Geheimnisvoller Saturn Ringe und Monde

Sascha Kempf

Max-Planck-Institut für Kernphysik Heidelberg und IGEP, Technische Universität Braunschweig

15 Oktober 1997

Cassini-Huygens 2007

Die Namensgeber

Christiaan Huygens (1629-1695)

Entdecker der wahren Natur der Saturnringe und des Mondes Titan

Saturns Ringe: Galileo Galilei

Siderius Nuncius: 1610 Ansa (lat. Henkel)

Saturninterpretationen

I Galileo 1610
II Schreiner 1614
III Ricolli 1614 oder 1643
IV-VII Hevel
VIII, IX Ricolli 1648,1650
X Divini 1646-48
XI Fontana 1636
XII Biancani 1616
XIII Fontana 1644-45

Huygens: "Sytema Saturnium"

korrekte Erklärung der teleskopischen Beobachtungen durch die Neigung der Ringebene zur Erde

Die Namensgeber

Christiaan Huygens (1629-1695)

Giovanni Dommenico Cassini (1625-1712)

Entdecker der wahren Natur der Saturnringe und des Mondes Titan

Entdecker der Saturnmonde lapetus, Rhea, Tethys und Dione sowie der Teilung zwischen A- und B-Ring

Cassini Orbiter (NASA)

Huygens-Sonde (ESA)

Der lange Weg zum Saturn

Das Saturn-System

Aufnahme während einer Sonnenbedeckung

Quelle: M. Hedmann

Bedeckungen sind ideal zur Beobachtung von kleinen Teilchen

Lichtstreuung an Teilchen

Der Anteil des am Teilchen gebeugten Lichts entspricht ungefähr dem reflektierten Anteil

Der Öffnungswinkel des Streukonus ist jedoch ~Wellenlänge/Größe

Sichtbares Licht: Icm Teilchen: <0.01° I0µm Teilchen: 1°

Das Saturn-System

Das Saturn-System

Saturn

Wolken und Stürme

Wolken in den oberen Schichten

Wolken in tiefen Schichten

Saturns "Perlenkette"

Contraction of the second second

CONTRACTOR OF STREET, S

Concession of the survey of th

Sturm am Südpol

Temperaturverteilung

reflektiertes

Sonnenlicht

Licht aus dem Planeteninneren

Der Südpol-Wirbel

Sturm am Nordpol

Das "Hexagon"

Die Ringe

Wie groß sind die Ringteilchen?

violet: Teilchen > 5cm grün: Teilchen < 5cm blau: Teilchen < 1cm

Auflösung: 10km

Wie dick sind die Ringe?

~30 m!

Schatten der Cassini-Teilung Schatten des A-Ring

Schatten des B-Rings

Mimas

Schatten des C-Rings

F-Ring

A-Ring

Cassini-Teilung
Wieso sind die Ringe so dünn?

- aufgrund der großen Teilchendichte kollidiert jedes Ringteilchen ungefähr 10 mal pro Orbit
- dissipative Stöße "kühlen" die Ringteilchen
- thermodynamisches Bild fruchtbar:

Bild: Bill Hartmann

- je "kälter" der Ring, desto geringer dessen vertikale Dicke und desto höher die Teilchenzahldichte in der Ringebene
- je dichter der Ring, um so größer die Stoßfrequenz der Ringteilchen und um so "wärmer" der Ring
- Ringdicke wird durch Gleichgewicht zwischen "Kühlung" durch dissipative Stöße und "Heizung" durch Kepler-Scheerung eingestellt!

Feinstruktur der Ringe

Ursachen für die Feinstruktur

- gravitative und viskose Instabilitäten
- Wellen und Resonanzen
- Lücken, Bugwellen und "Propeller" erzeugt durch kleine Monde

Resonanzen

Selbstgravitationsbugwellen im A- und B-Ring B-RING T= 0.00

 Selbstgravitation bildet temporäre ~100m lange und ~10m breite Filamente

- Abstand:Toomre-Wellenlänge ~50m
- 20..25° zur mittleren Bewegungsrichtung geneigt

Simulation: Heiki Salo

SG-Bugwellen beobachtbar

 $\theta = 249^\circ, B = 24^\circ$

 $\theta = 339^\circ, B = 24^\circ$

Ringhelligkeit hängt von der Beobachterposition ab!

Propeller, Lücken und Monde

Gravitationswirkung kleiner Ringmonde kann (mehr oder weniger geschlossene) Lücken im Ring öffnen

Keeler-Lücke

Cassini entarnte 7km große Daphnis als Wellenmacher

Pan "öffnet" die Encke-Lücke

aus Wellenlänge und Amplitude der Kantenwelle kann die Bahn und die Masse des Ringmonds bestimmt werden!

noch kleinere Monde erzeugen "Propeller"

typische Größen von 60 bis 100m

Sremcevic et al., Nature, 2007

Propeller im A-Ring

Feature 3

Tiscareno et al., Nature, 2006

Feature 4

Der D-Ring

Stark veränderte D-Ring-Strukur seit Voyager I

 D72 bewegte sich um 200 km nach innen und wurde wurde erheblich schwächer

D-Ring

Erklärungsversuch

 Ring-Bezugsebene wurde innerhalb eines kurzen Zeitraums bezüglich der Saturn-Ringebene "verkippt"

- Störkräfte aufgrund der Abplattung des Saturns bewirken Rotation der Bahnknoten der Ringteilchen
- differentielle Rotation der Ringteilchen bewirkt eine sich aufwindende Spiralstruktur
- Wellenlänge zeitlich abnehmend

Hedman et al., Icarus, 2006

Modellvorhersagen

Modell sagt sowohl den Zeitpunkt der "Verkippung" als auch den Zeitpunkt des Verschwindes der Strukturen vorher

- radiale Wellenzahl
 k ~ λ⁻¹ ist lineare
 Funktion der Zeit
- Windungsrate dk/dt ~ 2.4 · 10⁻⁵ km⁻¹d⁻¹
- k=0: Frühling 1984
- Einschlag eines metergroßen Eisblocks ausreichend

Der F-Ring

Schäfer-Monde formen den F-Ring

Pandora (84 km Durchmesser)

Prometheus (102 km Durchmesser)

Hirten-Monde bei der Arbeit

- Ringmaterial zwischen den Bahnen zweier dicht benachbarter Ringmonde wird zu einem dünnen Ring verdichtet
- "inverse" Ringlücke

Der "Prometheus"-Effekt

Der "Prometheus"-Effekt

- Gravitation des Mondes erzeugt "Kanäle" im F-Ring
- innere Ringteilchen bewegen sich langsamer relativ zu Prometheus als äußere Teilchen: "Scheerkraft"

horizontal: I47 000 km (60°) vertikal: I500 km

C. Murray, Queen Mary College London, 2006

Hirten-Monde erzeugen Knoten und Verbiegungen in den Strängen

Die Monde

Mimas

Hyperion

Wasser auf Enceladus die Geschichte einer Entdeckung

Enceladus

- R· 3.94 R_s
- Größe: 499 km
- Umlaufzeit: I.37 d
- höchste Albedo aller Körper des Sonnensystems
- reine Wassereisoberfläche

Anomalie im magnetischen Feld

Hot Plasma Flow

Neutral Cloud

Enceladus ist Quelle des E-Ring

Wie wird der Staub erzeugt?

Mikrometeoriteneinschläge auf die Mondoberfläche erzeugen zahlreiche Ejekta-Teilchen

Sremcevic 2005

- einige Ejekta entweichen aus dem Gravitationsfeld des Monds und frischen das Ringteilchenreservoir auf. (Horanyi et al., Icarus, 1992)
- Gravitativ gebundene Teilchen bilden näherungsweise eine isotrope Staubwolke um den Mond (beobachtet für die Galileischen Monde (Krüger et al., Nature, 1999))
Staubdaten

Staubhülle

Staub-Detektor

Staub-Geysir

Spahn et al., Science, 311, 2006

Staubdaten

Spahn et al., Science, 311, 2006

NASA/JPL/Space Science Inst.

Hinweise auf aktive Südpolregion

Spencer at al., Science, 2006

Predicted Temperatures

Observed Temperatures

Porco at al., Science, 2006

- (neutrales) Wassergas (Dougherty et al, Hansen et al., Science 2006)
- H₂O-Maximalrate 30 s bevor dichtester Annäherung (Waite et al., Science

Wärmeproduktion

Erde 87 mW/m²

Enceladus Südpol 250 mW/m²

Yellowstone 2500 mW/m²

Tigerstreifen 13,000 mW/m²

Vukanische Körper

Jupiter-System

Saturn-System

Neptun-System

Geysir-Teilchen langsamer als Fluchtgeschwindigkeit

Hill-Radius ~ 950 km

Fluchtgeschwindigkeit ~ 207 m/s

Widerspruch zu Daten

Staub an Gasfluß gekoppelt

Gas schneller als Fluchtgeschwindigkeit

Wandstöße

Geschwindigskeitsverteilung durch Wandstöße eingestellt

Wandform: Monte Carlo

Temperatur: 270°K

Schmidt, Brilliantov, Spahn & Kempf, Nature, 451, 2008

Wasserreservoir unter Oberfläche

Grenzschicht am Trippelpunkt ~ 270°K

Direkter Beleg?

Wasser + Gesteinskern

Wasser löst Salze

Zolotov, Geophys. Res. Lett., 34, 2007

Eisteilchen sollten salzig sein!

Staubteilchen sind salzig!

Cassini Dust Detector CDA

Geyser Water Ice Grain

