: "0.0")
Nominal (F)ADC pedestal value (per time slice). Unit: ADC counts.

• FADC_DEV_PEDESTAL
(type: Double, items: 1, default: "1.0", minimum: "0.0")
Deviation of (F)ADCs pedestals for same channel. This is only relevant if FADC_
PER_CHANNEL is greater than 1.

• FADC_VAR_PEDESTAL
(type: Double, items: 1, default: "0.75", minimum: "0.0")
Channel-to-channel (or pixel-to-pixel) variation of the pedestal per FADC time slice.

• FADC_ERR_PEDESTAL
(type: Double, items: 1, default: "0.08" /* 0.8/sqrt(100) */, minimum: "0.0")
Assumed error in initial calibration of pedestal (reported as monitoring data).

• FADC_SYSVAR_PEDESTAL
(type: Double, items: 1, default: "0.04", minimum: "0.0")
Systematic common (e.g. due to temperature) variation of baselines. All reported
monitoring data is offset by the same (random) amount.

• FADC_LG_PEDESTAL
(type: Double, items: 1, default: "-1", minimum: "-2")
Nominal (F)ADC pedestal value (per time slice) for low-gain channels. The default
value of -1 indicates that the same value as for high-gain channels should be used.
Unit: ADC counts.

• FADC_LG_DEV_PEDESTAL
(type: Double, items: 1, default: "-1", minimum: "-2")
Deviation of (F)ADCs pedestals for same channel. The default value of -1 indicates
that the same value as for high-gain channels should be used. This is only relevant if
FADC_PER_CHANNEL is greater than 1.

• FADC_LG_VAR_PEDESTAL
(type: Double, items: 1, default: "-1", minimum: "-2")
Channel-to-channel variation. The default value of -1 indicates that the same value
as for high-gain channels should be used.

• FADC_LG_ERR_PEDESTAL
(type: Double, items: 1, default: "-1", minimum: "-2")
Assumed error in initial calibration of pedestal (reported as monitoring data). The
default value of -1 indicates that the same value as for high-gain channels should be
used.

• FADC_LG_SYSVAR_PEDESTAL
(type: Double, items: 1, default: "-1", minimum: "-2")
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Systematic (e.g. due to temperature) variation of baselines. All reported monitoring
data is offset by the same (random) amount. The default value of -1 indicates that
the same value as for high-gain channels should be used.

• FADC_COMPENSATE_PEDESTAL
(type: Int, items: 1, default: "-1", minimum: "-1")
The raw pedestal values may vary quite significantly from pixel to pixel but further
data processing might be easier with more homogeneous values, after actual (F)ADC
read-out. In a real camera, the pedestal compensation might be done in firmware
(e.g. in an FPGA) or in software (in a camera server). Here it is emulated with the
constraints that the resulting values are still unsigned integers and that no rescaling
takes place (pure integer pedestal offset). No compensation takes place for the default
value of "-1". Values greater or equal to zero indicate the compensated pedestal
value, rounded to the nearest integer. For DC-coupled sensors, the compensation
includes any NSB pedestal shift. For cameras with multiple interlaced FADCs per
channel and, therefore, multiple pedestal values, the same integer compensation gets
applied to all pedestals of a channel. While the normal pedestal reported in the data
includes the compensation, the individual compensations applied for each pixel are
reported separately. If individual FADC values would fall below zero through this
compensation, they are clipped at zero.

• FADC_LG_COMPENSATE_PEDESTAL
(type: Int, items: 1, default: "-1", minimum: "-1")
In analogy to FADC_COMPENSATE_PEDESTAL, the compensated pedestal value
for low-gain channels. A value of "-1" indicates that the behavior follows that defined
for the high-gain channels.

• FADC_ERR_COMPENSATE_PEDESTAL
(type: Double, items: 1, default: "0.", minimum: "0.")
The pedestal compensation is not meant to be exact, even ignoring the limitation of
rounding to integers, as the camera firmware or server would have to evaluate the
actual pedestal from a finite number of samples/events. If pedestal compensation
gets activated through FADC_COMPENSATE_PEDESTAL≥ 0., this value indicates
an r.m.s. error in the pedestal evaluation for the compensation step, not an error in
the actual pedestal value.

• FADC_LG_ERR_COMPENSATE_PEDESTAL
(type: Double, items: 1, default: "-1", minimum: "-1")
Like FADC_ERR_COMPENSATE_PEDESTAL but for low-gain channels. A value
of "-1" indicates that the behavior follows that defined for the high-gain channels.

• FADC_AC_COUPLED
(type: Int, items: 1, default: "1", minimum: "0", "1") If set to 1, then FADCs are AC
coupled. A change in night sky background rate will then only change the pedestal
noise but not the average pedestal.
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• FADC_SENSITIVITY
(type: Double, items: 1, default: "1.0", minimum: "0.0")
FADC counts per mV voltage (or whatever unit is used for FADC_AMPlitude).
The definition of ’1.0’ as used for H.E.S.S. means that ADC amplitudes have to be
given directly in units of the average amplitude of a single photo-electron.

• FADC_LG_SENSITIVITY
(type: Double, items: 1, default: "-1", minimum: "-2")
Sets the FADC separately for the low-gain channel, if that differs from high-gain.
The default value of -1 indicates that the same value as for high-gain channels should
be used.

• FADC_VAR_SENSITIVITY
(type: Double, items: 1, default: "0.02", minimum: "0.0")
Relative variations in sensitivity (even for FADCs of the same channel).

• FADC_LG_VAR_SENSITIVITY
(type: Double, items: 1, default: "-1", minimum: "-2")
Relative variations in FADC sensitivity for the low-gain channel, if that differs from
high-gain. The default value of -1 indicates that the same r.m.s. value as for high-
gain channels should be used. If both the sensitivity and its variation are set to less
than zero (like default) or both sensitivity values match and the low-gain variation is
set to -2, then the low-gain channel is forced to use the same sensitivity as the cor-
responding high-gain channel, to avoid increasing the high-gain/low-gain variation
even further w.r.t. HG_LG_VARiation.

• FADC_SUM_BINS
(type: Int, items: 1, default: "0", minimum: "0")
Number of bins summed up in ADC sum data or read out in sampled data. This
number corresponds to the experimental length of the readout window. The default
value of 0 means that the full simulated interval of FADC_BINS bins is read out.
Otherwise the start of the readout window starts FADC_SUM_OFFSET bins before
the calculated time of the trigger, as long as the readout window fits fully in the
simulated window.

• FADC_LONGSUM_BINS
(type: Int, items: 1, default: "0", minimum: "0")
Equivalent to FADC_SUM_BINS in case the event is selected to be a ‘long event’
for the readout of this camera. A value of "0" indicates that there should be no
special handling of long events (both FADC_SUM_BINS and FADC_SUM_OFFSET
continue to be used, even if some long event conditions are met).

• FADC_SUM_OFFSET
(type: Int, items: 1, default: "0", minimum: "0")
Number of bins before telescope trigger where summing starts. With peak sensing
readout, the same interval is used for searching the peak signal.
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• FADC_LONGSUM_OFFSET
(type: Int, items: 1, default: "0", minimum: "0")
Equivalent to FADC_SUM_OFFSET in case the event is selected to be a ‘long event’
for the readout of this camera. A FADC_LONGSUM_BINS value of "0" indicates
that there should be no special handling of long events (both FADC_SUM_BINS and
FADC_SUM_OFFSET continue to be used, even if some long event conditions are
met).

• FADC_MAX_SIGNAL
(type: UInt, items: 1, default: "0", minimum: "0", maximum: MAX_FADC_
SIGNAL)
The maximum value of the digitized signal per sample. For a typical 12-bit ADC
this would be 4095.

• FADC_MAX_SUM
(type: UInt, items: 1, default: "0", minimum: "0")
The maximum value of a pulse sum produced by hardware pulse summation, in sum
mode rather than recording pulse samples. Typical limitations are 15 or 16 bits, i.e.
32767 or 65535.

• FADC_LG_MAX_SIGNAL
(type: Int, items: 1, default: "-1", minimum: "-2", maximum: MAX_FADC_
SIGNAL)
Allows to define a different maximum signal for a low-gain channel, if used. The de-
fault value of -1 indicates that the same maximum value as for the high-gain channel
should be applied.

• FADC_LG_MAX_SUM
(type: Int, items: 1, default: "-1", minimum: "-2")
Allows to define a different maximum pulse sum for a low-gain channel, if used.
The default value of -1 indicates that the same maximum value as for the high-gain
channel should be applied.

12.3.10 Night-sky background
• NIGHTSKY_BACKGROUND

(type: Double, items: MAX_PIXELS, default: "all: 0.100", minimum: "0.0", units:
GHz, for photo-electrons per nanosecond)
Number of photo-electrons per nanosecond due to nightsky background. There is
one value per pixel, with optional range addressing prefixes (“all:“ for all pixels, nu-
meric addressing as lists or ranges in parentheses, pixel numbers starting at zero).
Example for numerical addressing: (0-1236): 0.2, (1237-1854):0.15
In case of overlapping ranges or if there are multiple lines addressing separate ranges,
they are processed in the order given.
More complex example in a single line: nightsky_background =

132



all: 0.2, (1237-1854): 0.15, (870,951, 1380-1385): 0.35
Corresponding multi-line example:
nightsky_background = all: 0.2
nightsky_background = (1237-1854): 0.15
nightsky_background = (870,951, 1380-1385): 0.35
Note that the numbers here include all photo-electrons, including also those not prop-
erly amplified or lost at the first dynode. Measured nightsky background rates may
count, depending on the actual procedure, only those suriving the collection effi-
ciency (i.e. some 15% less). The default value of 100 MHz pixel noise rate for
H.E.S.S.-I is according to S. Preuss, away from Galactic plane and zodiacal light, for
the design mirror reflectivity.

• NSB_SKY_MAP
(type: Text, max. length: 4095, default: "none")
An optional sky map (Az/Alt) of NSB enhancement factors, counted on top of the
configured pixel NSB p.e. rates and other scaling factors mentioned in this section,
but not any starlight which might get added through the file specified via the STARS
parameter. Recommended format is explicit 3-D rpolator notation, with one set of
Azimuth, Altitude, and NSB factor per line, forming a regular grid in Azimuth and
Altitude. It gets evaluated for each pixel center pointed back into the sky, using the
effective focal length (no explicit ray-tracing), thus is only suitable for changes in
sky brightness exceeding the pixel sizes.

• NSB_SCALING_FACTOR
(type: Double, items: 1, default: "1.0", minimum: "0.0", maximum: "1000")
While the NIGHTSKY_BACKGROUND configuration can be used to set the NSB
individually for each pixel of each telescope, it cannot be used easily for a common
scaling of the NSB in all pixels of all telescopes against some reference setting. This
can be achieved with the this parameter (added 2014-03-20).

• NSB_AUTOSCALE_AIRMASS
(type: Double, items: 2, default: "0.0,0.15", minimum: "0.0", maximum: "1.0")
Instead of the manual NSB_SCALING_FACTOR scaling factor, the NSB can also
be scaled automatically depending on airmass and thus zenith angle. The first of the
two parameters is the zenith-level fraction of NSB resulting from airglow, the second
is the effective extinction coefficient applicable for NSB light (due to scattering it
should be smaller than extinction coefficient for line-of-sight propagation). Realistic
values are expected to be on the order of 0.7 and 0.15, respectively. This only takes
effect if NSB_SCALING_FACTOR is exactly 1.0 (added 2018-01-08).

• NSB_OFFAXIS
(type: Double, items: 5, default: "all: 0.0")
The effective optical area can change across the field-of-view in a way
partly simulated explicitely and partly covered by the function parameters in
TELESCOPE_TRANSmission. The first parameter here is the function number
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(like the second parameter in TELESCOPE_TRANSmission). Function zero is a
constant (all following parameters ignored), function one is again similar to that in
TELESCOPE_TRANSmission: f = 1/(1+ p1 ∗ (r/p2)

p3) if p4 = 0 or missing
and f = 1/(1+ p1 ∗(r/p2)

p3)p4 if p4 6= 0 where r is the (x/y projected) pixel off-axis
radius in units of centimeters and p1 to p4 are the second to fifth parameter, with
p2 understood as a camera reference radius for the purpose of this function, again in
units of centimeters, while the other parameters are dimensionless. Since the param-
eters are usually highly correlated when fitting them against actual shadowing (from
detailed ray-tracing, effective mirror area as a function of off-axis radius over on-axis
value), it seems good practice to start the fit with p2 fixed to the actual camera radius,
and only later try if a free p2 improves the fit.

• NSB_GAIN_DROP_SCALE
(type: Double, items: 1, default: "0.", minimum: "0.", units: GHz)
This parameter, if non-zero, indicates the pixel p.e. rate at which the gain
drops to half the nominal value due to bias resistance and cell capacitance (ap-
plicable as such for SiPM cameras). Units: GHz (p.e. per ns), same as for
NIGHTSKY_BACKGROUND. Example: 1./(2.4 kOhm * 85 fF)/1e9 ns = 4.90 GHz.
(Added 2017-08-30).

12.3.11 Calibration-specific

• LASER_PHOTONS
(type: Double, items: MAX_LASER_LEVELS, default: "500", minimum: "1")
Number of laser photons at each PM.

• LASER_VAR_PHOTONS
(type: Double, items: MAX_LASER_LEVELS, default: "0.05", minimum: "0",
maximum: "1")
Relative variation of laser shots from shot to shot, indepenent for each telescope.

• LASER_EVENTS
(type: Int, items: MAX_LASER_LEVELS, default: "0", minimum: "0")
Laser (or LED or other pulsed light source) events at start of run, before the first
shower event. The assumed light source would typically be in the center of the
dish and is assumed to illuminate all pixels uniformly. The camera lid is assumed
to be open, i.e. events will also be subject to NSB. A value of zero means that
the data will not contain any such events. This type of calibration events can be
simulated for multiple light levels, in combinations of the corresponding values of
LASER_PHOTONS, LASER_VAR_PHOTONS and LASER_EVENTS.

• LASER_PULSE_OFFSET
(type: Double, items: 1, default: "0.", units: nanoseconds)
The flat-fielding and single-p.e. calibration units are assumed to operate with an
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external trigger. Thus the position of the signal in the read-out window can be shifted
(negative number: earlier, positive numbers: later). Unit: nanoseconds.

• LASER_PULSE_EXPTime
(type: Double, items: 1, default: "0.", minimum: "0.", units: nanoseconds)
To be used (non-zero) if the pulse shape of the light emitted from the flat-fielding
or single-p.e. calibration unit follows an exponential, e.g. as used in early HESS
calibration units with a UV laser illuminating a scintillator and exciting it to emit
light with a decay time of 2.5 ns. Unit: nanoseconds.

• LASER_PULSE_SIGTime
(type: Double, items: 1, default: "0.", minimum: "0.", units: nanoseconds)
To be used (non-zero) if the pulse shape of the light emitted from the flat-fielding or
single-p.e. calibration unit follows a Gaussian, with the given number standing for
the sigma of the Gaussian. Unit: nanoseconds.

• LASER_PULSE_TWIDth
(type: Double, items: 1, default: "0.", minimum: "0.", units: nanoseconds)
To be used (non-zero) if the pulse shape of the light emitted from the flat-fielding
or single-p.e. calibration unit follows a top-hat (Heavyside) function, with the given
number standing for the full width. Note: You can chose from the available functions
and you can even combine them if the values of more than one are non-zero. Unit:
nanoseconds.

• LASER_WAVELENGTH
(type: Double, items: 1, default: "400.", minimum: "200.", units: nanometer)
The wavelength of the light emitted from the flat-fielding or single-p.e. calibration
unit. Applies to both ’laser’ and ’LED’ type events. Unit: nanometer.

• LASER_EXTERNAL_TRIGGER
(type: Int, items: 1, default: "0", minimum: "0", maximum: "1")
A laser/LED flatfielding unit would typically operate at a sufficient illumination that
the camera can trigger by itself. If operated at low illumination (e.g. a single-p.e.
calibration unit outside of the camera), then an external trigger is needed.

• LED_PHOTONS
(type: Double, items: 1, default: "4.0", minimum: "0.05")
The intensity of LEDS assumed to sit in the camera lid in front of each pixel (like
originally HESS CT3) when simulating extra calibration-type events (with LED_
EVENTS greater than zero). Typically this would be single-p.e. calibration events
without NSB background.

• LED_VAR_PHOTONS
(type: Double, items: 1, default: "0.0", minimum: "0", maximum "1")
Variation of the average amplitude of the LEDs in front of each pixel, from pixel to
pixel (not including the statistical event-to-event fluctuation).
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• LED_EVENTS
(type: Int, items: 1, default: "0", minimum: "0")
If greater than zero than additional calibration-type events are simulated before the
first shower events, assuming an independent LED in front of each pixel, taking this
type of data with closed lid, i.e. without NSB.

• LED_PULSE_OFFSET
(type: Double, items: 1, default: "0.", units: nanoseconds)
As for LASER_PULSE_OFFSET but for in-lid LED devices.

• LED_PULSE_SIGTime
(type: Double, items: 1, default: "0.", minimum: "0.", units: nanoseconds)
As for LASER_PULSE_SIGTime but for in-lid LED devices.

• DARK_EVENTS
(type: Int, items: 1, default: "0", minimum: "0" )
Pedestal events at start of run with camera lid closed (completely dark, no NSB).

• PEDESTAL_EVENTS
(type: Int, items: 1, default: "0", minimum: "0" )
Pedestal events at start of run with camera lid open (same NSB as for normal events).

12.3.12 Output data options

Configuration parameters in this section used to be global parameters but, since they apply
to each telescope individually, have been changed to telescope-specific parameters.

• OUTPUT_FORMAT
(type: Int, items: 1, default: "0")
Select a specific output format (if several available). A value of ’0’ means to write
ADC sums, a value of ’1’ to write ADC samples.

• SAMPLED_OUTPUT
(type: Int, items: 1, default: "0")
This is a synonym to the OUTPUT_FORMAT parameter, that should be easier to find
when you are looking how to write sample-mode (FADC-like) output data.

• PEAK_SENSING
(type: Int, items: 1, default: "0")
Instead of sampling the pulses and optionally integrating signals over a given number
of samples, the peak sensing option only reports the sample with the largest signal in
the range otherwise used for ADC sums. The output is reported to be an ADC sum
over one sample; also pedestals are for one sample only. This option is incompatible
with sample-mode output.
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• ZERO_SUPpression
(type: Int, items: 1, default: "0", minimum: "0", maximum: "2")
Zero-suppression mode. 0: no suppression, 1: bit maps mark significant pixels, 2: a
list of significant pixels is included in the data.

• DATA_REDuction
(type: Int, items: 1, default: "0", minimum: "0", maximum: "2")
Data reduction mode. Only available in ’sum’ format. 0: full raw data for every
(significant) pixel, 1: low-gain channel suppressed if little signal in high-gain, 2:
small high-gain values squeezed into 8 bits.

• AUX_TRACES
(type: int, items: 8, default: "0,0,0,0,0,0,0,0", minimum: "0", maximum: "1")
This parameter is dedicated to debugging and illustration of the camera trigger logic.
It is only available if sim_telarray got compiled with WITH_AUX_TRACES de-
fined. This compilation option comes, at run-time, with a significant impact on mem-
ory usage and output data size, and, to a lesser extend, also on CPU usage. Each in-
teger value disables (0) or enables (1) a particular trace of raw (analog, float value) or
digitized signals internal to the simulation. Digitized signals cover the time range of
the FADC simulation, analog signals the time range of the discriminator/comparator
simulation at the higher time-resolution used for that part of the simulation (typi-
cally four times as many samples per trace as with digitized signals). The first four
switches represent digital traces, of which only the first is implemented. Availability
of the four ‘analog’ traces depends on the trigger type(s) in a camera. The individual
switches are for enabling/disabling:

1 Digitized traces of simulated ADC values over the full FADC_BINS range, as
scaled, shaped, clipped, added-up in each digital-sum trigger group, before the
final decision. Limited to cameras with a digital-sum trigger.

2-4 Reserved, not used.

5 The raw signal at the input of each comparator/discriminator or the input stage
of an analog sum. Limited to cameras with majority or analog-sum trigger
type(s).

6 The added-up signal for the analog-sum trigger groups, after shaping and clip-
ping. Limited to cameras with analog-sum trigger.

7 The discriminator or comparator output signal in percent of the nominal output.
Limited to cameras with majority trigger.

8 The majority signal in units of pixels. With logic-type majority (no rise and
fall times), this will be integer values (represented as floats) while for a fully
analog majority electronics, this will be the added-up outputs of the discrimina-
tor/comparator outputs in each trigger group. Limited to cameras with majority
trigger.
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12.3.13 Level of simulation detail

• FULL_SIMULATION
(type: Int, items: 1, default: "2", minimum: "0", maximum: "2")
Full simulation of FADC signals if > 0, of discriminators if > 1.

12.3.14 Pixel peak detection and timing

• PULSE_ANALYSIS
(type: Int, items: 1, default: "0")
Non-zero values enable the pixel pulse timing analysis, with a range of peak,
rise, and fall times evaluated for significant pixels, plus pulse sums from
SUM_BEFORE_PEAK bins before the peak bin to SUM_AFTER_PEAK bins after
it. Low-gain channels are not analyzed separately, with pulse sums integrated over
the same period as in the corresponding high-gain channel. The local peak pulse
sums are always just available for significant pixels. Global peak sums, evaluated
around the peak in the co-added pulse of all significant pixels, can be either provided
for all pixels (value greater than zero) or only for significant pixels (value less than
zero).

• SUM_BEFORE_PEAK
(type: Int, items: 1, default: "-1", minimum: "-1")
The number of time slices before the global (local) peak position where summation
of the alternate charge sums start for significant pixels. A value of -1 indicates that
no such sums are recorded.

• SUM_AFTER_PEAK
(type: Int, items: 1, default: "-1", minimum: "-1")
The number of time slices after the global (local) peak position where summation of
the alternate charge sums ends for significant pixels. A value of -1 indicates that no
such sums are recorded.

12.3.15 Appearance of image plots

• IMAGE_PE_RANGE
(type: Double, items: 1, default: "30", minimum: "10", maximum: "1000")
Range scale for image colours.

• IMAGE_GAMMA_COEFFicient
(type: Double, items: 1, default: "0.85", minimum: "-5.", maximum: "5.")
Contrast parameter.
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12.4 For (meta-) information only
Although all relevant parameters describing a telescope and needed for the analysis of the
simulated data is available in the data stream, a short-hand description of the configura-
tion used is often useful. There are three areas where such descriptions can be provided:
array level, optics, and camera. In each of those areas there can be a configuration name,
a configuration version, and a configuration variant - for example activated by some run-
time definitions. All of these fields are by default empty text strings. Array-level infor-
mation will only be used from the global configuration, optics and camera information
are telescope-specific. None of these parameters has any effect on the simulation itself.
They are all pre-selected as meta-parameters, at the relevant level. Other parameters may
be asigned as meta-parameters with the METAPARam configuration function. This covers
both actual configuration parameters (values will be filled in as effective in the end) or
made-up parameters (values must be assigned directly).

• CONFIG_RELEASE
(type: Text, max. length: 99, default: "")
If the configuration (data) files were released as part of a package, this parameter
(with no effect otherwise) may indicate the release date/time/version/comments etc.
Unless the corresponding global configuration file got included, this parameter is
empty by default.

• CONFIG_VERSION
(type: Text, max. length: 99, default: "")
Usually an automatically generated text when the configuration was last modified.

• ARRAY_CONFIG_NAME
(type: Text, max. length: 99, default: "")
The basic name of the array configuration like “CTA PROD4 LaPalma baseline”.

• ARRAY_CONFIG_VERSION
(type: Text, max. length: 99, default: "")
If multiple versions of the array configuration of a given name have been in use this
may indicate a specific date or version text to identify this specific version.

• ARRAY_CONFIG_VARIANT
(type: Text, max. length: 99, default: "")
If the same configuration file (of a specific version or in general) contains multiple
array variants activated by definitions at run-time, this may identify the variant in
use, e.g. “MSTs as NectarCam”.

• OPTICS_CONFIG_NAME
(type: Text, max. length: 99, default: "")
A name (text string) identifying the basic optics configuration of a specific telescope,
e.g. “MST”.
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• OPTICS_CONFIG_VERSION
(type: Text, max. length: 99, default: "")
If multiple versions of the optics configuration of a given name have been in use this
may indicate a specific date or version text to identify this specific version.

• OPTICS_CONFIG_VARIANT
(type: Text, max. length: 99, default: "")
If the same configuration file (of a specific version or in general) contains multiple
optics variants activated by definitions at run-time, this may identify the variant in
use, e.g. “MST-86” for a MST with 86 mirror tiles (although that could also be
derived from the mirror area reported in the data).

• CAMERA_CONFIG_NAME
(type: Text, max. length: 99, default: "")
A name (text string) identifying the basic camera configuration of a specific tele-
scope, e.g. “FlashCam”.

• CAMERA_CONFIG_VERSION
(type: Text, max. length: 99, default: "")
If multiple versions of the camera configuration of a given name have been in use
this may indicate a specific date or version text to identify this specific version.

• CAMERA_CONFIG_VARIANT
(type: Text, max. length: 99, default: "")
If the same configuration file (of a specific version or in general) contains multiple
camera variants activated by definitions at run-time, this may identify the variant in
use, e.g. “Analogsum14” for a camera with analog sum trigger including 14 pixels
(two modules of seven pixels).

• METAPARam
(type: Function)
Syntax:
METAPARam [ scope ] action
or more specifically, with supported scopes and actions:
METAPARam [ GLOBAL | TELESCOPE | ANY ]

{ ADD list |
SET name=value |
REMOVE list |
CLEAR }

The scope selection ‘GLOBAL’ (for global parameters), ‘TELESCOPE’ (for
telescope-specific parameters), or ‘ANY’ (or ‘ALL’, for either of the two) can be
omitted, and defaults to ‘TELESCOPE’. The ‘ADD’ action adds names of config-
ured parameters, optionally with a comma-separated list of names. Any acceptable
abbreviation of a parameter name will be accepted - and it will be recorded under
its pre-configured name. Function-type parameters cannot be selected for that as
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they have no assigned values. The ‘ADD’ action can also use a ‘*’ wildcard for any
known, non-function parameter or ‘sectionname:*’ for all parameters configured un-
der the given name of a configuration section (for example: ‘main’, ‘transmission’,
‘telescope’). The ‘SET’ action assigns manual meta-parameters with a value. To
avoid confusion with configured parameters, they will be prefixed with a * and con-
verted to uppercase. The ‘REMOVE’ action can remove meta-parameters of either
type, of course without affecting the actual configuration. The ‘CLEAR’ action re-
moves all meta-parameters (in the chosen scope).
Global and telescope-specific meta-parameters will be recorded as lists of
name/value pairs in the output file, with a dedicated data block type (IO_TYPE_
METAPARAM, 75).

12.5 Hconfig built-in functions
The configuration system has a number of built-in functions, accessible like ordinary con-
figuration parameters, most of which can be used to obtain information about configured
parameters. The optional values passed to these functions can be either a configuration pa-
rameter name or one of the special names ‘all’ (same as ‘*’), ‘no-internal’ (similar to ‘all’
but excluding these built-in functions), ‘modified’ (parameters that have been modified
from the compiled-in defaults), ‘locked’ (parameters that can currently not be modified),
and ‘unlocked’ (parameters free to be modified). Other built-in functions are useful to
produce informative or diagnostic messages.

Some aspects of the output produced with these functions can be further controlled
through some environment variables.

• SHOW
(type: Function, for configuration parameter or special names)
Show most of the user-accessible aspects of a configuration parameter, including
name, type, length, limits, default and current value(s).

• LIMITS
(type: Function, for configuration parameter or special names)
Extract lower and upper limits for numeric parameter types.

• INITLIST
(type: Function, for configuration parameter or special names)
Extract initial (default) parameter values.

• TYPELIST
(type: Function, for configuration parameter or special names)
Extract type of parameter, number of values, and options. For each matching param-
eter it will show its configured type string, the number of values expected or allowed
(−1 for function type, the number of characters without terminating NUL character
for strings), and a string of optional characters which may include
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– R: Item is rejecting any attempts to set or use it.

– H or S: Item has hard or strict boundaries. Any attempt to violate them will
result in a configuration error.

– l or L: There is a lower boundary value configured.

– u or U: There is an upper boundary value configured.

• LIST
(type: Function, for configuration parameter or special names)
Extract current parameter values.

• STATUS
(type: Function, for configuration parameter or special names)
Shows locked/unlocked status.

• LOCK
(type: Function, for configuration parameter or special names)
Lock given parameters (making them immutable until a corresponding UNLOCK).

• UNLOCK
(type: Function, for configuration parameter or special names)
If a parameter was previously locked, it can be unlocked again in order to be able to
change it. All parameters are initially unlocked.

• ECHO
(type: Function, for arbitrary text) Informative text output (usually to stdout) from a
configuration file.

• WARNING
(type: Function, for arbitrary text) Diagnostic text output (usually to stderr) from a
configuration file.

• ERROR
(type: Function, for arbitrary text) Diagnostic text output (usually to stderr) from
a configuration file. This also sets the configuration error condition which, for
sim_telarray, means that it will abort after the scanning through the configu-
ration.

The LIMITS, INITLIST, TYPELIST, and LIST functions also check a number of
environment variables (some of which get set by sim_telarray itself if not defined
beforehand):

• HCONFIG_LIST_STYLE controls delimiter and end-of-line for the following
styles: latex (ready to be pasted into a LATEX table, plain (showing ‘=’ sign),
tsv (for tab-separated-values, default).
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• HCONFIG_LIST_PREFIX for a recognizable prefix to the produced output
(to distinguish it from other sim_telarray output, among other things).
Sim_telarray uses “(@cfg) ” by default.

• HCONFIG_INITLIST_PREFIX for an additional prefix to identify output lines
with default values. If none is given, sim_telarray will show defaults.

• HCONFIG_TYPELIST_PREFIX for an additional prefix to identify output lines
with type listing. If none is given, sim_telarray will show type.

• HCONFIG_LIMITS_PREFIX for an additional prefix to identify output lines with
numeric limits. If none is given, sim_telarray will show limits.

• HCONFIG_SECTION_PREFIX if set to any non-empty string not equal to "0"
has the effect that the name of the section, in which the parameter was defined, will
be added in square brackets.

• HCONFIG_PREFIX_NUM can be used to identify for which telescope the param-
eter applies with the LIST function. By default global parameters are identified as
‘global’ while parameters for individual telescopes are identified as ‘CT’ plus the
telescope ID. Set it to “#” or “%d” or “num” for an entirely numeric representation
of the telescope ID (with ‘0’ instead of ‘global’). Sim_telarray actually updates
this environment variable with the corresponding string for each telescope.

143



Chapter 13

Miscellaneous environment variables

13.1 Pathnames for programs and data
• HESSROOT stands for the top-level directory of the source code tree for H.E.S.S.

(not just for simulations) This is where sim_hessarray and hessio are located
in that environment.

• CTA_PATH stands for the top-level directory of the source code tree
in CORSIKA/sim_telarray installations for CTA, typically where the
build_all is applied to the contents of the combined source code package

(corsika7.7_simtelarray.tar.gz or such).

• CORSIKA_PATH stands for the location of the directory containing the CORSIKA
executable(s) and their data files (typically a run sub-directory of the CORSIKA
installation directory and referred to by a corsika-run symbolic link under CTA_
PATH).

• CORSIKA_WORKDIR is the location of the CORSIKA working directory, usu-
ally set up by corsika_autoinputs and filled with symbolic links to files in
CORSIKA_PATH before starting CORSIKA.

• SIM_TELARRAY_PATH stands for the location of the sim_telarray source
code, typically a sim_telarray sub-directory of CTA_PATH (in the H.E.S.S.
world a sim_hessarray sub-directory of HESSROOT).

• SIM_TELARRAY_RUN_PATH may replace the run-time location of
sim_telarray and its tools – although not all components use it. Falls
back to SIM_TELARRAY_PATH.

• SIM_TELARRAY_WORKDIR would be the location where sim_telarray
is actually run (from run_multipipe, via multipipe_corsika and then
generic_run, custom_run, or an equivalent script, typically). Falls back to
SIM_TELARRAY_RUN_PATH and SIM_TELARRAY_PATH. If the variable is de-
fined but the directory does not exist, it gets created and filled with symbolic links
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for barebone operation. Sim_telarray and its launching scripts will not look at
the variable since the working directory is already chosen at that point.

• HESSIO_PATH stands for the location of the hessio source code, typically a
hessioxxx sub-directory of CTA_PATH (in the H.E.S.S. world a hessio sub-
directory of HESSROOT).

• STDTOOLS_PATH stands for the location of the stdtools source code, typically a
stdtools sub-directory of CTA_PATH or HESSROOT.

• IACTIO_PATH stands for the location of the iactio source code, typically a
iactio sub-directory of CTA_PATH or HESSROOT.

• MCDATA_PATH is where the CORSIKA and sim_telarray programs are sup-
posed to write their output data, typically a Data sub-directory or symbolic link
under CTA_PATH, with corsika and sim_telarray sub-directories.

• CTA_DATA is an alternative variable for indicating the location of the output data,
in case MCDATA_PATH is not set. If neither is set, the Data sub-directory or symlink
under CTA_PATH would be chosen.

• HESSMCDATA is an alternative variable for indicating the location of the output
data, in case MCDATA_PATH is not set (in the H.E.S.S. world).

• CORSIKA_DATA is the location for CORSIKA output data, typically the
corsika sub-directory of MCDATA_PATH, under which the run-specific working
directories are created in a run%06d format. Before starting CORSIKA, the work-
ing directory is typically populated with symbolic links to the CORSIKA program
and its data files (which normally live under CORSIKA_PATH. The pre-processed
and corsika_autoinputs updated inputs file (with unique run number and ran-
dom seeds) as well as the CORSIKA log file can be found in the working directory.
Both CORSIKA itself and the IACT interface may create temporary data files in the
working directory.

• SIM_TELARRAY_DATA is where sim_telarray data files are created, typi-
cally a sim_telarray sub-directory of MCDATA_PATH. The actual data files may
be found under off-axis angle specific sub-sub-directories in a configuration-specific
sub-directory.

• SIM_TELARRAY_OUTPUT_PATH can be used for control over the exact loca-
tion of the sim_telarray output, rather than the configuration and offset depen-
dent path.

• SIMTEL_CONFIG_PREPROCESSOR is an optional variable which can be set
to replace the pfp pre-processor by another program.
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• SIMTEL_CONFIG_PATH indicates extra location(s) of configuration files (colon-
separated if multiple directories) which are searched before the paths compiled into
sim_telarray.

• SIM_TELARRAY_CONFIG_PATH indicates the location(s) of configuration files
(colon-separated if multiple directories) which are to replace the paths compiled into
sim_telarray.

13.2 Variables used for configuration control
These variables are used in different parts of the simulation pipeline to adjust configuration
files to be used etc.

• extra_config and command-line parameters to the generic_run.sh or
custom_run.sh script are the last way to override parameters and defini-
tions, superceding anything set in SIM_TELARRAY_DEFINES, SIM_TELARRAY_
INCLUDES, simtel_defs, or extra_defs. In particular, it can still set the
configuration file to be used.

• extra_defs is for further sim_telarray options, processed after those from SIM_
TELARRAY_DEFINES and SIM_TELARRAY_INCLUDES, with the generic_
run.sh or custom_run.sh script.

• simtel_defs Like extra_defs and a bit clearer in its name but so far rarely
used. The generic_run.sh and custom_run.sh will try to use any of
them (or all, if more than one is set), in the order SIM_TELARRAY_DEFINES,
SIM_TELARRAY_INCLUDES, simtel_defs, extra_defs (the latter being
able to override settings from the earlier ones).

• extra_suffix will get attached to the sim_telarray output file
names by generic_run.sh or custom_run.sh; usually set in the
multipipe_corsika configuration, with a different suffix for each of
multiple pipes.

• extra_suffix2 will also get attached to the sim_telarray output file names. This
part would usually be set in the script starting CORSIKA, if different sets of simula-
tions should be easily distinguishable by file name.

• CORSIKA_MULTIPLEX_SEQUENTIAL is set if the ‘sequential’ method of
scheduling the multipipe_corsika pipes is to be activated. Equivalent to using
the sequential option for multipipe_corsika.

• CORSIKA_IO_BUFFER sets an upper limit to the I/O buffer with the IACT even-
tIO output file or pipe. Sizes may have “MB” or “GB” suffixes etc.
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• CORSIKA_MAX_BUNCHES can be set to adapt the limit on the number of photon
bunches in a single telescope.

• INCLUDES_PATH sets search paths for included files, for example in the LightE-
mission applications.

• SIM_TELARRAY_DEFINES can be used to indicate extra sim_telarray op-
tions, intended for extra -D or -U pre-processor definitions.

• SIM_TELARRAY_INCLUDES can be used to indicate extra sim_telarray
options, intended for extra -I pre-processor include paths.

• SIMTEL_MULTI_CFG_SUFFIX indicates an optional modifier to the
multipipe_corsika configuration name, appended after the normal name.

13.3 Variables used by EventIO

Environment variables controlling and limiting the size of the buffers used by the EventIO
code are either specified directly in bytes or come in units of powers of 1000 (k/M/G/T or
kB/MB/GB/TB suffix) or powers of 1024 (kiB/MiB/GiB/TiB suffix). The suffices are case-
insensitive (‘Kb’ or ‘mIb’ will work just as well - there are no ‘milli’ bytes). Floating-point
numbers will usually work as well.

• HDATA_IO_BUFFER: Where reading or writing histograms creates its own tem-
porary I/O buffer, this variable can be used to set the initial size of the I/O buffer,
avoiding later re-allocations, for exaxmple. Not applying where histogram reading
or writing is given a pre-allocated I/O buffer.

• MAX_IO_BUFFER: The buffer used for EventIO data blocks can grow up to a
given limit. This variable cannot only control this limit from user-level scripts but it
can also get CORSIKA, multipipe_corsika, and sim_telarray to use the
same limits, for example with a IACT MAX_IO_BUFFER line in the CORSIKA
inputs file.

• MIN_IO_BUFFER: The initial size of any I/O buffer specified as less than that will
be increased accordingly. A hard-coded minimum always applies, independent of
this variable (but is quite small and the buffer would need a number of re-allocations
to grow to the size needed by the application).

• NEW_IO_BUFFER: If an application asked for an I/O buffer of unspecified initial
size (size zero), either this variable applies or, in its absence, a hard-coded default.
Most applications ask for a size more appropriate for the typical use in that applica-
tion, and this variable rarely applies.
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13.4 Variables overriding sim_telarray limits
• MAX_BUNCHES: Photon bunches for a single telescope are retrieved from the data

block and buffered in an internal array, after deciding that ray-tracing is worth the
effort and before going over the actual ray-tracing.

• MAX_PHOTOELECTRONS: After ray-tracing, all detected photo-electrons are
kept in memory while waiting for the decision if simulation of the signals is worth
the effort.

• MAX_PIXEL_PHOTOELECTRONS: If there are too many photo-electrons to a
pixel, and signals are totally saturated, processing even more of them may not be
worth the effort.

• MAX_PRINT_ARRAY: That is actually not just a limit for sim_telarray but
for many programs sharing library when ‘printing’ arrays of data. After reaching the
limit in members, more data is just implied by an ellipses (. . .).

13.5 Variables for configuring multipipe_corsika
• MULTIPIPE_SEQUENTIAL is set if the ‘sequential’ method is effective.

• MULTIPIPE_DEBUGCFG can be set to debug the configuration processed by
multipipe_corsika, rather than processing it.

• SIMTEL_MULTI_CFG is an alternative to the -c option for setting the configura-
tion name to be used with multipipe_corsika.

• SIMTEL_MULTI_CFG_PATH is where multipipe_corsika config files are
supposed to be located. Falls back to the multi sub-directory in SIM_TELARRAY_
PATH or SIM_TELARRAY_RUN_PATH.

• SIMTEL_MULTI_CFG_FILE sets a specific file to used as the configuration file
for multipipe_corsika.

• SIMTEL_MULTI_CFG_SUFFIX gets appended to the multipipe_corsika
configuration name, for example to modify the resulting configuration filename
without having to modify the CORSIKA inputs file. This gets ignored if
SIMTEL_MULTI_CFG_FILE is set.

• SIMTEL_MULTI_CFG_PREPROC is an alternate way to enable pre-processing
the multipipe_corsika configuration file (or having it processed by
bash/python/...). If run_multipipewas called with --pfp, -p, or --preproc
options, the variable is superceded accordingly.

• SIMTEL_MULTI_OPTION adds further options on the multipipe_corsika
command line (typically -D pre-processor definitions).
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13.6 Variables set up by multipipe_corsika
These are variables get set up by multipipe_corsika based on the run header, the
list of telescope positions, and first event header in the data stream. They are then
available to generic_run.sh or custom_run.sh (or any other script used to steer
the telescope simulation as the next step in the pipeline). The same variables may
also be obtained with the extract_corsika_tel and extract_corsika_multi
programs (--header-only or --header-only-export option) from an existing
CORSIKA/IACT data file. Note that the number of telescopes and radii reported with
these tools may depend on the selection of telescopes, and additional variables separately
reporting these numbers before and after selection may be created.

• CORSIKA_ARRAYS: Number of uses of each CORSIKA by randomly offset tele-
scope/detector arrays (from CSCAT input line).

• CORSIKA_ATMOFILE: Named atmospheric density table, if IACT ATMOFILE
control card was used in CORSIKA inputs.

• CORSIKA_ATMOSPHERE: Atmospheric density table number, if if IACT
ATMOSPHERE or simply ATMOSPHERE was used in CORSIKA inputs (99 if IACT
ATMOFILE was used instead; 0 for all CORSIKA 5-layer variants either built-in or
set-up by various CORSIKA parameters).

• CORSIKA_CONE: VIEWCONE maximum code angle in degrees.

• CORSIKA_EMAX: Maximum energy for primary particles (unit: TeV). See the
ERANGE input line but note the different units used.

• CORSIKA_EMIN: Minimum energy for primary particles (unit: TeV). See the
ERANGE input line but note the different units used.

• CORSIKA_ESLOPE: Spectral index of the generated power law spectrum. See the
ESLOPE input line.

• CORSIKA_NUMRAD: The number of distinct radii of telescope spheres, which
may or may not indicate the number of telescope types.

• CORSIKA_COUNTRAD: A comma-separate count of how often each distinct ra-
dius was used.

• CORSIKA_LISTRAD: A comma-separate list of the distinct radii (unit: cm).

• CORSIKA_OBSLEV: Altitude of the (lowest) observation level (unit: meters a.s.l.)
See the OBSLEV input line (unit: centimeters).

• CORSIKA_PHI: Azimuth angle as counted by astronomers (geographic North to-
wards East for the arrival direction; unit: degrees). This differs from the PHIP input
in the origin, the orientation in which it is counted (and the number of values).
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• CORSIKA_PRIMARY: Primary particle ID as used by CORSIKA through the
PRMPAR input line.

• CORSIKA_RUN: Run number, as in RUNNR input card

• CORSIKA_SHOWERS: Number of showers to be generated, as in the NSHOW in-
put card.

• CORSIKA_TELESCOPES: Number of telescope positions set up for each tele-
scope array, with a separate TELESCOPE input card for each of them

• CORSIKA_THETA: Zenith angle of primary particle arrival direction (matching
mean THETAP, unit: degrees).

• CORSIKA_VERSION: CORSIKA version used to generate the data.

These variables can also be retrieved from a disk file with the --header-only or
--header-only-export options of extract_corsika_tel . Example usage:

extract_corsika_tel --header-only-export \
fname.corsika.zst > corsenv.sh

source corsenv.sh

In addition, multipipe_corsika uses the variables CORSIKA_PID,
MULTIPIPE_PID, MULTIPIPE_SIGNAL, and MULTIPIPE_SIGNAL_INIT
for communication between multipipe_corsika, CORSIKA, and sim_telarray
in sequential mode (MULTIPIPE_SEQUENTIAL=1). Those should never be set by the
user.
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Chapter 14

Source code documentation

This part is available as a separate file [6] and is produced automatically with the doxygen
utility. The hessio package, which is an important part of the CORSIKA IACT option
and the sim_telarray program, has a similarly generated documentation [8] of its own.
A similarly generated file describes the IACT/ATMO package [7].
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Chapter 15

Data format of output from the
CORSIKA IACT interface

15.1 A machine-independent hierarchical data format
The data from the CORSIKA program with activated IACT interface is written with the
eventio package [4] which was already used for the CRT detector and HEGRA tele-
scope system data. For a general description of this package see also the CRT documenta-
tion. Among the features of the eventio package (in complete typically found under the
name hessioxxx.tar.gz but most relevant parts being included with the IACT/ATMO
package) are

machine independence Both big-endian and little-endian byte order is supported. Float-
ing point representation is IEEE and conversion of VAX and general internal floating
point representations to and from IEEE is included. At present, the package should
work on any system with an C compiler and run-time library compatible with ISO C
(1998 or newer), like gcc or clang. Although its main use these days is mainly un-
der Linux, it is known to work under MacOS. The package got tested under Ultrix
(MIPS CPU), DEC Unix (cc and gcc), OS-9 (68040 CPU), Lynx OS (68040 and
PowerPC) and also (although in older implementations) even on VAX/VMS, AIX,
and MS-DOS – in the days when these operating system were still around. Since
both byte-orders are equally supported, there is no need for forward and backward
byte order reversal when the writing and reading is usually done on machines of the
same byte order. The byte order for writing can be selected at run-time (and could,
in principle at least, be changed from one block to the next).

hierarchical structure A hierarchical data structure is supported where one item may con-
tain either several sub-items or atomic data (bytes, integers, floating point numbers).
As long as sub-items are not mixed with atomic data at the same level, the structure
of each data block can be listed without knowing anything about the data format
(except that it is eventio format). For such listings the listio program is available
from the CRT source code collection.

152



transmission failure recovery Even in the case that errant data is transmitted or recorded,
the beginning of the next data block is found by looking for a four-byte marker
sequence (which also serves to tell the byte order of the recorded data).

file compression Data (to be) stored in files can be compressed / decompressed automati-
cally with a wide range of standard compression tools like gzip, bzip2, xz, zstd, etc.,
with the tool selection just based on the file name extension.

15.2 Tools for CORSIKA eventio data

15.2.1 General eventio data tools

Independent of the contents of eventio data, the hierarchical structure is accessible with
tools like listio and statio.

The listio program displays the type number, ident number, and length
of each top-level data block and, if run with the ’-s’ option, also the full hier-
archy of sub-blocks. If a file with a text description of the different data types
exists as either EventioRegisteredNames.dat in the current directory or as
.EventioRegisteredNames in the HOME directory, with lines like

100:Histogram:One or many histograms (1-D or 2-D)

the option ’-n’ will also show the short type text for registered types, [Histograms] for
type 100 as an example, while the option ’-d’ will show both the short text and the longer
description.

The statio programs counts all the different types of top-level data blocks encoun-
tered and displays the statistics of block types after encountering end-of-file, including the
registered type names. For a short example CORSIKA output it may look like

Type Blocks Bytes Version(s) Name
1200 1 1112 0 [CORSIKA run header]
1201 1 100 0 [CORSIKA telescope positions]
1202 100 111200 0 [CORSIKA event header]
1203 100 10400 0 [CORSIKA telescope offsets]
1204 1000 70340880 0 [CORSIKA telescope array]
1209 100 111200 0 [CORSIKA event end]
1210 1 32 0 [CORSIKA run end]
1211 100 158000 0 [CORSIKA shower profile]
1212 1 5172 0 [CORSIKA inputs]

The filterio program is a tool to select or discard specific data block types when
copying data from input to output, for example extracting only the CORSIKA inputs block
from a data file.
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15.2.2 The multipipe_corsika tool for CORSIKA IACT data
Although IACT output from CORSIKA can be recorded as plain files and processsed
later-on, a frequent scenario is to pipe the IACT into sim_telarray without bother-
ing with disk I/O. With the multipipe_corsika tool this can be done in a con-
venient and efficient way, for single use or multiple use of the CORSIKA IACT data.
Multipipe_corsika reads CORSIKA IACT data from standard input. It is part of
the sim_telarray package. From the first few data block it will then be used set
up a number of environment variable that are useful for further processing without hav-
ing to look into the data again. A configuration file tells what to do with the data, and
each non-empty, non-comment line in the configuration is used to open an output pipe
to which the input data will be copied. Traditionally, these were single physical lines
but multipipe_corsika has been enhanced to continue with the next line, as long
as the line ends in either backslash-backslash (\\, TEX style) or blank-backslash ( \,
shell/Makefile style), not counting any trailing whitespace. Example:

line1
line2a\\
line2b \
line2c \\
line2d
line3

would be equivalent to

line1
line2aline2bline2c line2d
line3

Note the blank before the single backslash being removed while the blank before the double
backslash is not.

If some of the output pipes finish (or fail) early they are dropped from the list but output
will continue to the still active ones, as long as at least one output pipe remains active. This
tool can reduce the I/O needed for simulations by a large factor as the big amount of
CORSIKA data may never be written to disk but immediately enters into one or several
telescope simulations. The output pipe processes would normally all run in parallel, after
having read a block of data, but multipipe_corsika can be set to have CORSIKA,
multipipe_corsika and any sim_telarray in an output pipe to process data in
sequential order, i.e. apart from passing the data from one program to the other only one
program will be active at a time, avoiding the sum of CPU loads significantly exceeding
100% at any time.

The multipipe_corsika tool generally needs an instruction on the configuration
file to use. It would normally obtain data from standard input (which may be an IACT out-
put pipe from CORSIKA, via TELFIL |cmd, or any other pipe providing uncompressed
IACT module data in eventIO format) or open a file by name (with automatic handling of
uncompressing the data if the filename extension indicates that):
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Syntax: multipipe_corsika [ options ] [ input-file ]
Options:

-c cfgfile (Use the given configuration file.)
--preproc cmd (Use given command as pre-processor or interpreter for the

cfgfile, with its standard output used as configuration.)
--pfp (Use ’pfp’ as a pre-processor for the config file.

Note the use of ’*’ as control character instead of ’#’.)
-I* / -D* / -U* (Pass include/define/undefine options to pre-processor.)
--postproc cmd (Add a command to be run after output pipes are all done.

Can be used multiple times, in addition to ’postproc:’
lines in the configuration file.)

--sequential (Run output pipes and input pipe in sequential order,
as far as possible. Only effective with sim_telarray
or other co-operating programs in output pipe.
Non-co-operating programs are unaffected and remain
running in parallel with any other programs.)

The configuration file may contain any number of commands that will be opened as
output pipes. Usually the immediate command will be ‘env’ to allow to set various en-
vironment variables, in addition to those set by multipipe_corsika itself, before
starting the ‘real’ command (typically the script ‘generic_run.sh’ for setting up the
sim_telarray command line from all the relevant environment variables and parame-
ters). Example (abbreviated with ‘...’ ellipsis for omitted parts):

env offset="0.0" cfg=... ... ./generic_run.sh

Output commands where a premature ending does not necessarily indicate an error,
should better be tagged as optional:

optional: env offset="1.0" cfg=... ... ./generic_run.sh

In addition to output pipes, the configuration file may also specify post-processing com-
mands by the ‘postproc:’ tag, to be executed after all output pipes are closed and after any
post-processing commands requested on the multipipe_corsika command-line. The
post-processing commands will not get any data on their standard input but would need to
know where to get their data. They are executed in the order specified. An example appli-
cation would be writing temporary compressed IACT output data and running the telescope
simulation(s) only after CORSIKA is done processing:

zstd > run${CORSIKA_RUN}.corsika.zst
postproc: env offset="0.0" cfg=... ... ./generic_run.sh run${CORSIKA_RUN}.corsika.zst
postproc: env offset="1.0" cfg=... ... ./generic_run.sh \\

run${CORSIKA_RUN}.corsika.zst
postproc: rm run${CORSIKA_RUN}.corsika.zst
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Instead of using a configuration file directly for setting up multipipe_corsika,
it can also be pre-processed or interpreted by a chosen command, including the pfp pre-
processor or any shell or programming language interpreter, including ‘bash’ or ‘python’.
With the added level of complexity it may become rather useful to check the result-
ing configuration before actually processing it – which can be achieved by setting the
MULTIPIPE_DEBUGCFG environment variable.

First debugging example: plain config file with post-processing both in the configura-
tion file and as multipipe_corsika options:

echo Hello1
optional: echo Hello2
postproc: echo Hello4

and tested with the command

MULTIPIPE_DEBUGCFG=1 bin/multipipe_corsika \
--postproc ’echo Hello3a’ --postproc ’echo Hello3b’ \
-c test1.cfg dummy1.corsika.gz

shows the following debugging output:

Adding post-processing command: echo Hello3a
Adding post-processing command: echo Hello3b
Input is read from ’dummy1.corsika.gz’
CORSIKA_VERSION=6.032
...
config line = echo Hello1
config line = optional: echo Hello2
Adding post-processing command: echo Hello4

Note that the post-processing commands configureed via --postproc’ options are
run before any configured via the postproc: tag in the configuration. Running it, with-
out setting MULTIPIPE_DEBUGCFG=1, shows the actual processing order (with the first
two run in parallel, so order of output may vary):

...
Hello2
Hello1
...
Output pipes finished after 0.018 seconds run-time.
Starting post-processing now ...
Hello3a
Hello3b
Hello4
Multipipe_corsika finished after 0.022 seconds run-time.

As a second example, we use the file
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*ifdef ABC
echo "Hello1 (alternate)"
optional: echo "Hello2 (alternate)"

*else
echo "Hello1 (default)"
optional: echo "Hello2 (default)"

*endif

and pre-process it with pfp, using the (debugging-only) command

MULTIPIPE_DEBUGCFG=1 bin/multipipe_corsika --pfp -DABC \
-c test2.cfg dummy1.corsika.gz

to select the alternate of the two configuration variants. While pfp usually has (like
the C/C++ pre-processor) the ‘#’ (hash) character as the control character (starting a con-
dition/define etc.), this character is already used as a comment character. Assigning the
‘*’ (asterisk) character to function as the control character here, keeps existing configu-
ration files in working order when interpreted first through pfp rather than read directly.
Actually pfp is called as pfp -v -C* -I. -Imulti (plus all the -I, -D, and -U
options from the multipipe_corsika command line). That might be useful to know
for testing a configuration file.

A perhaps more practical example uses the shell interpreter on the file

#!/bin/bash

offlist="0.0,0.25,0.5,0.7,1.0"

common=’cfg=phase2d extra_config="-c hess-phase2d.cfg" \
extra_suffix="-nsb1.00" \
extra_defs="${extra_defs} -C nsb_scaling_factor=1.00" \
extension="zst" ./generic_run.sh’

for o in $(echo $offlist | sed ’s/,/ /g’); do
if [ "$o" = "0" -o "$o" = "0." -o "$o" = "0.0" ]; then

echo "env offset=\"0.0\" $common"
else

echo "optional: env offset=\"$o\" $common"
fi

done

with the (debugging-only) command

MULTIPIPE_DEBUGCFG=1 bin/multipipe_corsika --preproc /bin/bash \
-c test3.cfg dummy1.corsika.gz
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15.2.3 Other specialized tools for CORSIKA IACT output data files

The extract_corsika_tel and extract_corsika_multi programs
allow to extract data for subsets of telescopes for further processing. They are part
of the hessio package. While the former only has one input and one output, the
latter can have multiple output files, with different subsets of data going to each out-
put. The extract_corsika_tel allows for more control over which events
are selected while extract_corsika_multi will process all events. Both
have a --header-only option to show what environment variables would be set
up by multipipe_corsika to help with further processing, finishing input af-
ter the header data blocks and not writing any output data then. The very similar
--header-only-export option puts an ‘export ’ in front of each line, for easier use
with the ‘bash’:

Syntax: extract_corsika_tel [ options ] [ input ]
Options:

--telescopes ... (List of telescopes, e.g. 1,2,5-7,9)
Same: --telescope, --only-telescope, --only-telescopes

-o fname (Output to file rather than stdout)
Same: --output-file

--header-only (Only process run and first event header)
--header-only-export (Same but print ’export ’ in front of lines)
--only-shower n (Pick out data for a single shower)
--only-array n (Pick out photon data for a single array)

Syntax: extract_corsika_multi [ options ] [ input ]
Options:

--array ... (Array number: 1 to 20, to following options apply)
--telescopes ... (List of telescopes, e.g. 1,2,5-7,9)

Same: --telescope, --only-telescope, --only-telescopes
-o fname (Output to file rather than stdout)

Same: --output-file
--header-only (Only process run and first event header)
--header-only-export (Same but print ’export ’ in front of lines)

15.2.4 Other tools

A tool mainly intended for looking into and analysing sim_telarray output but also
capable of showing a text-mode representation of CORSIKA output is read_hess (also
known as read_cta or read_simtel ), using the ’-S’ (show full data) option.

A much simpler program only for showing the contents of the data written by the
CORSIKA IACT interface (with CORSIKA as well as with LightEmission applications)
is read_iact comes included with the IACT/ATMO package since version 1.57 and
also the general eventio package (hessioxxx.tar.gz).
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Photon bunches coming from CORSIKA simulations with information enabled about
emitting particles can be filtered with select_iact depending on the particle type
and/or its momentum etc.

15.3 Object types in the data file

Type Description
1200 CORSIKA run header
1201 Positions and sizes of telescopes within telescope array
1202 CORSIKA event header
1203 Offsets of multiple telescope arrays for the present event
1204 Top level item for data from one array in one event
1205 Photons hitting one telescope or particles at observation level
1206 (not used)
1207 (not implemented)
1208 Photo-electrons after ray-tracing and detection
1209 CORSIKA event end
1210 CORSIKA run end
1211 Longitudinal (vertical) profiles of particles and light
1212 A copy of the inputs file used to steer CORSIKA
1213 Marker of the beginning of per-telescope split-up data
1214 Marker of the end of per-telescope split-up data
1215 Optional extra shower data
1216 Atmospheric profile data (table and/or fit)

15.4 Object formats
The following detailed list of the object formats start with the object type number (as
before), the version described, and the meaning of the ident number in the block. Variables
of type Long are 4-byte integers, variables of type Real are 4-byte floating point numbers.
Short variables are 2-byte integers.

15.4.1 CORSIKA run header
This block (like the other CORSIKA blocks) contains just the same data as in the original
CORSIKA data files (but in a machine-independent format, of course). For descriptions of
their contents consult the CORSIKA user’s guide (for the CORSIKA version in use).

Object type: 1200 (IO_TYPE_MC_RUNH)
Version: 0
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Identifier: run number

Variable Type Number Description
len Long 1 Combined count of data words following (usually 273)
runh Long 1 FORTRAN string RUNH (may be reversed)
data Real 272 see CORSIKA user’s guide

15.4.2 Positions and sizes of telescopes

Object type: 1201 (IO_TYPE_MC_TELPOS)
Version: 0
Identifier: 0

Variable Type Number Description
ntel Long 1 Number of telescopes in an array
x Real ntel x pos. (measured towards north, unit: cm)
y Real ntel y pos. (measured towards west, unit: cm)
z Real ntel z pos. (from detection level, unit: cm)
r Real ntel Radii of spheres around tel. (unit: cm)

15.4.3 CORSIKA event header

Object type: 1202 (IO_TYPE_MC_EVTH)
Version: 0
Identifier: event number

Variable Type Number Description
len Long 1 Combined count of data words following (usually 273)
runh Long 1 FORTRAN string EVTH (may be reversed)
data Real 272 see CORSIKA user’s guide
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15.4.4 Offsets of telescopes
With usually multiple instances of an array of telescopes being simulated, the arrays are
randomly offset in each event.

Object type: 1203 (IO_TYPE_MC_TELOFF)
Version: 0
Identifier: 0

Variable Type Number Description
narray Long 1 Number of arrays
toff Real 1 Time delay since first interaction

(already subtracted, unit: ns))
xoff Real narray Offsets of arrays in x (unit: cm)
yoff Real narray Offsets of arrays in y (unit: cm)

15.4.5 Data top-level block for one array
The data for one array are stored in one top-level block. Within this top-level block either
the photons arriving at the telescope detection plane or the photo-electrons registered in the
PM camera are contained. Note that since the data for one array is all within one top-level
block, sufficient memory must be available to buffer this block. Data from the top-level
block is extracted until the end of the block is reached.

Object type: 1204 (IO_TYPE_MC_TELARRAY)
Version: 0
Identifier: Array number

Variable Type Number Description
either photons 1205 (any) Photons arriving at one telescope
or photo_electrons 1208 (any) Detected photo-electrons in one camera

15.4.6 Photon bunches arriving at the telescope places
The CORSIKA photon bunches are sorted by telescope and array and are written after a full
shower has been simulated. Photon bunches are actually recorded in two different formats:
a long format with 32 bits per value and a short format with just 16 bits per value. Format
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conversion is done by the software automatically and is transparent at the user level – only
the numerical accuracy is different and the amount of storage needed. This block is only
present in data read directly from the shower simulation. It is always a sub-block of type
1204.

Long format:

Object type: 1205 (IO_TYPE_MC_PHOTONS)
Version: 0
Identifier: 1000 × array number + telescope number

Variable Type Number Description
array Short 1 Array number of telescope
tel Short 1 Telescope number
Photons Real 1 Sum of photons in all bunches
bunches Long 1 Number of photon bunches following
per bunch: (bunches)

x Real 1 x pos. relative to telescope (unit: cm)
y Real 1 y pos. relative to telescope (unit: cm)
cx Real 1 x direction cosine
cy Real 1 y direction cosine
time Real 1 arrival time relative to time when the

primary travelling at v = c would arrive
at the core in the CORSIKA detection
plane (unit: ns)

zem Real 1 Altitude of emission (unit: cm a.s.l.)
photons Real 1 Photons in this bunch
lambda Real 1 Zero = unspec. (see note below) (unit: nm)

Short format:

Object type: 1205 (IO_TYPE_MC_PHOTONS)
Version: 1000
Identifier: 1000 × array number + telescope number

Variable Type Number Description
array Short 1 Array number of telescope
tel Short 1 Telescope number
Photons Real 1 Sum of photons in all bunches
bunches Long 1 Number of photon bunches following
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per bunch: (bunches)
x Short 1 x position (unit: 0.1 cm)
y Short 1 y position (unit: 0.1 cm)
cx Short 1 x direction cosine (unit: 1/30000)
cy Short 1 y direction cosine (unit: 1/30000)
time Short 1 arrival time (unit: 0.1 ns)
log_zem Short 1 1000× log10(zem[cm])
photons Short 1 Photons in this bunch (unit: 0.01)
lambda Short 1 Zero = unspec. (see note below) (unit: nm)

The lambda wavelength field in both the long and short formats is usually zero to
indicate an unspecified wavelength, from a 1/λ2 distribution in the wavelength range given
in the CORSIKA inputs and reported in the event header block. Specific wavelengths
above 200 nm, either with the CORSIKA CERWLEN option or the fluorescence emis-
sion add-on are indicated by positive values (but note that values 1, 2, and 3 can appear
in special configurations to indicate photons of unspecified wavelength from a primary
particle or a particle of an energy close to that of the primary particle). Negative values
(usually −1) indicate photo-electrons (atmospheric transmission, mirror reflectivity and
quantum efficiency applied with the CEFFIC option). Values of and above 9000 (usually:
9999) indicate properties of the particles emitting the Cherenkov light (cx: particle mass
in GeV/c2, cy: charge number, photons: the particle energy in GeV, zem the emission
time in seconds, either since the primary entering the atmosphere or the first interaction).
For the latter, the CORSIKA and IACT interface have to be compiled with the IACTEXT
option and the IACT interface also with STORE_EMITTER defined.

Data blocks with array=999 and tel=999 indicate particles hitting the CORSIKA ob-
servation level(s) (x and y are w.r.t. the core position, not any detector fiducial sphere),
with the particle ID i, the generation number g, and the observation level number l en-
coded in the lambda field like in the first word of the CORSIKA particle-data sub-block:
i×1000+g×10+ l and the particle momentum in GeV/c contained in the zem field. The
photons field contains the thinning weight or 1.0. (Particle IDs 75 and 76 indicate addi-
tional information about muons, with ctime indicating the muon production height in cm
a.s.l., and zem repeating its momentum in the zem field.) These particle data blocks can
only be produced if CORSIKA and the IACT interface got compiled with the IACTEXT
option.

15.4.7 Photo-electrons after ray-tracing and detection

The sim_telarray program writes (if wanted) the detected photo-electrons to an output
file. This output file contains all blocks from the input file – but with photo-electrons
instead of photons – plus the assumed camera layout. The photons are sorted by arrival
time at the PM.
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This block is not present in data read directly from the shower simulation. It is also not
present in the normal sim_telarray output. It is a subblock of type 1204.

Object type: 1208 (IO_TYPE_MC_PE)
Version: 0
Identifier: 1000 × array number + telescope number

Variable Type Number Description
pixels Long 1 Number of pixels in camera
per non-empty pixel:

ipix Short 1 Pixel number
npe Short 1 Number of photo-electrons
time Real npe Times of photo-electrons (unit: ns)

15.4.8 CORSIKA event end block

Object type: 1209 (IO_TYPE_MC_EVTE)
Version: 0
Identifier: Event number

Variable Type Number Description
len Long 1 Combined count of data words following (usually 273)
evte Long 1 FORTRAN string “EVTE” (may be reversed)
data Real 272 see CORSIKA user’s guide

15.4.9 CORSIKA run end block

Object type: 1210 (IO_TYPE_MC_RUNE)
Version: 0
Identifier: Run number

Variable Type Number Description
len Long 1 Combined count of data words following (usually 3)
rune Long 1 FORTRAN string “RUNE” (may be reversed)
data Real 2 see CORSIKA user’s guide
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15.4.10 CORSIKA shower longitudinal distributions
Longitudinal distributions are either in vertical grammage units (without SLANT option
when CORSIKA is compiled) or in grammage along the incidence direction of the primary
(with SLANT option, see run header block in CORSIKA user’s guide). There are three
possible types of distributions: type 1 = particle numbers, 2 = energy, 3 = energy deposits.
Only data of type 1 distributions gets normally recorded.

Object type: 1211 (IO_TYPE_MC_LONGI)
Version: 0
Identifier: 10x event number + type (1/2/3)

Variable Type Number Description
event Long 1 Event number (is modulo 100 000 000 also in ID).
type Long 1 1 = particle numbers, 2 = energy, 3 = energy deposits.
np Short 1 Number of distributions following.
nthick Short 1 Number of thickness (grammage) steps in distributions.
thickstep Real 1 Step thickness (grammage) in g/cm2.
data Real np Distribution data of nthick values for each.

The normal type 1 distribution block includes nine distributions: gammas, positrons,
electrons, mu+, mu-, hadrons, charged particles of any type, nuclei, Cherenkov photons.

15.4.11 CORSIKA input ‘cards’
The CORSIKA control input (in traditional FORTRAN speak also referred to as ‘cards’ for
each line) gets completely recorded. Together with CORSIKA version and compile-time
activated options it should allow for reproducing all generated showers.

Object type: 1212 (IO_TYPE_MC_INPUTCFG)
Version: 0
Identifier: 0

Variable Type Number Description
nlines Long 1 Number of input lines (‘cards’) following.
cards String nlines Original CORSIKA input
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Chapter 16

Output from sim_telarray

The data format of the normal output from sim_telarray is based on [9] and imple-
mented with the hessio package (using eventio). For details see the hessio pack-
age. Note that no such output file is written by default. Its name has to be given through
the OUTPUT_FILE configuration parameter or the -o command line option.

The hessio package provides several tools to inspect the contents of the main out-
put file specified that way. Tools generic to all ’eventio’ format files, as already men-
tioned, are listio (showing the sequence and hierarchical structure of data blocks)
and statio (showing the number of blocks of each type, the total length of data in
them, as well as the version number(s) used), filterio for selecting or deselecting
specific data block types from the data stream.

There are several tools specifically for the output from sim_telarray, with the most
notable being read_simtel (also known as read_hess or read_cta )
which cannot only show the contents of sim_telarray output but can also pro-
cess them, including data reduction, shower reconstruction etc. For the full recon-
struction power, including gamma-hadron discrimination and energy reconstruction, the
gen_lookup program processes the generated histograms and produces look-up ta-

bles for the next processing iteration (three read_simtel passes might be needed, the
first two with the --auto-lookup option).

The extract_simtel utility is intended for extracting data for a subset of sim-
ulated telescopes into a new data file while merge_simtel would be used to merge
events for the same showers (as coming from CORSIKA) but passed through separate tele-
scope simulations into a new output file. There are two input files per stage but multiple use
allows for merging data processed in parallel through more than two telescope simulations.
The demands on main memory can be challenging for that, as the the usual data structures
are needed three times (two inputs, one output), all configured for the maximum number
of telescopes and pixels that might be encountered on either input or output.

The extract_calibevent tool allows to extract data from internal
dark/pedestal/LED/laser events into a separate file which can be processed like regular
data. The split_hessio program can split up to single data stream into separate files
for each telescope, as to be expected from the data acquisition of a telescope array before
merging them into a common file (which sim_telarray provides directly).
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In addition, plain photo-electrons can be written to a separate output file following the
data format in section 15.

The sim_telarray program also writes a histogram file, including one- and two-
dimensional histograms. The format of this file is also built on top of eventio. It is
called ’ctsim.hdata’ by default – but usually set by the HISTOGRAM_FILE param-
eter to match the OUTPUT_FILE name – and it can be converted to HBOOK format (of
old CERNLIB fame) with the hdata2hbook program (available with the hessio
package, called cvt2 in earlier releases):

hdata2hbook ctsim.hdata ctsim.hbook

The .hdata file can also be converted to a ROOT file through hdata2root (cvt3
in earlier releases):

hdata2root ctsim.hdata ctsim.root

Note that both of these programs can also be used to add up corresponding histograms in
separate .hdata files before writing the output:

hdata2root -a run*.hdata -o allruns.root

A small subset of these histograms are included at the end of the main output data file
(e.g. ctsim.simhess), sufficient to calculate effective areas versus energy etc. Running
hdata2hbook or hdata2root on such data files will also work to convert this subset
of histograms. The programs will usually also find the histograms if you just throw the end
of the data file at it:

tail -200000c ctsim.simhess | hdata2root - ctsim.root

but,unfortunately, this will not work with compressed files.
The hessio package provides several tools specific to its own histogram format

(for either the separate histogram files or the histograms embedded with the normal
data): list_histograms shows the list of available histograms or the con-
tents of a specific histogram (by ID), with optional projection of 2-D histograms or
calculating the ratio between contents of two (matching) histograms. The output from
list_histograms can be plotted with gnuplot or other plotting tools. The
add_histograms tool can add up all histograms per ID (if matching in number of

bins and ranges) from multiple files. Applying that to the separate histogram files can
quickly provide the full statistics of a complete MC production with thousands of simula-
tion runs.

Further optional output includes a PostScript format file as activated with the IMAGE_
FILE configuration parameter. This includes one page for each telescope and event (or two
in case of zero-suppression: one before and one after suppression). Whether non-triggered
telescopes are included, is determined with the configuration parameter
ONLY_TRIGGERED_TELESCOPES. While pages in the ’image’ file usually only show
the sum of the signals in the readout window, the MOVIE configuration parameter, if non-
zero, changes this to one page for each time slice, allowing to create movie sequences with
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shower images. As long as the sim_telarray main output data is for sample mode,
read_simtel with the ’-p’ option can provide similar per-sample Postscript output
(use gv or a similar tool to extract the range of pages for a specific event/telescope before
converting that into animated GIF or an actual video format).

Through the PLOT_FILE parameter an additional output file can be activated which
contains (depending on various compilation-time flags) miscellaneous ASCII-format in-
formation suitable, after selecting relevant lines, for plotting with gnuplot or other
tools.

16.1 Object types in the data file

Type Description
2000 Run header: Sim_telarray global run header
2001 MC run header: Sim_telarray MC-specific run header
2002 Camera settings
2002 Pixel settings
2003 Camera organisation
2004 Pixel settings
2005 Disabled pixels
2006 Camera soft settings
2007 Pointing correction
2008 Tracking setup
2009 Central trigger
2010 Event: Sim_telarray event data for the full array
2011 Telescope event header
2012 ADC sums
2013 ADC samples
2014 Image parameters
2015 Reconstructed shower
2016 Pixel timing
2017 Calibrated pixel intensities
2020 MC shower
2021 MC event
2022 Telescope monitoring
2023 Laser calibration
2024 Run statistics
2025 MC run statistics
2026 Photo-electron sums
2027 Pixel list
2028 Calibration event
2029 Digital auxiliary traces
2030 Analog auxiliary traces
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2032 Pixel trigger w.r.t telescope trigger time
2033 MC pixel monitor
2034 Calibration event p.e. list
2090 Trigger-type bitmasks
21xx Tracking data for tel. ID xx
22xx Telescope data for tel. ID xx
31xx Tracking data for tel. ID 1xx
32xx Telescope data for tel. ID 1xx

Also present: types 1204 (containing 1208), and 1205, the former with the list of de-
tected signal photo-electrons, the latter with a copy of the CORSIKA data about particles
reaching ground level (CORSIKA data pass-through).

169



Bibliography

[1] H.J. Völk and K. Bernlöhr, Imaging very high energy gamma-ray telescopes, Exp.
Astron. 25 (2009) 173–191. (WWW link here and preprint here). 1

[2] D. Heck et al., CORSIKA: A Monte Carlo code to simulate extensive air show-
ers, Technical Report FZKA 6019, Forschungszentrum Karlsruhe, 1998. (WWW
link here) 1

[3] D. Heck and J. Knapp, Extensive Air Shower Simulation with CORSIKA: a User’s
Guide, Forschungszentrum Karlsruhe, 2002. (WWW link here) 2.4, 3

[4] K. Bernlöhr, ’Entwurf eines Datenformats für CRT’, internal report, 1994, and
’eventio – ein maschinen-unabhängiges hierarchisches Datenformat und seine
Software-Schnittstelle’, internal report, 1998 (updated 2005) (WWW link here)
eventio – a machine-independent hierarchical data format and its programming
interface, internal report, 2000 (updated 2014). (WWW link here) 1, 15.1

[5] K. Bernlöhr, Simulation of imaging atmospheric Cherenkov telescopes with COR-
SIKA and sim_telarray, Astroparticle Physics 30 (2008) 149–158 (WWW link here
and here and preprint here). 1, 9

[6] K. Bernlöhr, sim_telarray Reference Manual, generated by doxygen. (WWW
link here) 11.7, 11.11, 14

[7] K. Bernlöhr, CORSIKA add-on package IACT/ATMO: Reference Manual, generated
by doxygen. (WWW link here and here) 1, 14

[8] K. Bernlöhr, hessio – an eventio-based I/O library for H.E.S.S. – Reference Man-
ual, generated by doxygen. (WWW link here) 14

[9] K. Bernlöhr and G. Hermann, A preliminary H.E.S.S. data model, internal report,
2000. (WWW link here) 16

[10] F. X. Kneizys et al. (1996), The MODTRAN 2/3 report and LOWTRAN 7 model,
Phillips Laboratory, Hanscom AFB, MA 01731, U.S.A. 2.4, 3, 4, 11.4

[11] A. Koch and A. Kohnle (March 2001), Quantum and Collection Efficiency Mea-
surements of the Photonis XP2960 Photomultipliers, H.E.S.S. internal note 01/07.
(WWW link here) 11.14

[12] J. Guy, F. Toussenel, P. Vincent (December 2001), Photoelectron pulse shape mea-
surement and the impact on the simulation , H.E.S.S. internal note 01/10. (WWW
link here) 11.16

170

https://link.springer.com/article/10.1007/s10686-009-9151-z
https://arxiv.org/abs/0812.4198
https://web.iap.kit.edu/corsika/physics_description/corsika_phys.pdf
https://web.iap.kit.edu/corsika/physics_description/corsika_phys.pdf
https://web.ikp.kit.edu/corsika/usersguide/usersguide.pdf
https://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/Documentation/eventio_de.pdf
https://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/Documentation/eventio_en.pdf
https://www.sciencedirect.com/science/article/pii/S0927650508000972
https://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/Papers/mcpaper1-col.pdf
https://arxiv.org/abs/0808.2253
https://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/Documentation/sim_hessarray_refman.pdf
https://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/Documentation/sim_hessarray_refman.pdf
https://www.mpi-hd.mpg.de/hfm/~bernlohr/iact-atmo/iact_refman.pdf
https://www.mpi-hd.mpg.de/hfm/~bernlohr/iact-atmo/iact_refman/
https://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/Documentation/hessio_refman.pdf
https://www.mpi-hd.mpg.de/hfm/~bernlohr/HESS/Drafts/data.ps
https://www.mpi-hd.mpg.de/hfm/HESS/intern/int_notes/qe_ce.ps
https://www.mpi-hd.mpg.de/hfm/HESS/intern/int_notes/pulseshape.ps
https://www.mpi-hd.mpg.de/hfm/HESS/intern/int_notes/pulseshape.ps


[13] K. Bernlöhr, Astroparticle Phys. 12, 255 (2000). (WWW link here) and (preprint
here) 10.4.1

[14] C.C.G. Bowden et al., J.Phys. G18, L55 (1992). (WWW link here) 10.4.1

[15] P.M. Chadwick et al., J.Phys. G25, 1223 (1999). (preprint here) 10.4.1

[16] P.M. Chadwick et al., J.Phys. G26, L5 (2000). (WWW link here) 10.4.1

[17] K. Bernlöhr, Geomagnetic effects on showers relevant for the H.E.S.S. experiment - a
study with simulated showers, H.E.S.S. internal note 05/02 (July 2005). (WWW link
here) 10.4.1

171

https://www.sciencedirect.com/science/article/pii/S0927650599000936
https://arxiv.org/abs/astro-ph/9908093
https://arxiv.org/abs/astro-ph/9908093
https://iopscience.iop.org/article/10.1088/0954-3899/18/2/007
https://arxiv.org/abs/astro-ph/9904082
https://iopscience.iop.org/article/10.1088/0954-3899/26/1/102
https://www.mpi-hd.mpg.de/hfm/HESS/intern/int_notes/bfield_intnote.ps.gz
https://www.mpi-hd.mpg.de/hfm/HESS/intern/int_notes/bfield_intnote.ps.gz


Index

CORSIKA options
ATMEXT, 11
CEFFIC, 11
CERENKOV, 11
CEROPT, 13
CERWLEN, 12
CURVED, 12
IACT, 12
IACTEXT, 12
VIEWCONE, 13

CORSIKA settings
ARRANG, 19
ATMOSPHERE, 15
CERARY, 20
CERFIL, 17
CERQEF, 18
CERSIZ, 17
CSCAT, 17
CWAVLG, 16
DATBAS, 22
DIRECT, 23
ECUTS, 16
ERANGE, 14
ESLOPE, 15
IACT, 23
IACT ATMOFILE, 25
IACT ATMOSPHERE, 25
IACT EXTPRIM, 25
IACT INTERNAL_BUNCHES, 24
IACT IO_BUFFER, 24
IACT MAX_BUNCHES, 24
IACT PRINT_EVENTS, 24
IACT SETENV, 25
IACT SPLIT-ALWAYS, 24
IACT SPLIT_AUTO, 24
IACT STORE-EMITTER, 27

IACT STORE-PARTICLES, 27
IACT TELFIL, 24
IACT TELOPT, 24
IACT TELSAMPLE, 25
MAGNET, 18
OBSLEV, 18
PHIP, 21
PRMPAR, 14
RUNNR, 14
TELESCOPE, 20
TELFIL, 20
THETAP, 22
VIEWCONE, 22

Environment variables
CORSIKA_ARRAYS, 149
CORSIKA_ATMOFILE, 149
CORSIKA_ATMOSPHERE, 149
CORSIKA_CONE, 149
CORSIKA_COUNTRAD, 149
CORSIKA_DATA, 145
CORSIKA_EMAX, 149
CORSIKA_EMIN, 149
CORSIKA_ESLOPE, 149
CORSIKA_IO_BUFFER, 146
CORSIKA_LISTRAD, 149
CORSIKA_MAX_BUNCHES, 147
CORSIKA_MULTIPLEX_SEQUENTIAL,

146
CORSIKA_NUMRAD, 149
CORSIKA_OBSLEV, 149
CORSIKA_PATH, 144
CORSIKA_PHI, 149
CORSIKA_PID, 150
CORSIKA_PRIMARY, 150
CORSIKA_RUN, 150
CORSIKA_SHOWERS, 150

172



CORSIKA_TELESCOPES, 150
CORSIKA_THETA, 150
CORSIKA_VERSION, 150
CORSIKA_WORKDIR, 144
CTA_DATA, 145
CTA_PATH, 144
extra_config, 146
extra_defs, 146
extra_suffix, 146
extra_suffix2, 146
HCONFIG_INITLIST_PREFIX, 143
HCONFIG_LIMITS_PREFIX, 143
HCONFIG_LIST_PREFIX, 143
HCONFIG_LIST_STYLE, 142
HCONFIG_PREFIX_NUM, 143
HCONFIG_SECTION_PREFIX, 143
HCONFIG_TYPELIST_PREFIX, 143
HDATA_IO_BUFFER, 147
HESSIO_PATH, 145
HESSMCDATA, 145
HESSROOT, 144
IACTIO_PATH, 145
INCLUDES_PATH, 147
MAX_BUNCHES, 148
MAX_IO_BUFFER, 147
MAX_PHOTOELECTRONS, 148
MAX_PIXEL_PHOTOELECTRONS, 148
MAX_PRINT_ARRAY, 148
MCDATA_PATH, 145
MIN_IO_BUFFER, 147
MULTIPIPE_DEBUGCFG, 148
MULTIPIPE_PID, 150
MULTIPIPE_SEQUENTIAL, 148, 150
MULTIPIPE_SIGNAL, 150
MULTIPIPE_SIGNAL_INIT, 150
NEW_IO_BUFFER, 147
SIM_TELARRAY_CONFIG_PATH, 146
SIM_TELARRAY_DATA, 145
SIM_TELARRAY_DEFINES, 147
SIM_TELARRAY_INCLUDES, 147
SIM_TELARRAY_OUTPUT_PATH, 145
SIM_TELARRAY_PATH, 144
SIM_TELARRAY_RUN_PATH, 144

SIM_TELARRAY_WORKDIR, 144
SIMTEL_CONFIG_PATH, 146
SIMTEL_CONFIG_PREPROCESSOR,

145
simtel_defs, 146
SIMTEL_MULTI_CFG, 148
SIMTEL_MULTI_CFG_FILE, 148
SIMTEL_MULTI_CFG_PATH, 148
SIMTEL_MULTI_CFG_PREPROC, 148
SIMTEL_MULTI_CFG_SUFFIX, 147,

148
SIMTEL_MULTI_OPTION, 148
STDTOOLS_PATH, 145

Miscellaneous
add_histograms, 167
build_all, 144
corsika_autoinputs, 30
extract_calibevent, 166
extract_corsika_multi, 158
extract_corsika_tel, 150, 158
extract_simtel, 166
filterio, 153, 166
gen_lookup, 166
gen_seedlist, 78
gnuplot, 167, 168
hdata2hbook, 167
hdata2root, 167
list_histograms, 167
listio, 153, 166
merge_simtel, 166
multipipe_corsika, 154
pfp, 28
read_cta, 158, 166
read_hess, 158, 166
read_iact, 158
read_simtel, 158, 166
select_iact, 159
split_hessio, 166
sspp, 53
statio, 153, 166

Telescope simulation parameters
ADJUST_GAIN, 115

173



AFTERPULSE_ALTERNATE, 117
AFTERPULSE_MAX, 118
AFTERPULSE_RATIO, 118
AFTERPULSE_SCALE, 118
AFTERPULSE_THRESHOLD, 118
ALL_WL_RANDOM, 93
ALTITUDE, 88
ALWAYS_AWEIGHTs, 93
ARRAY_CLOCK_WINDOW, 90
ARRAY_CONFIG_NAME, 139
ARRAY_CONFIG_VARIANT, 139
ARRAY_CONFIG_VERSION, 139
ARRAY_TRIGGERs, 89
ARRAY_WINDOW, 90
ASUM_CLIPping, 120
ASUM_HYSTERESIS, 120
ASUM_NOISE, 120
ASUM_OFFSET, 120
ASUM_SHAPING_FILE, 120
ASUM_SIGSUM_OVER_THRESHOLD,

120
ASUM_SPECTRUM_NOISE, 120
ASUM_THRESHold, 120
ATMOSPHERIC_TRANSMISSION, 93
AUX_TRACES, 137
AXES_OFFSETs, 104
BASE_TELESCOPE_NUMBER, 95
BYPASS_OPTICS, 99
CAMERA_BODY_DIAMETER, 111
CAMERA_BODY_OFFSET, 112
CAMERA_BODY_SHAPE, 111
CAMERA_CONFIG_FILE, 113
CAMERA_CONFIG_NAME, 140
CAMERA_CONFIG_VARIANT, 140
CAMERA_CONFIG_VERSION, 140
CAMERA_DEGRADED_EFFICIENCY,

113
CAMERA_DEGRADED_MAP, 113
CAMERA_DEPTH, 112
CAMERA_FILTER, 112
CAMERA_PIXELs, 111
CAMERA_SCALE_FACTOR, 114
CAMERA_TRANSmission, 112

CAMERA_TYPE, 111
CAMERA_WINDOW_HEIGHT, 112
CAMERA_WINDOW_RADIUS, 113
CAMERA_WINDOW_REFIDX, 113
CAMERA_WINDOW_THICKness, 112
CATHODE_DIAMETER, 114
CHANNEL_SAVE_RESTORE, 91
CHANNELS_PER_CHIP, 123
CLOUD_HEIGHT, 93
CLOUD_TRANSMISSION, 94
CONFIG_RELEASE, 139
CONFIG_VERSION, 139
CONVERGENT_DEPTH, 97
CONVERGENT_DISTance, 97
CONVERGENT_Height, 97
CONVERGENT_POSition, 88
DARK_EVENTS, 136
DATA_REDuction, 137
DEAD_BOARD_PROBABILITY, 117
DEAD_MODULE_PROBABILITY, 117
DEAD_PIXEL_PROBABILITY, 117
DEAD_PIXELS, 117
DEFAULT_TRIGger, 119
DISC_AC_COUPLED, 126
DISC_BINS, 126
DISC_START, 126
DISCRIMINATOR_AMPLITUDE, 124
DISCRIMINATOR_FALL_TIME, 125
DISCRIMINATOR_GATE_LENGTH, 124
DISCRIMINATOR_HYSTERESIS, 126
DISCRIMINATOR_NOISE, 124
DISCRIMINATOR_OUTPUT_AMPlitude,

126
DISCRIMINATOR_OUTPUT_VAR_PERCENT,

126
DISCRIMINATOR_PULSE_SHAPE, 123
DISCRIMINATOR_RISE_TIME, 125
DISCRIMINATOR_SCALE_THRESHOLD,

124
DISCRIMINATOR_SIGSUM_OVER_THRESHOLD,

125
DISCRIMINATOR_SPECTRUM_NOISE,

124

174



DISCRIMINATOR_THRESHOLD, 124
DISCRIMINATOR_TIME_OVER_THRESHOLD,

125
DISCRIMINATOR_VAR_GATE_LENGTH,

125
DISCRIMINATOR_VAR_SIGSUM_OVER_THRESHOLD,

125
DISCRIMINATOR_VAR_THRESHOLD,

124
DISCRIMINATOR_VAR_TIME_OVER_THRESHOLD,

125
DISH_SHAPE_Length, 102
DSUM_CLIPping, 122
DSUM_IGNORE_BELOW, 121
DSUM_OFFSET, 121
DSUM_PEDSUB, 121
DSUM_PRE_CLIPping, 121
DSUM_PRESCALE, 122
DSUM_PRESUM_MAX, 122
DSUM_PRESUM_SHIFT, 122
DSUM_SHAPING_FILE, 121
DSUM_SHAPING_RENORMalize, 121
DSUM_THRESHold, 122
DSUM_ZERO_CLIP, 121
ECHO, 142
EFFECTIVE_FOCAL_Length, 99
EFFECTIVE_MIRROR_AREA, 100
ERROR, 142
FADC_AC_COUPLED, 130
FADC_AMPlitude, 128
FADC_BINS, 128
FADC_COMPENSATE_PEDESTAL, 130
FADC_DEV_PEDESTAL, 129
FADC_ERR_COMPENSATE_PEDESTAL,

130
FADC_ERR_PEDESTAL, 129
FADC_LG_AMPlitude, 128
FADC_LG_COMPENSATE_PEDESTAL,

130
FADC_LG_DEV_PEDESTAL, 129
FADC_LG_ERR_COMPENSATE_PEDESTAL,

130
FADC_LG_ERR_PEDESTAL, 129

FADC_LG_MAX_SIGNAL, 132
FADC_LG_MAX_SUM, 132
FADC_LG_NOISE, 128
FADC_LG_PEDESTAL, 129
FADC_LG_SENSITIVITY, 131
FADC_LG_SYSVAR_PEDESTAL, 129
FADC_LG_VAR_PEDESTAL, 129
FADC_LG_VAR_SENSITIVITY, 131
FADC_LONGSUM_BINS, 131
FADC_LONGSUM_OFFSET, 132
FADC_MAX_SIGNAL, 132
FADC_MAX_SUM, 132
FADC_MHZ, 127
FADC_NOISE, 128
FADC_PEDESTAL, 129
FADC_PER_CHANNEL, 128
FADC_PULSE_SHAPE, 127
FADC_SENSITIVITY, 131
FADC_SPECTRUM_LG_NOISE, 128
FADC_SPECTRUM_NOISE, 128
FADC_SUM_BINS, 131
FADC_SUM_OFFSET, 131
FADC_SYSVAR_PEDESTAL, 129
FADC_VAR_PEDESTAL, 129
FADC_VAR_SENSITIVITY, 131
FAKE_DELAY, 127
FAKE_TRIGGER, 126
FLATFIELDING, 115
FLIP_MIRRORS, 105
FOCAL_Length, 99
FOCAL_SURFACE_PARAMeters, 109
FOCAL_SURFACE_REF_RADIUS, 109
FOCUS_OFFSET, 103
FORCE_FAKE_TRIGGER, 127
FRONT_VIEW, 114
FULL_SIMULATION, 138
GAIN_VARIATION, 115
GRADING_OF_FOCAL_Length, 103
HG_LG_VARiation, 128
HISTOGRAM_FILE, 87
IGNORE_MC_DATA, 91
IGNORE_NONTRIGgered_showers,

91

175



IGNORE_TELESCOPEs, 119
IMAGE_FILE, 87
IMAGE_GAMMA_COEFFicient, 138
IMAGE_PE_RANGE, 138
IMAGING_LIST, 87
INITLIST, 141
INPUT_FILE, 87
IOBUF_MAXimum, 91
IOBUF_OUTPUT_MAXimum, 92
LASER_EVENTS, 134
LASER_EXTERNAL_TRIGGER, 135
LASER_PHOTONS, 134
LASER_PULSE_EXPTime, 135
LASER_PULSE_OFFSET, 134
LASER_PULSE_SIGTime, 135
LASER_PULSE_TWIDth, 135
LASER_VAR_PHOTONS, 134
LASER_WAVELENGTH, 135
LED_EVENTS, 136
LED_PHOTONS, 135
LED_PULSE_OFFSET, 136
LED_PULSE_SIGTime, 136
LED_VAR_PHOTONS, 135
LENS_REFIDX_NOMinal, 110
LIGHTGUIDE_GAP, 114
LIGHTGUIDE_REFlectivity, 114
LIMITS, 141
LIST, 142
LOCK, 142
LONG_EVENT_THRESHold, 123
MASTS_File, 98
MAXIMUM_EVENTS, 91
MAXIMUM_TELESCOPES, 94
MAXIMUM_TRIGGERED_EVENTS, 91
MC_ONLY_TRIGGERED_showers, 91
METAPARam, 140
MIN_PHOTOELECTRONS, 95
MIN_PHOTONS, 95
MIRROR2_DEGRADED_REFLECTION,

101
MIRROR_ALIGN_RANDOM_ANGLE, 104
MIRROR_ALIGN_RANDOM_DISTance,

105

MIRROR_ALIGN_RANDOM_HORIzontal,
105

MIRROR_ALIGN_RANDOM_VERTical,
105

MIRROR_CLASS, 98
MIRROR_DEGRADED_REFLECTION,

101
MIRROR_Diameter, 111
MIRROR_F_SCALE, 104
MIRROR_FOCAL_Length, 103
MIRROR_LIST, 110
MIRROR_OFFSET, 104
MIRROR_OPT, 105
MIRROR_REFLECTION_RANDOM_Angle,

100
MIRROR_REFLECTION_RANDOM_Table,

101
MIRROR_REFLECTIVITY, 102
MIRROR_SECONDARY_REFLECTIVITY,

102
MIRROR_TYPE, 111
MIRROR_X, 111
MIRROR_Y, 111
MIRRORS, 100
MOVIE, 88
MULTIPLICITY_OFFSET, 119
MUON_MONO_THRESHolds, 123
NIGHTSKY_BACKGROUND, 132
NSB_AUTOSCALE_AIRMASS, 133
NSB_GAIN_DROP_SCALE, 134
NSB_OFFAXIS, 133
NSB_SCALING_FACTOR, 133
NSB_SKY_MAP, 133
NUM_GAINS, 123
ONLY_TRIGGERED_ARRAYS, 89
ONLY_TRIGGERED_TELESCOPES, 89
OPTICS_CONFIG_NAME, 139
OPTICS_CONFIG_VARIANT, 140
OPTICS_CONFIG_VERSION, 140
OUTPUT_FILE, 87
OUTPUT_FORMAT, 136
PARABOLIC_DISH, 103
PEAK_SENSING, 136

176



PEDESTAL_EVENTS, 136
PHOTOELECTRON_FILE, 87
PHOTON_DELAY, 117
PIXEL_CELLS, 115
PIXEL_DEPTH, 114
PIXEL_SIZE, 114
PIXELS_PARALLEL, 109
PIXELTRG_TIME_STEP, 126
PLOT_FILE, 87
PM_AVERAGE_GAIN, 115
PM_COLLECTION_EFFiciency, 115
PM_GAIN_INDEX, 115
PM_PHOTOELECTRON_SPECTRUM, 117
PM_SPE_TABLE_SIZE, 117
PM_TRANSIT_TIME, 116
PM_VOLTAGE_VARIATION, 115
POWER_LAW, 88
PRIMARY_DEGRADED_MAP, 102
PRIMARY_DIAMETER, 106
PRIMARY_HOLE_DIAMETER, 106
PRIMARY_MIRROR_PARAMeters, 106
PRIMARY_REF_RADIUS, 106
PRIMARY_SEGMENTATION, 106
PULSE_ANALYSIS, 138
QE_VARIATION, 115
QUANTUM_EFFiciency, 114
RANDOM_FOCAL_Length, 103
RANDOM_GENERATOR, 92
RANDOM_MONO_PROBability, 123
RANDOM_SEED, 92
RANDOM_STATE, 87
RANDOM_VIEWING_RING, 97
REFERENCE_POSITION, 94
REVERSE_MODE, 97
SAMPLED_OUTPUT, 136
SAVE_CALIBRATION_PE, 90
SAVE_PE_WITH_AMPlitude, 90
SAVE_PHOTONS, 90
SECONDARY_BAFFLE, 108
SECONDARY_DEGRADED_MAP, 102
SECONDARY_DIAMETER, 107
SECONDARY_HOLE_DIAMETER, 107

SECONDARY_MIRROR_PARAMeters,
108

SECONDARY_REF_RADIUS, 108
SECONDARY_SEGMENTATION, 108
SECONDARY_SHADOW_DIAMETER, 107
SECONDARY_SHADOW_OFFSET, 107
SELECT_LIGHt_component, 89
SHOW, 141
SIMPLE_THRESHOLD, 118
SKY_IS_VARiable, 89
SOURCE_ALTITUDE, 94
SOURCE_AZIMUTH, 94
STAR_PHOTONS, 89
STARS, 87
STATUS, 142
STORE_PHOTOELECTRONS, 95
SUM_AFTER_PEAK, 138
SUM_BEFORE_PEAK, 138
TAILCUT_SCALE, 96
TELESCOPE_ALTITUDE, 96
TELESCOPE_AZIMUTH, 96
TELESCOPE_PHI, 96
TELESCOPE_RANDOM_ANGLE, 97
TELESCOPE_RANDOM_ERROR, 97
TELESCOPE_THETA, 96
TELESCOPE_TRANSmission, 98
TELTRIG_MIN_SIGSUM, 119
TELTRIG_MIN_TIME, 119
TRANSIT_TIME_CALIB_ERROR, 116
TRANSIT_TIME_COMPENSATE_ERROR,

116
TRANSIT_TIME_COMPENSATE_STEP,

116
TRANSIT_TIME_ERROR, 116
TRANSIT_TIME_JITTER, 116
TRIGGER_CURRENT_LIMIT, 118
TRIGGER_DELAY_compensation,

122
TRIGGER_NEIGHBOURs, 119
TRIGGER_PIXELs, 118
TRIGGER_TELESCOPES, 119
TYPELIST, 141
UNLOCK, 142

177



WARNING, 142
ZERO_SUPpression, 137

178


	Introduction
	Usage of CORSIKA 6 and 7 with IACT option
	Compiling CORSIKA versions 6.0 to 6.2xx
	Compiling CORSIKA versions 6.5xx to 6.7xxx
	Compiling CORSIKA versions 6.9xx to 7.7xxx
	Running CORSIKA

	CORSIKA compilation options specific to Cherenkov simulation
	CORSIKA keywords specific to Cherenkov simulation
	The pfp pre-processor for CORSIKA inputs and corsika_autoinputs
	pfp
	Corsika_autoinputs

	CORSIKA IACT files without CORSIKA – the LightEmission package
	Compilation options for sim_telarray
	Building sim_telarray
	Usage of sim_telarray
	Coordinates and coordinate systems in the simulations
	Overview
	Site location and telescope positions
	Coordinate systems on the telescopes
	Telescope pointing considerations
	Pointing concepts and corrections
	Parallel, convergent, and divergent pointing

	Celestial coordinates and transformation to/from the site-local Alt/Az system

	Data files and important parameters for sim_telarray
	Configuration files and pre-processing
	Data table 1-D interpolation with the rpolator code
	Switching from 1-D to 2-D table interpolation
	Atmospheric transmission
	Atmospheric density profile
	Assumptions and parameters defining the telescope geometry in sim_telarray
	Mirror positions and sizes
	Mirror reflectivity curve
	Point spread function
	Camera masts and other shadowing elements
	Camera and trigger definition
	Camera window as a filter
	Funnel angular response
	Quantum efficiency curve
	Single photo-electron response
	Single photo-electron pulse shapes
	Random number generators and seeds
	Random pixel properties
	Special settings for dual-mirror telescopes
	Fresnel lens telescopes
	Bypassing the ray-tracing

	sim_telarray configuration parameters
	Parameter definitions and parameter syntax
	 Global configuration parameters 
	 Input and output files 
	 Global parameters for general set-up 
	 Atmospheric transparency table filename 
	 Source direction and reference position 
	 Other quasi-global parameters 

	 Telescope-specific parameters 
	 Uncategorized so far (were incorrectly in global section) 
	 Telescopes 
	 Mirrors 
	 Camera 
	 Photomultipliers or SiPM sensors 
	 Additional afterpulsing 
	 Trigger 
	 Electronics 
	 (F)ADCs 
	 Night-sky background 
	 Calibration-specific 
	 Output data options 
	 Level of simulation detail 
	 Pixel peak detection and timing 
	 Appearance of image plots 

	 For (meta-) information only 
	 Hconfig built-in functions 

	Miscellaneous environment variables
	Pathnames for programs and data
	Variables used for configuration control
	Variables used by EventIO
	Variables overriding sim_telarray limits
	Variables for configuring multipipe_corsika
	Variables set up by multipipe_corsika

	Source code documentation
	Data format of output from the CORSIKA IACT interface
	A machine-independent hierarchical data format
	Tools for CORSIKA eventio data
	General eventio data tools
	The multipipe_corsika tool for CORSIKA IACT data
	Other specialized tools for CORSIKA IACT output data files
	Other tools

	Object types in the data file
	Object formats
	CORSIKA run header
	Positions and sizes of telescopes
	CORSIKA event header
	Offsets of telescopes
	Data top-level block for one array
	Photon bunches arriving at the telescope places
	Photo-electrons after ray-tracing and detection
	CORSIKA event end block
	CORSIKA run end block
	CORSIKA shower longitudinal distributions
	CORSIKA input `cards'


	Output from sim_telarray
	Object types in the data file

	Bibliography

