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Simulation steps

® Emission and propagation to Earth:
: Astrophysics (not dealt with here).

/| Gamma-ray

Particle cascade (“air shower”) is
normally simulated with CORSIKA,
up to light propagation to positions
of individual telescopes.

Shower simulation

Air shower

Cherenkov light

Cherenkov light atm. transmission,

optical properties of telescopes,

photon detection, nightsky background,

electronic signals, trigger decisions,
digitization of signals, ...

Detection by

gkl < Telescope simulation

—— Light poaol
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Imaging of showers by telescopes
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Cherenkov light emission

* Dielectric medium is
polarized by charged
particle.

» Constructive interference
only when particle of
speed fc¢ is faster the
emitted radiation (c/n).

 Emission is all on a cone
of half opening angle 6
w.r.t. the particle direction.
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Basic formulae for
Cherenkov light emission

1
cosf = ﬁ
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with z: charge number of particle, A: wavelength of emitted
light, n: index of refraction, [3c: particle velocity (with 3>1/n),
0: emission angle, a: fine structure constant (=1/137),
dN/dx: photons emitted per unit path length.
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Index of refraction not constant
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Emission by a single particle

n - 1 1s proportional to air density.

harged . .
caticle  The Cherenkov opening angle 0 is

Cherenkov  1NCreasing downwards.

light

For a particle moving vertically
downwards, the largest ring on the

ground near sea level 1s from 12 to
15 km height.
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Just a few details of simulations

» Particle losing energy on each track segment:

> Could start above threshold for Cherenkov emission and
then fall below.

» Particle moving down into denser air (larger n):
> Could start below threshold and then go above threshold.
» With wavelength dependence (CERWLEN option):

> a particle could be above threshold for blue light but
below threshold for red light.

» Trying to handle this efficiently ...
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Speaking of efficiency ...

» A single singly-charged vertical particle could emit
up to half a million photons.
A gamma shower of 100 TeV may result in more
than 100 billion photons.

» You do not want to store them all, one by one, and
you cannot handle them all in memory.

» Tracking photons down to detector level and storing
only those hitting the detector.

» Not storing them one by one but in ‘bunches’.
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At detector level (without IACT)

B B o e Rectangular flat grid of
o rectangular detectors.
g « Defined by inputs
M e I I CERARY parameters
b for number, spacing,
L .
O and size of detectors
. 7 [ [ACERY ] ] In x and y directions.
x e Output data for
s ACERX Cherenkov photons is
L L I (like for particles) in
| DCERX | a mac_:hlne- and
NCERX = 3 here compiler-dependent
format.

Originally developed for HEGRA AIROBIC array on La Palma
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At detector level (with IACT option)

Photon bunch selection 1. Fast selection by grid on

in CORSIKA IACT CORSIKA observation level o A detectOI’ |S deﬁned by |tS f|dUC|aI

= " v prrs v st sphere — e.g. for a telescope the
reflector should fit into the sphere.

e Defined by z, y, z w.r.t. observation
level and radius r.

e Up to 999 detectors. Showers used

e e Ry multiple times with random offsets.
—— * Observation level plane sub-divided
into grid cells. Intersection with only
those spheres registered for the

Al A3 A4

grid cell hit by a photon bunch.
* Photon bunch can be used multiple
times with overlapping spheres.
e Output format is machine- and
e compiler independent (‘eventio’).

B1 B3 B4

c3
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Photon bunches

» Not every photon will be detected due to reflection
losses, quantum efficiency, ...

» For this reason, photons can be packed in ‘bunches’
(of typically non-integer size).

» Saves CPU time for sub-dividing particle track
segments and emission of photons.

» Bunch size should be adjusted such that bunches of
photons of 1dentical direction, emission time (and

wavelength in case of CERWLEN / CEFFIC options)
do not enhance 1mage fluctuations (aim: N,;€<0.5).
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What if bunch size is too large?

nsize: 10 p.eo(CEFFIC) Bunchsize: 1O pie: (CE%&\

Part of the focal plane of ®@ @@ O O o0 e e
an IACT forthe sameevent. 9 4 10 20 40 100 200 p.e.

Bunchsize: 1 p.e. (GEFEIC)
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Bunch size recommendations

» Since Imaging Atmospheric Cherenkov Telescopes
(IACTs) are sensitive to image features at the level of
a few photo-electrons (p.e.), the chances of a single
bunch resulting in multiple p.e. should be small.

» With CEFFIC option (storing photo-electron
bunches, thus e=1): N,<1 (with binom. distrib.)

» Without CEFFIC but with CERWLEN (storing
photon bunches of given A):  Nge ~ <0.5
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Particle step sizes

» The maximum step sizes in CORSIKA with the
IACT option are smaller than without IACT because
of the high angular resolution (smallest pixels: 0.06°).

» Maximum bending in geomagnetic field between two
track segments must be below pixel size.

» Multiple scattering angle between track segments
must be well below pixel size.

» Limits are hard-coded and thus need to be re-
considered for the next telescope generation.
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Multiple scattering of muons

H.E.S.S. CT5 simulation
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Muon ring width (H.E.S.S.)
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Other details for IACTSs

» Due to the high angular and energy resolution of
TACTs, there are also other details in CORSIKA
which get relevant, for example

> Refraction of Cherenkov light:
o Total refraction at 45° zenith angle: up to one arc minute.

» Source position accuracy with IACTs: a few arc seconds.

> Details of atmospheric profiles:

» Actual profiles are not exponential but CORSIKA still
approximates the atmosphere with only four exponentials (+lin.)
for electrons & gammas (all particles with CURVED).

o Artifacts even seen with 40 steps tabulated atmospheres.
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Atmospheric refraction
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Atmospheric refraction
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Atmospheric profiles
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Atmospheric profiles

300 T | | T | T
US standard atm. ——
N\ tropical (annual avrg.) ——
280 - midlatitude summer — -
midlatitude winter ——
E 260 [ .
=
2 240 _
o
P
o
S 220 — ___—
—
200 .
Data see Kneizys et al. 1996
180 | l l | l |
0 5 10 15 20 25 30

Altitude [ km 1

22 K. Bernlshr, CORSIKA School, 2014-10-20




Impact of atmospheric profiles
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Impact of atmospheric profiles

Seasonal variations !
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Fit to tabulated atmospheric profiles
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Extinction of Cherenkov light
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Extinction processes

® Scattering:

> Rayleigh (molecular) scattering

> Mie (aerosol) scattering and absorption
* Absorption my moleculs:

> Ozone

> Oxygen

> Water vapour
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Extinction processes
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Transmission from different altitudes
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High-altitude clouds

532 nm Total Attenuated Backseatter, /km /sy Begin UTC: 2009-07-10 03:45:13.6992  End UTC: 2009-07-10 04:07:16.9501

Version: 2,02 Expedited Image Date: 07/11/2009

79.09 70.75 61.20 5130 41.26 31.14 20,98 10.78 0.58
-5.74 -15.55 -21.04 -24.32 -27.77 -30.29 -32.58 -34,76

Clouds are more difficult to model:

- Some are above the showers (no effect).

- Some are below the showers (“gray” filter).

- The difficult ones are those intersecting the showers.

30 K. Bernlohr, CORSIKA School, 2014-10-20

bt Oy SR80 A5) e I D €3 Bl B A B e ISR, Uk s B 00 8
boboobobbbbobohbhohbhbihbhobbbbbbbbbb

"
jaN
=]

"
&N
=]

"
jaN
=]

"
jaN
=]



Scattered Cherenkov light ?
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Scattered Cherenkov light
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Scattered Cherenkov light

» Scattered Cherenkov light 1s

100 to 1000 times

weaker than direct Cherenkov light, for integration

times and core offsets typical

| with TACTs.

» Only 1n conditions with muc]

n enhanced small-angle

scattering (large aerosols) there could be a significant
contribution of scattered light.

» For reasonable observing conditions, it can generally

be 1gnored.

33
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Cherenkov telescopes

® Coming in diameters from ~ 3 m to 28 m.

* Single or dual retlectors.

— N ASTRI (CTA):
4 m diameter,
#~us. dual reflector.

H.E.S.S. CT5: 28 m diameter, single reflector
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Cameras of IACTs

» Traditionally built from photo-multiplier tubes
(PMTs) as camera pixels:

> First camera of the Whipple telescope: 37 pixels.

> HEGRA stereoscopic system: 271 pixels.
> Camera of H.E.S.S. CT5: 2048 pixels of 42 mm .

» Newer developments:

> “Silicon PMs” (S1PM / GAPD:s)

»CTA SC-MST: 11328 pixels of 6.4 mm <&
> Multi-anode PMTs (MaPMTs)
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Simulation of IACTs

* Every experiment used to have 1ts own simulation
codes.

» Codes freely available and configurable for different
telescope types (and 1n use for CTA, ...):

> sim_telarray (http://www.mpi-hd. mpg.de/hfm/~bernlohr/sim_telarray/)

» See also http://www.mpi-hd.mpg.de/hfm/~bernlohr/iact-atmo/ for latest
version of CORSIKA-IACT/ATMO package.

> ROBAST (http://sourceforge.net/projects/robast/)
> CARE/GrOptics
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http://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/
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http://sourceforge.net/projects/robast/

Sim_telarray

» Originally developed for HEGRA telescopes.
» Adapted then to H.E.S.S.

» Tested extensively against H.E.S.S. data.
» Telescopes and cameras are fully configurable.

» Each telescope can be configured separately on the
command line and via configuration files.

» Main production tool for CTA simulations (together
with CORSIKA).
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Optics simulation

® Photons are fully ray-
traced on non-perfect
mirror facets with
random misalignment.

* Alignment accuracy
depending on zenith
angle.

® Acceptance in camera
depending on angle of
incidence.
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Camera simulation

» Pixel geometry and efficiency fully configurable.
» Analog channel for trigger
» One or two gains for digitized signal

» Different types of telescope trigger supported:
> Majority
> Analog sum
> Digital sum

» Output with configuration, calibration & raw data.
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A selection of CTA cameras

0
0900 0%
oﬂoegggg 090

SC-SST (CHEC) 4-m DC ASTRI
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The Cherenkov Telescope Array
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CTA: many tel. types, many layouts

*; o *
% %
0 ,
* *
* * *

Prod-2 standard (197 tel.)

Prod-2-North

Type:

23-mLST QO
12-m MST

7-m SST  x
4-m SST
SCT

Prod-2 4-m SSTs (102 tel.)

Prod-2 SCT (111 SC-MSTs)

102 telescope positions used for extra SC-SST/ASTRI/4-m DC-SST simulations

The Cherenkov Telescope
Array (CTA) will use
several types of tele-
scopes. Site and layout
studies based on up to
410 simulated telescopes
at 229 positions, for later
selecting arrays from it.

2000 m
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Simulation data pipeline for
CORSIKA-IACT with sim_telarray

» CORSIKA writes a single sequential data file per run:

> Can be stored on disk, typically compressed.
> Can be piped 1nto a single telescope simulation, or
> can be piped 1nto several telescope simulations in parallel
(with a little utility program).
» Sim_telarray
> reads (typically) a single CORSIKA data file per run,
> writes a single sequential data file per invocation,

> can also write histogram and other optional files not
strictly needed for analysis.
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INPUTST_CTA_P_RODZ_'_" Running all at once

P

CORSIKA - IACT

run_sim_cta_ultra5

P multipipe_corsika

) 4 multi_cta-ultrab.cfg '

cta_ultra5_run.sh
(note: CORSIKA _*
environment vars)

Failure of individual pipes are tolerated, as long as one pipe remains.

Programs are finished when no pipe is left.

To have processing in more sequential order, set
CORSIKA_MULTIPIPE_SEQUENTIAL environment variable.

44

sim_telarray

CTA-ULTRADS.cfg
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INPUTS_CTA_PROD?2 ...

corsika autoinputs

Running things separately

P

CORSIKA - IACT

(9zip)
—

A J

Later reading from disk ...

A J

cta_ultra5_run.sh

A J

L 3
L 3
S multi_cta-ultra5.cfg '
(note: CORSIKA * \

environment vars)

sim_telarray

<

PP - CTA-ULTRAS.cfg

multipipe _corsika

Failure of individual pipes are tolerated, as long as one pipe remains.
Programs are finished when no pipe 1s left.

45
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INPUTS_CTA_PROD?2 ...

Running things separately

corsika autoinputs

\ |
CORSIKA - IACT ———p [ebisikalz |

e Later reading from disk and
v+ setting CORSIKA environment

./ variables first ...

24
24
24

»? cta_ultra5_run.sh
4

sim_telarray »

PP - CTA-ULTRAS.cfg

Failure of individual pipes are tolerated, as long as one pipe remains.
Programs are finished when no pipe 1s left.
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INPUTS_CTA_PROD?2 ...

unning things separately

corsika autoinputs

\ |
CORSIKA - IACT ———p [ebisikalz |

: Later reading from disk and
i Setting up sim_telarray
1
|

command line directly ...

\/

sim_telarray

PP - CTA-ULTRAS.cfg

Failure of individual pipes are tolerated, as long as one pipe remains.
Programs are finished when no pipe 1s left.

47 K. Bernlohr, CORSIKA School, 2014-10-20



The underlying eventio format

48

0 4 8 12 16 16+Length
R s Data field
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Figure 1: Schematic structure of a top-level object and a sub-object

Data format is machine-independent and hierarchical.

For each object/data type, a pair of read/write functions

IS needed (a bit like ROOT custom streamers).

Access Is sequential. File 1/O with automatic (de)compression.
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Convertors and analysis

» Native sim_telarray output format can be processed
and analyzed with read_cta (aka read_hess) or

» converted 1nto data formats suitable for
> MARS (MAGIC analysis; convertor: chimp),
> SASH (HESS analysis; convertor: eventio),
> Evndisp (VERITAS analysis; convertor: )

J o0

> (and histograms into ROOT or PAW)

» or, 1f the file contains photo-electron information,
used for re-simulating the event (e.g. trigsim).
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Conclusions

» CORSIKA has a Cherenkov light option for many
years now which 1s well tested, both with imaging
telescopes and with non-imaging detector arrays.

» For CTA a better representation of atmospheric
profiles may become desirable.

» The IACT option allows for flexible definition of
detector/telescope arrays.

» The eventio format IACT output can be piped into
sim_telarray or other detector simulation codes (e.g.
one based on the sim_skeleton template code).
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