
TWO IMPORTANT FUSION PROCESSES

CREATING THE CONDIT IONS FOR FUSION

Fusion
Physics of a Fundamental Energy Source
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Useful Nuclear Masses
(The electron’s mass is 0.000549 u.)

Label Species Mass (u*)
n (1n) neutron 1.008665
p (1H) proton 1.007276
D (2H) deuteron 2.013553
T (3H) triton 3.015500
3He helium-3 3.014932

α (4He) helium-4 4.001506
* 1 u = 1.66054 x 10-27 kg = 931.466 MeV/c2
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EXPERIMENTAL RESULTS IN FUSION RESEARCH

Fusion requires
high tempera-
ture plasmas
confined long
enough at high
density to
release appre-
ciable energy.
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power the sun and other stars. In fusion reactions, low-mass nuclei combine, or fuse, to
form more massive nuclei. The fusion process converts mass (m) into kinetic energy (E), as described by
Einstein's formula, E = mc2.  In the sun, a sequence of fusion reactions named the p-p chain begins with
protons, the nuclei of ordinary hydrogen, and ends with alpha particles, the nuclei of helium atoms. The
p-p chain provides most of the sun’s energy, and it will continue to do so for billions of years.

happen on the earth, atoms must be heated to very high temperatures, typically above 10 mil-
lion K. In this high-temperature state, the atoms are ionized, forming a plasma. For net energy gain, the
plasma must be held together (confined) long enough that many fusion reactions occur. If fusion power
plants become practical, they would provide a virtually inexhaustible energy supply because of the abun-
dance of fuels like deuterium. Substantial progress towards this goal has been made.
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1 eV = 1.6022 x 10-19 J.  Average particle
thermal kinetic energy is 1 eV per 11,600 K.

“p-p”: SOLAR FUSION CHAIN
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For first generation fusion reactors

• Compression
• Fusion Product Energy

• Compression 
(Implosion driven by laser 
or ion beams, or by x rays 
from laser or ion beams)

• Fusion Product Energy

• Electromagnetic Waves
• Ohmic Heating (electricity)
• Neutral Beam Injection

(beams of atomic hydrogen) 
• Compression
• Fusion Product Energy

Typical Scales:

Heating 
Mechanisms:

Nuclear Mass (u)
0 2010

10

2
4
6
8

0B
in

d
in

g
 E

n
e
rg

y
 

p
e
r 

n
u

cl
e
o

n
 (

M
e
V

)

4He
12C

D
T

3He

16OLi

<---------- Size: 10 m ---------->

Plasma Duration: 10-2 to 106 s

<--------- Size: 1019 m---------->

Plasma Duration: 1015 - 1018 s

Low-Mass Elements Only

  Sources        Conversion                 Useful Energy

Chemical,
Gravitational, 
 Nuclear , 
Solar, etc.
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Useful Eout = η Ein
η = thermodynamic
efficiency; 10-40% 
is typical.

<------------ Size:10-1 m ------------>

Plasma Duration: 10-9 to 10-7 s

Both inertial and magnetic confinement fusion research have focused on understanding plasma
confinement and heating. This research has led to increases in plasma temperature, T,  density, n,
and energy confinement time, τ. Future power plants based on fusion reactors are expected to
produce about 1 GW of power, with plasmas having nτ ≈ 2 x 1020 m-3 s and T ≈ 120 million K.

Fusion of low-mass elements releases energy, as does fission of high-mass elements.

Binding Energy per Nucleon as a Function of Nuclear Mass

Plasmas consist of freely moving charged particles, i.e., electrons and ions. Formed at high tempera-
tures when electrons are stripped from neutral atoms, plasmas are common in nature. For instance,
stars are predominantly plasma. Plasmas are a “Fourth State of Matter” because of their unique physi-
cal properties, distinct from solids, liquids and gases. Plasma densities and temperatures vary widely.
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Primary process in our sun

Fusion Rate Coefficients

Nuclear Reaction Energy: ∆E = k (mi-mf) c2

From Einstein’s E = m c2. ∆E = energy change per reaction; mi = total initial 
(reactant) mass;  mf = total final (product) mass.  The conversion factor k is 1 in SI
units, or 931.466 MeV/uc2 when E is in MeV and m is in atomic mass units, u. 

Plasma Fusion Reaction Rate Density = R n1 n2
n1,n2 = densities of reacting species (ions/m3); R = Rate Coefficient (m3/s). 

Multiply by ∆E to get the fusion power density.
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CHARACTERISTICS OF TYPICAL PLASMAS

Reaction Type: Chemical Fission Fusion

Physical Parameters of Energy-Releasing Reactions

Sample Reaction C + O2
1n + 235U D (2H) + T (3H) 

⇒ CO2 ⇒ 143Ba + 91Kr + 21n ⇒ 4He + 1n

Typical Inputs Coal UO2 (3% 235U Deuterium
(to Power Plant) and Air + 97% 238U) and Lithium

Typical Temp. (K) 1000 1000 100,000,000

Energy Released
per kg Fuel (J/kg) 3.3 x 107 2.1 x 1012 3.4 x 1014

Confinement: Gravity Magnetic Fields Inertia
Laser-Beam Driven FusionLaser Beam-Driven FusionTokamakStar Formation Plasma

ENERGY SOURCES & CONVERSIONS

NUCLEAR PHYSICS OF FUSION

P L A S M A  C O N F I N E M E N T  A N D  H E AT I N G

Energy can take on many forms, and various processes convert one form into another.  While
total energy always remains the same, most conversion processes reduce useful energy.

AN OVERVIEW OF ENERGY CONVERSION PROCESSES

HOW FUSION REACTIONS WORK

Star Formation Plasma Tokamak
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PLASMAS – THE 4 th STATE  OF  MATTER
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