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G. Dubus10, T. Ergin7, P. Espigat6, F. Feinstein9, P. Fleury10, G. Fontaine10,

S. Funk1∗, Y.A. Gallant9, B. Giebels10, S. Gillessen1, P. Goret12,
C. Hadjichristidis3, M. Hauser13, G. Heinzelmann5, G. Henri14,

G. Hermann1, J.A. Hinton1, W. Hofmann1, M. Holleran15, D. Horns1,
O.C. de Jager15, I. Jung1,13,‡, B. Khélifi 1, Nu. Komin7, A. Konopelko1,7,
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Very high energyγ-rays probe the long-standing mystery of the origin of cos-
mic rays. Produced in the interactions of accelerated particles in astrophysical
objects, they can be used to image cosmic particle accelerators. A first sensitive
survey of the inner part of the Milky Way with the High Energy Stereoscopic
System (H.E.S.S.) reveals a population of eight previously unknown firmly de-
tected sources of very high energyγ-rays. At least two have no known radio
or X-ray counterpart and may be representative of a new class of ‘dark’ nu-
cleonic cosmic ray sources.
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Very high energy (VHE)γ-rays with energiesE > 1011 eV are probes of the non-thermal
universe, providing access to energies far greater than those that can be produced in accelera-
tors on earth. The acceleration of electrons or nuclei in astrophysical sources leads inevitably
to the production ofγ-rays, by the decay ofπ0s produced in hadronic interactions, inverse
Compton scattering of high energy electrons on background radiation fields or the non-thermal
bremsstrahlung of energetic electrons. Several classes of objects in the Galaxy are suspected or
known particle accelerators: pulsars and their pulsar wind nebulae (PWN), supernova remnants
(SNRs), microquasars, and massive star forming regions. VHEγ-ray sources that have been
detected in the Galaxy include PWNs, SNRs and objects with no identified counterpart at other
energies. Such sources without counterpart are particularly interesting because a lack of X-ray
emission could indicate that the primary accelerated particles are nucleons rather than the high-
energy electrons. Essentially all potential Galactic sources cluster along the Galactic plane.
Thus, a systematic survey of the Galactic plane is the best means to investigate the properties of
these source classes and to search for yet unknown types of Galactic VHEγ-ray emitters.

Large-scaleγ-ray surveys in the TeV energy regime (1 TeV =1012 eV) have been performed
using the Milagro water-Cherenkov detector (1) and the Tibet air-shower array (2). These all-
sky instruments have only modest sensitivity, reaching a flux limit comparable to the flux level
of the Crab Nebula,∼ 2× 10−11 cm−2 s−1 (for E > 1 TeV), in one year of observations. Both
surveys covered∼ 2π steradian of the northern sky and resulted only in flux upper limits. A sur-
vey of the part of the Galactic plane accessible from the northern hemisphere (−2◦ < l < 85◦,
wherel denotes Galactic longitude) was performed by the stereoscopic High Energy Gamma
Ray Astronomy (HEGRA) array of imaging Cherenkov telescopes (3). No sources of VHE
γ-rays were found in this survey but upper limits between 15% of the Crab flux for Galactic
longitudesl > 30◦ and more than 30% of the Crab flux in the inner part of the Milky Way were
derived (4). Until the completion of the High Energy Stereoscopic System (H.E.S.S.) (5) in
early 2004, no VHEγ-ray survey of the southern sky, or of the central region of the Galaxy had
been performed. The central part of the Galaxy contains the highest density of potentialγ-ray
sources. We have conducted a survey of this region with H.E.S.S. in 2004, at a flux sensitivity
of 3% of the Crab flux.

H.E.S.S. is an array of telescopes exploiting the imaging Cherenkov technique. The tele-
scopes image the Cherenkov light emitted by atmospheric particle cascades initiated byγ-
rays or cosmic-rays in the upper atmosphere. Measurements of the same cascade by multiple
telescopes allow improved rejection of the cosmic-ray background and better angular and en-
ergy resolution in comparison to single dish telescopes. H.E.S.S. consists of four atmospheric
Cherenkov telescopes, each with 107 m2 of mirror area (6) and equipped with a 960 pixel
photo-multiplier tube camera (7). The four telescopes are operated in a stereoscopic mode
with a system trigger (8), requiring at least two telescopes to provide images of each cascade.
H.E.S.S. has the largest field of view (5◦ diameter) of all imaging Cherenkov telescopes now in
operation, which yields a considerable advantage for surveys (9).

H.E.S.S. provides unprecedented sensitivity toγ-rays above 100 GeV, below 1% of the flux
from the Crab Nebula for long exposures. This sensitivity has already been demonstrated
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by high-significance detections of the Galactic centre (HESS J1745-290) (10) and the SNR
RX J1713.7-3946 (11). The angular resolution for individualγ-rays is better than 0.1◦, allow-
ing a source position error of 30 arc sec to be achieved, even for relatively faint sources.

We scanned the inner part of the Galactic plane (Galactic longitude -30◦<l<30◦ and latitude
-3◦<b<3◦) with H.E.S.S. from May to July 2004. Observations 28 minute in duration were
made in steps of0.7◦ in longitude and steps of1◦ in latitude for a total observation time of 112
hours. An average 5-standard-deviation detection sensitivity of3 × 10−11 photons cm−2 s−1

above 100 GeV (≈3% of the Crab Flux) was reached for points on the Galactic plane. Seven
promising candidate sources from the survey were re-observed from July to September for
typically 3.5 hours per source.

Eight unknown VHE sources were detected at the level of> 6 standard deviations after
accounting for all trial factors ( Fig. 1 and Table 1). The known VHE sources HESS J1745-290
(at the Galactic Centre) and RX J1713.7-3946 are also detected in the scan data. The analysis
used the standard H.E.S.S. analysis procedure, optimised for point-like sources (12).

The significance values shown in Fig. 1 (andS3 of Table 1) do not directly reflect the prob-
ability that a given signal represents aγ-ray source, because the large number of search points
in the sky map (250000) enhance the chance for statistical fluctuations to mimic a signal. Prob-
abilities must be scaled by a trial factor accounting for the number of attempts to find a source,
here conservatively assumed to be equal to the number of points in the sky map. Simulations of
randomly generated sky maps withoutγ-ray sources show that the effective number of trials is
smaller than the number of points because of correlations between adjacent search points, which
are more closely spaced than the instrumental width of the point spread function. Trial factors
apply only for the initial search, where source candidates were identified (S1, before trials), but
not for follow-up observations, where the significance (S2) of a signal was evaluated assuming
the position derived from the initial search. The scaled-down significance from the initial search
and the result of the follow-up observations were combined by summation in quadrature to give
a final detection significance (S4).

Because most sources appear moderately extended,S5 in Table 1 lists the significance sim-
ilar to S4 but assuming extended sources . For each of these candidates a spectral analysis was
performed and Table 1 also gives the best fit flux above200 GeV.

For the purpose of source size and position fitting, an additional cut requiring an image
size exceeding 200 photoelectrons in each camera was applied. This cut further supresses the
cosmic-ray background (by a factor of∼ 7), at the expense of reduced statistical significance
and increased energy threshold (250 GeV). It also improves the angular resolution by 30%.
After applying this cut the spatial distribution of excess events for each candidate was fit to
a model of a two-dimensional Gaussianγ-ray emission region (Table 1) convolved with the
point spread function of the instrument (derived from Monte Carlo simulations and verified by
observations of the Crab Nebula).

The new Galactic VHEγ-ray emitters cluster close to the Galactic plane (with a meanb of
-0.25◦ and a root mean square (rms) of 0.25◦) (Fig. 2). This is a clear indication that we see
a population of Galactic (rather than extragalactic) sources. Furthermore, the observed distri-
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Name Position Sizeσ Significance Flux
l b (arcmin.) S1 S2 S3 S4 S5

HESS J1614-518† 331.54◦ −0.59◦ 12 5.2 4.3 6.7 4.7 6.8 9
HESS J1616-508 332.40◦ −0.15◦ 11 7.4 8.9 11.6 10.5 12.8 17
HESS J1640-465 338.32◦ −0.02◦ 2 11.7 8.3 14.3 13.4 11.5 19
HESS J1804-216 8.44◦ −0.05◦ 13 8.2 5.9 10.1 8.8 9.6 16
HESS J1813-178 12.81◦ −0.03◦ 3 10.2 8.3 13.2 12.2 8.9 12
HESS J1825-137† 17.78◦ −0.72◦ 10 4.4 3.7 5.8 3.7 6.5 9
HESS J1834-087 23.28◦ −0.34◦ 12 6.7 5.6 8.7 7.2 7.8 13
HESS J1837-069 25.21◦ −0.12◦ 4 6.0 6.0 8.4 6.9 6.4 9

Table 1: Characteristics of the newγ-ray sources. Position: Galactic Longitude (l) and Latitude (b) with a
statistical error in the range of 1-2 arcmin. Size: estimated source extensionσ for a brightness distribution of the
form ρ ∝ exp(−r2/2 σ2) with a statistical error in the range of 10-30%.S1: Significance for a point source cut of
θ2 = (0.14◦)2, using scan data only, without correction for the number of trials.S2: As for S1 but only including
follow-up observations of this source (no correction needed).S3: Significance of combined scan and follow-up
observations (as shown in Fig. 1).S4: As S3 but including a correction for the number of trials (n = 250000). S5:
As for S4 but with an extended cut ofθ2 = (0.22◦)2. Flux: Estimated flux above 200 GeV(×10−12cm−2s−1)
with a statistical error between 10-35%.†: These sources were re-observed within the field of view of dedicated
observations of another target.

bution resembles that of Galactic SNRs (13) and of energetic pulsars (Ė > 1034 erg/s) (14).
However because of the nonuniform exposure of the scan, and the unknown luminosity distri-
bution of the parent population, we cannot make a quantitative statement on the compatibility
of these distributions.

All of the sources are significantly extended beyond the size of the H.E.S.S. point spread
function. Given that the search described here was optimised for point-like sources, it is likely
that several more significant sources with an extended nature exist in this dataset. We note that
the new sources mostly have spectra with rather hard photon indices in the range between that
expected for SNRs and that of the Crab Nebula.

We have searched for counterparts for the newγ-ray sources in other wavelength bands.
Fig. 3 shows theγ-ray emission from the region around each source together with potential
counterparts. Although the chance probability for spatial coincidences with SNR in the region
of the scan is not negligible (6%), plausible associations exist for three of the new sources –
HESS J1640-465, HESS J1834-087 and HESS J1804-216 – with an SNR. HESS J1640-465 is
spatially coincident with the SNR G338.3-0.0, which is a broken-shell SNR lying on the edge
of a bright ultra-compact HII region (13). This HII region could conceivably provide target
material for nuclear particles accelerated in the SNR, generating VHEγ-rays byπ0 decay.
The unidentified EGRET source 3EG J1639-4702 (15) lies 35 arc min away and could also
be connected to HESS J1640-465, given the position uncertainty of 34 arc min of the EGRET
source. HESS J1834-087 is spatially coincident with SNR G23.3-0.3 (W 41), a shell-type SNR
of 27 arc min diameter (16). HESS J1804-216 coincides with the southwestern rim of the shell-
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type SNR G8.7-0.1 (W30) of radius 26 arc min. From CO observations (17), the surrounding
region is known to be associated with molecular gas where massive star formation is taking
place. This SNR could be associated with the nearby (25 arc min), young pulsar PSR J1803-
2137 (18).

HESS J1804-216 is one of three plausible associations with nebulae powered by sufficiently
energetic young pulsars. The others are HESS J1825-137 and HESS J1616-508. HESS J1825-
137 lies 13 arc min from the pulsar PSR J1826-1334 which has been associated with the close-
by unidentified EGRET source 3EG J1826-1302 (19). A diffuse emission region, 5 arc min
in diameter and extending asymmetrically to the south of the pulsar was detected using the
XMM (X-ray Multi-Mirror misson) x-ray telescope (20). This diffuse emission is interpreted
as synchrotron emission produced by a PWN. The VHE emission is similarly located south of
PSR J1826-1334, and could be coincident with the PWN. The conversion efficiency implied
from spin down power to VHEγ-rays is less than 1%. HESS J1616-508 is located in the middle
of a complicated region 9 arc min from the young hard X-ray pulsar PSR J1617-5055 (21). The
VHE γ-ray flux is again less than 1% of the spin-down luminosity of the pulsar. The SNR
G332.4-0.4 (RCW 103) (13), which harbours a compact X-ray source (1E 161348-5055) (22)
lies 13 arc min away, as does the SNR G332.4+0.1 (Kes 32) (23), but neither of these SNRs is
spatially coincident with the VHE emission. (Noted that none of the discussed SNR or PWN
associations currently meet the criteria necessary for promotion to counterparts. Counterpart
identification requires positional agreement with an identified source, a plausibleγ-ray emission
mechanism and consistent multi-frequency behaviour).

For HESS J1837-069 a potential counterpart is the diffuse hard X-ray source G25.5+0.0,
which is 12 arc min across and was detected in the Advanced Satellite for Cosmology and As-
trophysics (ASCA) Galactic plane survey (24). The nature of this bright X-ray source is unclear
but it may be an X-ray synchrotron emission dominated SNR such as SN 1006 or a PWN. The
brightest feature in the ASCA map (AX J1838.0-0655), located south of G25.5+0.0, coincides
with the centre of gravity of the VHE emission and is therefore the most promising counterpart
candidate. This still unidentified source was also serendipitously detected by BeppoSAX x-ray
satellite instrument and also in the hard X-ray (20-100 keV) band in the Galactic plane survey
performed with the Integral (International Gamma-Ray Astrophysics Laboratory) satellite (25).

For the two remaining sources HESS J1813-178 and HESS J1614-518, no plausible coun-
terparts have been found at other wavelengths. HESS J1813-178 is not spatially coincident with
any counterparts in the region but lies 10 arc min from the centre of the radio source W 33. W 33
extends over 15 arc min with a compact radio core (G12.8-0.2) that is 1 arc min across (26).
The region is highly obscured and has indications of recent star formation (27). In its extended
emission and location close to an association of hot O and B stars, HESS J1813-178 resembles
the unidentified TeV source discovered by HEGRA, TeV J2032+4130 (28) and the first H.E.S.S.
unidentifiedγ-ray source HESS J1303-63 (29). HESS J1614-518 has no plausible SNR or pul-
sar counterpart. This source is in the field of view of HESS J1616-508 which is located nearby
(∼ 1◦ away). The lack of any counterparts for these two sources suggests the exciting possibility
of a new class of ‘dark’ particle accelerators in the Galaxy.
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In conclusion, we have on the basis of the survey generated a first unbiased catalogue of very
high energyγ-ray sources in the central region of our Galaxy, extending our multi-wavelength
knowledge of the Milky Way into the VHE domain. Three of the eight newly discovered sources
are potentially associated with supernova remnants, two with EGRET sources. In three cases an
association with pulsar-powered nebulae is not excluded. At least two sources have no identified
counterpart in radio or X-rays, which suggests the exciting possibility of a new class of ‘dark’
nucleonic particle accelerators. This catalogue provides insights into particle acceleration in
our Galaxy and adds a piece to the long-standing puzzle of cosmic-ray origin.
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Figure 1: Significance map of the H.E.S.S. 2004 Galactic plane scan. Reobservations of candidates from the
initial scan are included here. The background level was estimated using a ring around the test source position (12).
On-source counts are summed over a circle of radiusθ, whereθ = 0.14◦, a cut appropriate for point-like sources.
To calculate the significances, it is necessary to correct for the relative acceptance and area of the on and off regions.
The correction is given by a run-wise radially symmetric acceptance function, which describes the background at
the 1% level. Events falling up to 2◦ from the pointing direction of the system are used. At this angle theγ-ray
acceptance efficiency has decreased to 20% of its peak value. After acceptance correction the approach of Li and
Ma (30) is used to calculate the significance at every point on the map. We note that consistent results are obtained
for these 8 sources using a completely independent calibration and analysis chain (31).

9



Figure 2:Latitude distribution of the eight new VHEγ-ray sources (and two known sources in the scan region),
along with the average sensitivity of the H.E.S.S. Galactic plane scan (for a 5σ detection, expressed as a percentage
of the flux from the Crab Nebula). The distribution of Galactic SNRs and of energetic pulsars (including only
pulsars with spin-down luminositẏE more than1034 erg/s.) are shown for comparison (for both distributions only
objects within the longitude range of the HESS survey (-30◦<l<30◦ ) were selected).
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Figure 3:Smoothed excess maps in units of counts of the regions around each of the eight new sources in Galactic
coordinates (in degrees). An image size cut (> 200 photoelectrons) has been applied to reduce the background
level and improve the angular resolution. A Gaussian of rms 0.05◦ is used for smoothing to reduce the impact of
statistical fluctuations. The best-fit centroids for theγ-ray emission are shown as crosses, and the best-fit rms size
as a black circle. Possible counterparts are marked by white triangles, with circles indicating the nominal source
radius (or the position error in the case of EGRET sources). The lower right panel indicates the simulated point
spread function of the instrument for these data, smoothed in the same way as the other panels.
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