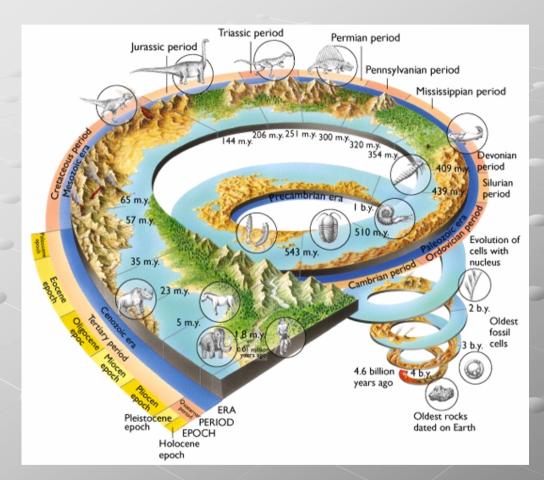


Forschungsstelle Archäometrie

der Heidelberger Akademie der Wissenschaften am Max-Planck-Institut für Kernphysik


Physik am Samstagmorgen · 19. November 2005

Radioaktivität

Ein unbestechlicher Zeitzeuge

Christiane Rhodius

Archäochronometrie – Warum und wie datieren wir?

- Ereignisse innerhalb der menschlichen Kulturentwicklung und geschichte in Zeit und Raum in Beziehung setzen
- Radioaktiver Zerfall als natürlicher Zeitmesser

 1896 Entdeckung der "Uran-Strahlung" durch H. Becquerel

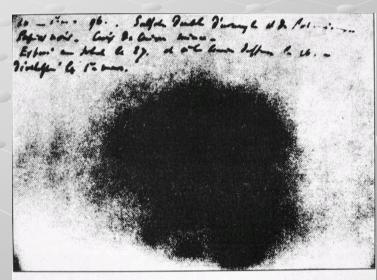
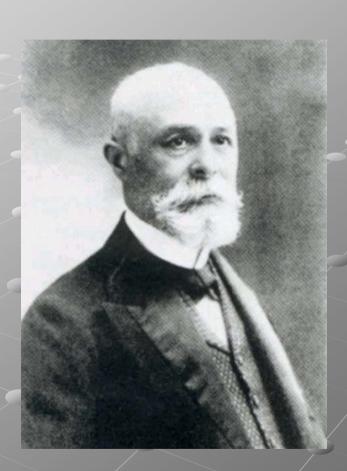
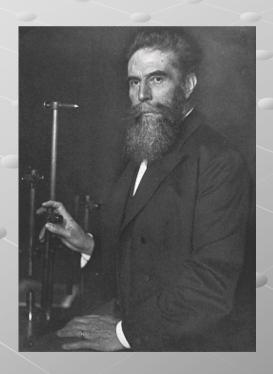
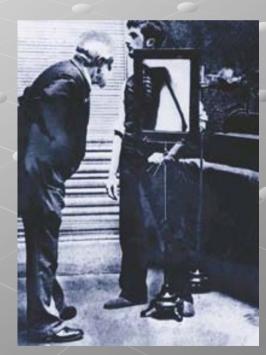
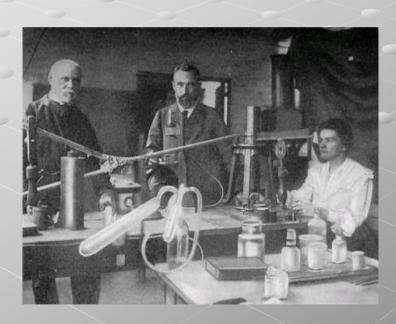
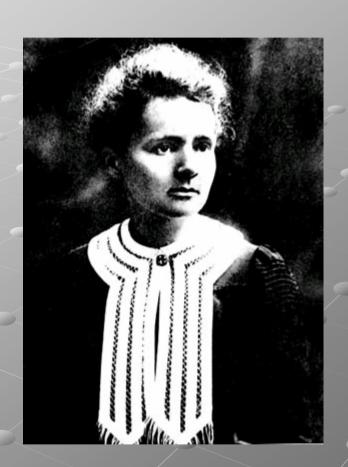





Abb. 2.1.1
Abbildung der Fotoplatte von A. H. Becquerel, geschwärzt durch die von einem Uran-Mineral ausgehende Strahlung, 1. März 1896 (Radiogramm)


1895 Entdeckung der X-Strahlung durch C. Röntgen



 1898 Begriff Radioaktivität durch M. Curie geprägt

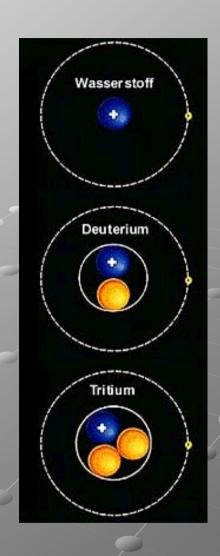
- 1895 Entdeckung der X-Strahlung durch C. Röntgen
- 1896 Entdeckung der "Uran-Strahlung" durch H. Becquerel
- 1898 Begriff Radioaktivität durch M. Curie geprägt
- Meilensteine in der Entwicklung naturwissenschaftlicher Datierungsmethoden, die das Verständnis vom Alter unseres Sonnensystems, der Erde und nicht zuletzt des Menschen im 20. Jh. nachhaltig geprägt haben
- Die Konzeption der radiometrischen Altersbestimmung geht auf E.
 Rutherford zurück
- Entwicklung zahlreicher Datierungsmethoden auf Grundlage der Radioaktivität, z.B. 1947 ¹⁴C-Methode

Was ist Radioaktivität?

 Natürliche Radioaktivität ist die spontane Kernumwandlung einer Kernart (Mutter N) in diejenige (Tochter T) eines anderen Elements (N → T) unter Emission von Strahlung und/oder Teilchen

z.B.
$$^{14}C \rightarrow ^{14}N + Elektron$$

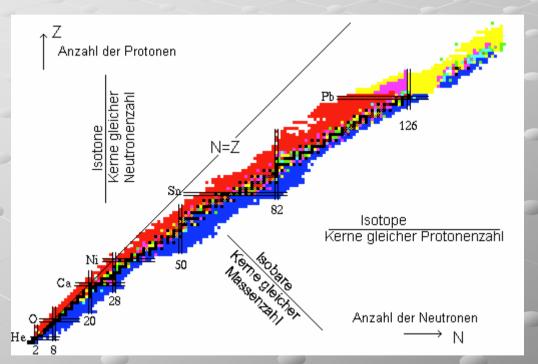
 Der radiaoaktive Zerfall ist zeitäbhängig und kann von äußeren Einflüssen (Druck, Temperatur) oder chemischer Bindung nicht beeinträchtig werden



Was ist Radioaktivität?

- Ein Element setzt sich aus verschiedenen Atomsorten, den Isotopen zusammen.
- Isotope sind Nuklide (Kernarten) mit definierter Anzahl von Nukleonen (gleiche Protonenanzahl, unterschiedliche Anzahl Neutronen). Instabile Nuklide sind radioaktiv.
 - z.B. ¹H (1 Proton = 1 Nukleon) ²H bzw. D (1 Proton + 1 Neutronen = 2 Nukleonen) ³H bzw. T (1 Proton + 2 Neutronen = 3 Nukleonen)

Anteil ${}^{1}H = 99,985 \%$, ${}^{2}H = 0,0145 \%$, ${}^{3}H = 10^{-16} \%$



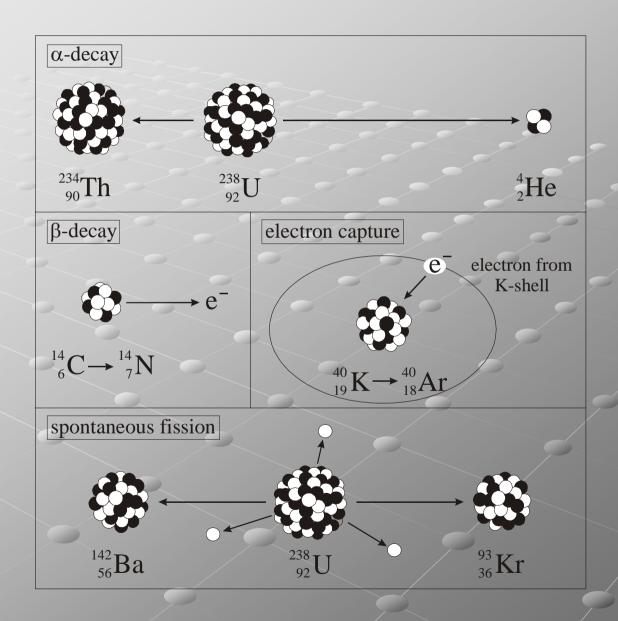
a Jah d Tag	r ms	der Nul Miliseku Mikrosek		e (vere	einfacht	95	Am Pu 230	Am 232 131 m	Pu 232 34.1m	Am.234 130m		Am 236	Am 237 This n	Am 238 (.63.)	Am 239	Am 240 (831)	Am 241 4924	Am 2/42	Am 3
h Stu	nde iute unde		94	Pu	Pu 228	Pu 229		H		Pu 233 311m	Pu 234 Lish	Pu 235 53 n	Pu 236 2881	Pu 237 4521	Pu 238 87341	Pu 239 2411-101	Pu 240 6563 a	Pu 241 1635 i	Pu :
	93	Np	Np 225	Np 226 31 m	No 227	No 228 5751	No 229	Np 230	Np 235 48.6 m	Np 232 1(7n	Np 233	Np 234	Np 235	Np 236 154 197 s	Np 237 2,144 18 ⁶ a	No 238 2374	No 239 2353	Np 240 65 m	Np 13
LJ 208,0089	U 222 1µs	U 223 18µs	U 224 57m	U 225 %m	U 226 621	U-227	U 228 33n	U 229 586	U 230 23,8 f	U 231 421	U 232 883 a	U 233 1582 10 ⁵	U 234 0,006 2,455 10 ⁵ a	U 235 0.730 7.33 Th	U 236 2342 10 ² 4	U 237 4758	U 238 93 2745	U 239 205 m	U 2
8 220 878 yr	Pa 221 59 ju	Pa 222 43m	Pa 223 65m	Pa 224 1351	Pa 225 18s	Pa 226 186	Pa 227 25,3 h	Pa 228 225	Pa 229 150 a	Pa 230 17/42	Pa 231 32% 10°a	Pa 232 1316	Pa 233 2704	Pa 234 570h	Pu 235 242.n	Pa 236	Pa 237 67m	Pa 238 23m	1/
Th 219	Th 220 1/Jul	Th 221 156 m	Th 222 22m	Th 223 0.66+	Th 224 1,84±	Th 225	Th 226	Th 227 W/2d	Th 228	Th 229	Th 230 754 10 ⁴ 1	Th 231	Th 232 190 1,8510 Pg	Th 233	7h 234 34,31±	Th 235	Th: 236 37.5 m	Th 237	90
1.1 pt	Ac 219 11,8 µs	Ac 220 36 ms	Ac 221 ≌ns	Ac 222 30 s	Ac 223 110 m	Ac 224 25h	Ac 225 10.04	Ac 226 251	Ac 227 21,773 t	Ac 228 6.05h	Ad 229 627 n	Ac 230	Ac 231 75 m	Ac 232 183	144		146		
le 217 15µs	Ra 218 25,6 pa	Ra 219 Tims	Ra 220 23ml	Ra 221 281	Ra 222 381	Ra 223 1143-1	Ra 224 2,96 d	Ra 2/25 14,8 z	Ra 226 1900 i	Ra 227 422m	Ra 228 1.75a	Re-229 40m	Re 230 Wm	88					
Fr 216 1)0 µs	Fr 217	Fr 218	Fr 219	Fr 220 27/41	Fr 221 49m	Fr 222 143 m	Fr 223 21,6 n	fr 224 33 n	Fr 225 48 m	Fr 226 481	Fr 227		142	Instabile (radioaktive) Nuklik Elementsymbol					
in 215 23 µr	8n 215 45 µs	Rn 217 054 m	Rn 218 25 m	Rn 219 1961	Rn 220 5551	Rn 221	Rn 222 1886	Rn 223 232m	Hn 224 1766	86	140	Protonen				*		Massens Halbwer	tazeit
M 214	At 215 11m	At 216 7 03 mm	At 217 323ms	At 218 -P1	At 219 09m	At 220	At 221 -23=	1	138			der Prot						β -Zenta	
0 213 42 pt	Po 23.4 164 µs	Po 215 USms	Po 216 4/54	Po 217 <101	Po 218 185 s	84	136				Zahl der Neutronen					L		Elektron einfang β* -Zerfa	oder
DI 212	81 213 0311	19,9 (4	B) 215	Bi 216 3.6 n	134 Elen	nenta					Stabile Nuklide Elementsymbol			Nuklide, d					
0 211 30 m	Pb.212 10563	Pb 213	Pb 214 268=	82	Elen	entsymb	al .							Bildung d Materie e		15	c -Zertal	0	
1210 130m	130		132			1254	Mittelwer					5/ 30 - Massenzahl - In 232 - Inotopenhikufigkeit in Prozent 100				al & Zerfall mit. geringer Wahrscheinlichkeit. al spontaner Kernzerfall möglich			

Nuklidkarte

- vergleichende Darstellung aller bekannten Atomkerne
- über 2500 Nuklide, wovon lediglich ca. 260 stabil sind
- Kerne mit Neutronen- oder Protonenüberschuß zerfallen, sie sind radioaktiv

Warum zerfallen Kerne?

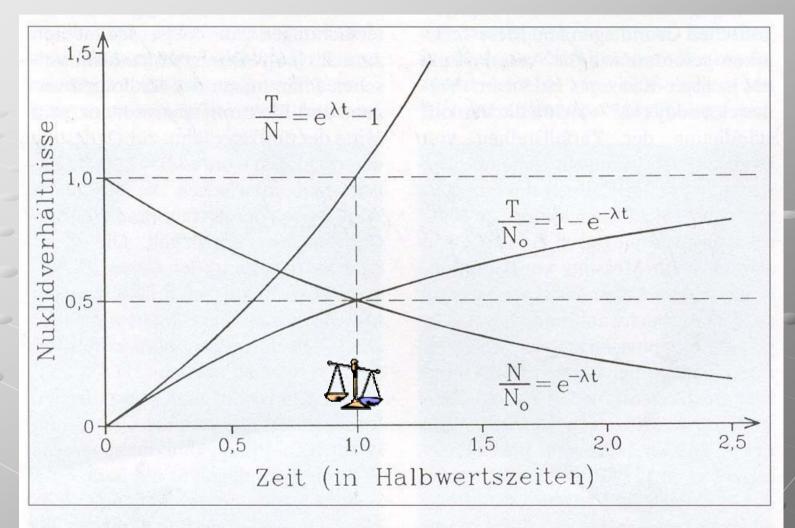
- Kerne zerfallen, um in ein niedrigeres, stabileres Energiestadium überzugehen
- Dabei kommt es zur spontanen Emission von Teilchen bzw. von Strahlung:


Aussendung von Kernteilchen \Rightarrow α -Zerfall

Umwandlung von Kernteilchen \Rightarrow β -Zerfall (β +, β - und K-Einfang)

Zerbrechen des Kerns ⇒ Spaltung

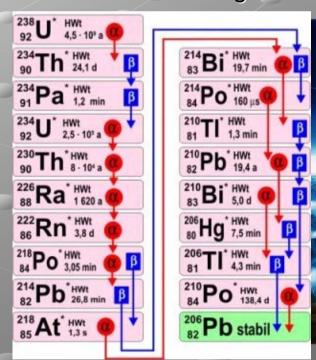
Umorientierung von Kernteilchen ⇒ γ-Strahlung

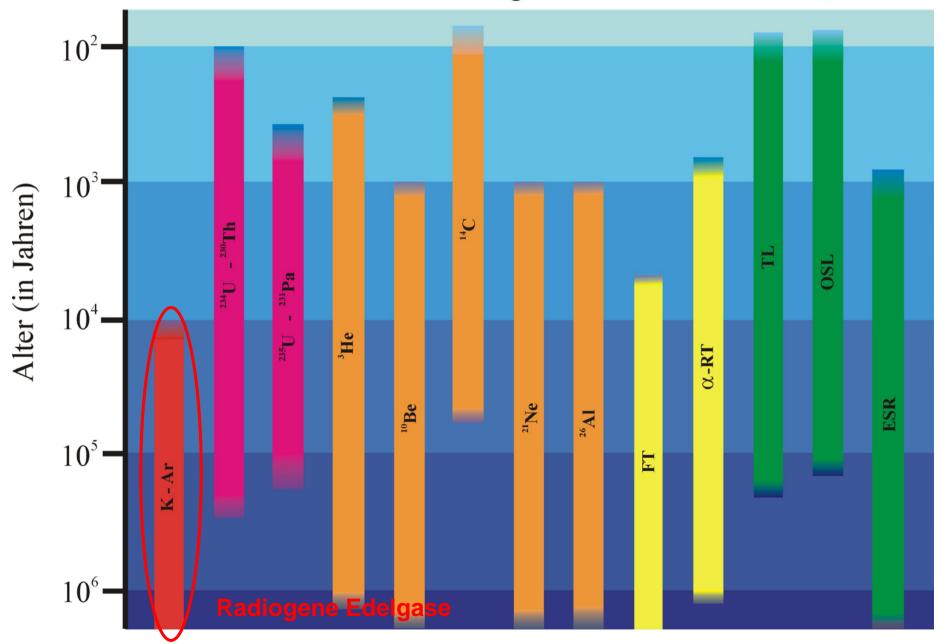

Wie zerfallen Kerne?

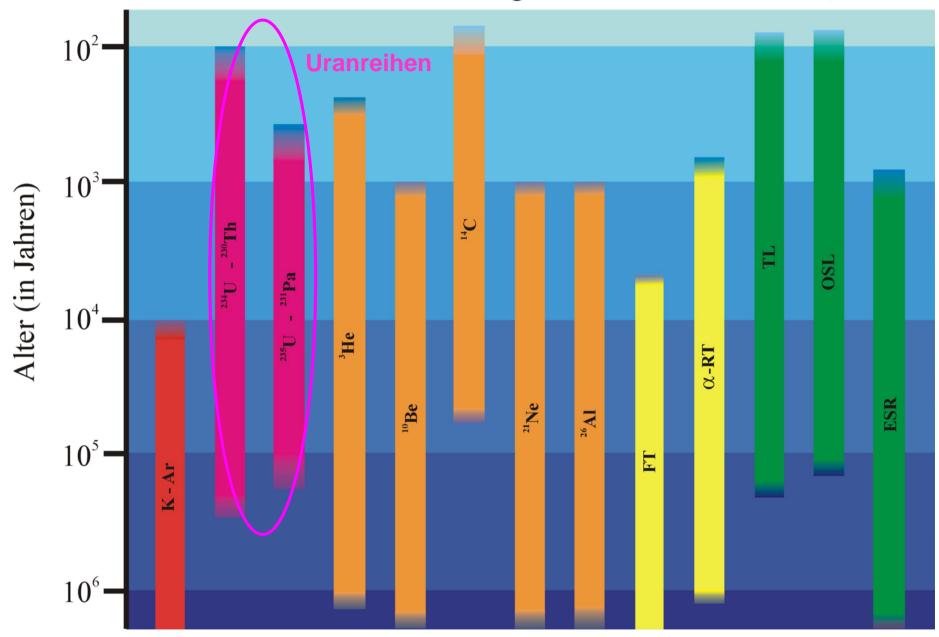
Vom radioaktiven Zerfall zum Alter

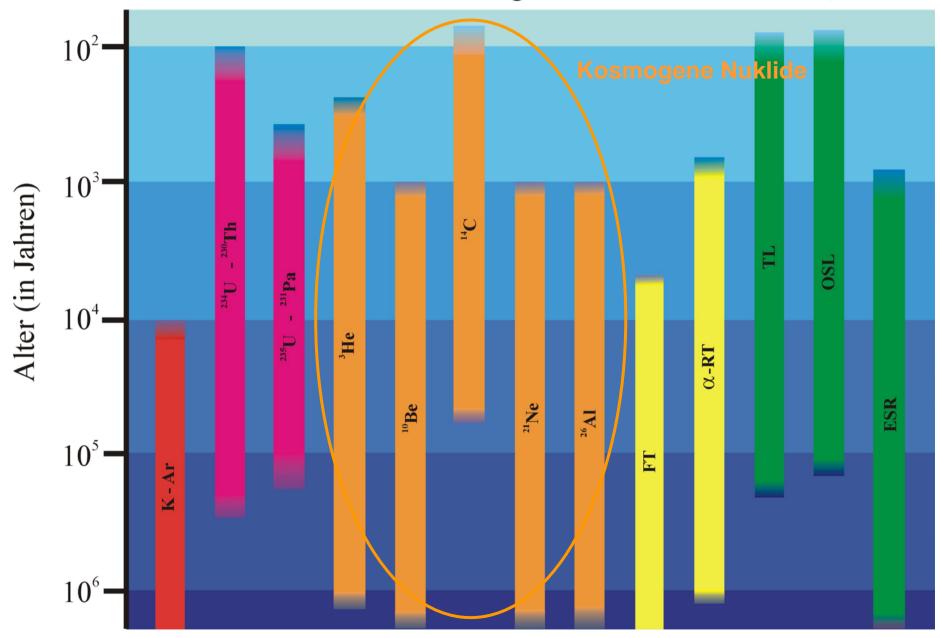
- Das Zerfallsgesetz beschreibt die Gesetzmäßigkeit, mit der radioaktive Kerne zerfallen. Bei allen Zerfallsarten wandelt sich der instabile, radioaktive Mutterkern N in die stabilen, radiogenen Tochternuklide T um.
- Die Zerfallsgeschwindigkeit dN/dt = λ x N eines Nuklids ist durch eine charakteristische Zerfallskonstante λ bzw. die Halbwertszeit $t_{1/2}$ ($t_{1/2}$ = 0,693/ λ) gekennzeichnet.
- Die Halbwertszeit ist die Zeit, in der die Zahl der zerfallenden Kerne jeweils auf die Hälfte reduziert ist. Sie ist für jedes Nuklid spezifisch.
- Die Altersgleichung kann aus dem Zerfallsgesetz abgeleitet werden :
 t = 1/λ x ln (1 + T/N). Aus dem Mengenverhältnis der Tochter- zu den Mutternukliden T/N oder der noch vorhandenen zu den ursprünglichen Mutternukliden N/N₀ kann dann das Alter bestimmt werden.

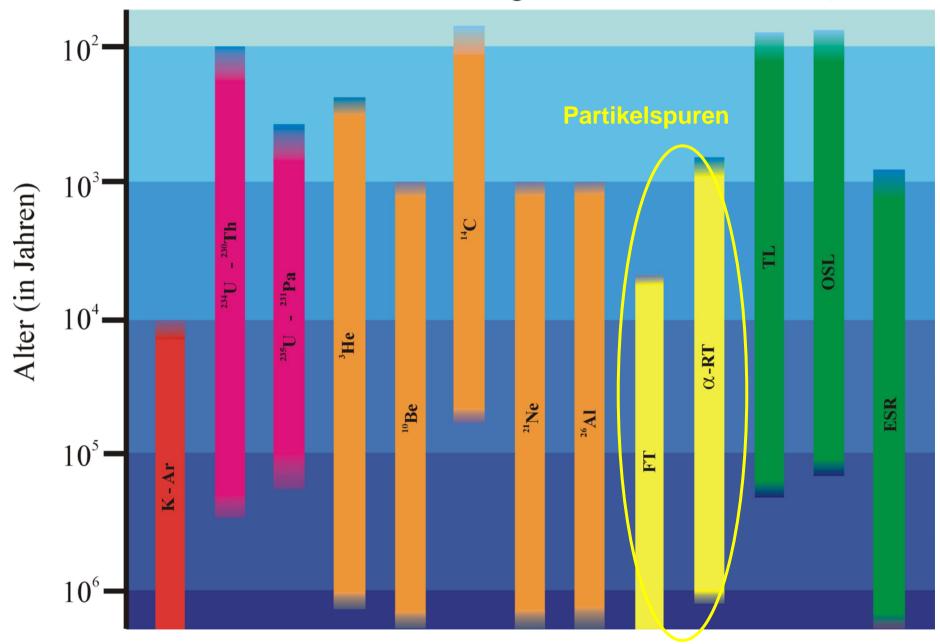
Der radioaktive Zerfall

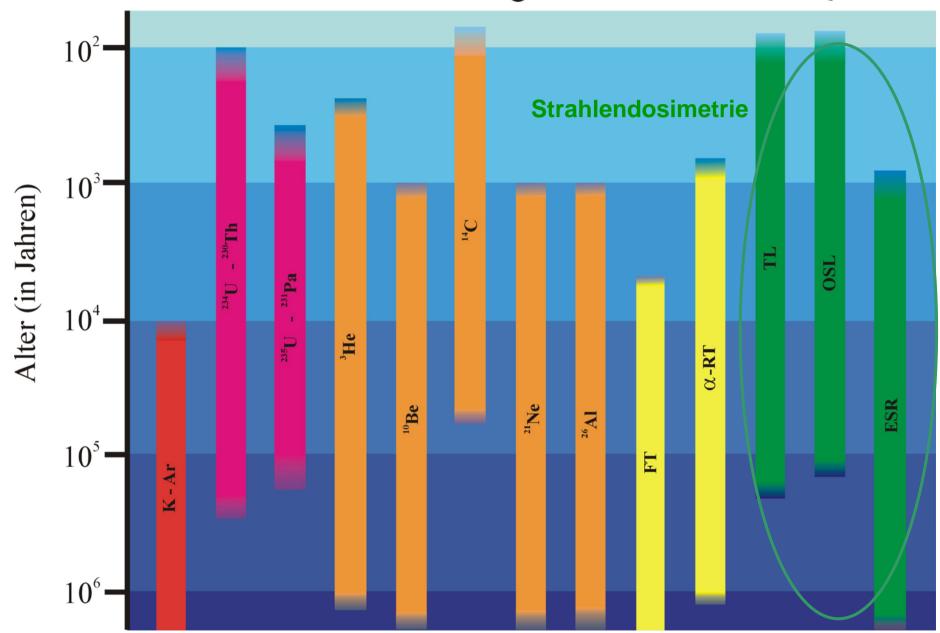



Abb. 7. Durch den radioaktiven Zerfall des Mutternuklids N (Ausgangsmenge N_0) in das Tochternuklid T verändern sich die entsprechenden Nuklidverhältnisse systematisch mit der Zeit t, so dass daraus bei Kenntnis der Zerfallskonstanten λ auf das Alter geschlossen werden kann.


Welche radiometrischen Datierungsmethoden gibt es?


- Die Vielzahl der radioaktiven Nuklide erlaubt aufgrund des Spektrums ihrer Halbwertszeiten die Datierung nahezu aller Altersbereiche in Archäologie und Geologie
- Zur Datierung verwendeten Nuklide werden nach ihrer Entstehung in
 - a) Urnuklide
 - b) Kosmogene Nuklide und
 - c) Nuklide der Zerfallsreihen


unterteilt.



Welche Meßgrößen können ausgenutzt werden?

- ◆ Konzentrationsbestimmung der Isotope (Abnahme Mutternuklid ↔ Zunahme Tochternuklid), d.h. der Grad des Erreichens des radioaktiven Gleichgewichts im System nach einer Störung kann ermittelt werden.
- Die natürliche Radioaktivität hinterläßt im Probenmaterial meßbare Strahlenschäden. Ihre Intensität ist ein Maß für die natürliche Strahlendosis, der die Probe seit seiner Bildung oder letzten Nullstellung des Systems ausgesetzt war.
 - ⇒ Lumineszenzdatierung
 - ⇒ Fission Track (Spaltspuren)

