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1 Introduction

This document describes in more details the algorithms and the physical con-
strains that are used in the GRB modelling code used in the H.E.S.S. paper on
GRB190729A [H.E.S.S. Collaboration(2020)]. The details about the physics of
GRB afterglows can be checked there and in the references contained.

The code was developed by CR together with the team while working on
GRB190729A, however we made it a general purpose code that could be easily
used to analyse multiwavelength data of any other GRB afterglows.

The modelling of the multiwavelength emission of GRBs is done using the
NAIMA software (using version 0.8.3) [Zabalza(2015), and references therein]
and uses this framework to fit multiwavelength GRB data using a Markov-Chain
Monte Carlo (MCMC) method.

What the present module does is to create an interface between the radiation
processes already coded in NAIMA and the physical parameters that would be
needed to explain the multiwavelength emission of a GRB in a simple 1-zone
Synchrotron-Self-Compton (SSC) scenario.

2 The physical parameters

Here we highlight basic expressions for GRB afterglows and the physical pa-
rameters used in the code to explain their emission. The focus of this section is
simply to describe and explain the assumptions that are made.

2.1 Theoretical framework

2.1.1 The Lorentz factor of the shock

(I thank D. Khangulyan for explaining this part so clearly)
We start with some relations coming from the physics of the environment.

The most important step is to compute the Lorentz factor of the forward shock.
For this purpose we use the Blandford-McKee relation [Blandford, & McKee(1976)]:

Γ2 =
Eiso
Mc2

(1)

where M is the mass of the material swept by the shock and Eiso is the isotropic
energy of the GRB.

We have 2 possible scenarios: a constant density of the interstellar medium
around the progenitor or a density profile resulted by a stellar wind and hence
depends as r−2 with r being the distance from the central source.

Relativistic calculations give then that in the radius of the shock front is

R ' Γ2(R)c∆t

{
8 for ISM
4 for wind ,

(2)
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with ∆t being the time since the explosion in the observer’s frame. Then:

Γ2 =
3Eiso

4πR3nc2
(3)

At this point we have 2 possibilities depending if we have ISM or Wind scenario.
ISM scenario
In the ISM scenario the density is constant, so with a volume V = 4

3πR
3,

the swept mass is M = nmpV with n the number density of the particles and
mp is the proton mass.

If now we substitute 2 in 3, then we obtain:

Γ =

(
1

8

)3/8(
3Eiso

4πnmpc2(c∆t)3

)1/8

(4)

Wind scenario
In this case, we have to first assume that the progenitor star has a mass loss

rate ṁ and a wind speed v. With these quantities, the number density of the
material at distance r is

n(r) =
ṁ

4πvr2mp
(5)

then when we substitute in equation 3, we have

Γ2 = 3Eiso

4πc2(4Γ2c∆t)3n (6)

= 3Eiso

4πc2(4Γ2c∆t)3
4πvR2

ṁ (7)

where we used equation 5. After simplifications we end up with

Γ =

(
3Eisov

4c3∆tṁ

)1/4

(8)

2.1.2 The number density of the target photon field

For the way NAIMA is constructed, to compute the SSC component of the
spectrum, we need to calculate the number of synchrotron photons produced in
the emission zone.

This is done using the simple approximation:

nph '
(d2N/dEdt)syn

4πR2c
(9)

where d2N/dEdt is the number of photons emitted per second per energy com-
puted in NAIMA (it has units of [ph/s/eV]). With respect to the expressions in
the NAIMA documentation1, we drop the numerical factor 2.24 in the compu-
tation of the number density because we are assuming that the emission comes
from a thin shell and not from a full spherical region2.

1https://naima.readthedocs.io/en/latest/radiative.html
2The proper calculation on a shell might lead to a factor few difference in the photon

density.
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2.1.3 The electron distribution

NAIMA does not perform time evolution, so the electrons injected have a bro-
ken power law distribution with an exponential cut-off at high energy. The
expression, as taken from the NAIMA documentation, is the following:

f(E) = exp

(
− E

Ec

){
A(E/E0)−α1 : E < Eb
A(Eb/E0)α2−α1(E/E0)−α2 : E > Eb

(10)

where Ec is the cutoff energy, E0 is the reference energy (set to 1 TeV), Eb the
break energy and α1 and α2 the indices for the power law above and below the
break energy and A is the normalization. All these quantities are in the shock
frame.

Before just plugging in the function in the model, there are some other
physical constraints that need to be considered.

2.2 Calculation of the minimum injection energy

The minimum injection energy is a parameter that cannot be fixed a-priori, but
depends on the fraction of energy that goes into the particles with respect to
the total available energy at the shock. This parameter is usually called ηe (the
equivalent parameter that describes the amount of energy going into magnetic
field is called ηB).

Using this parameter, the minimum injection energy can be computed fol-
lowing the relations written below:

∞∫
Emin

AE−pinj+1dE = AE
2−pinj

min /(pinj − 2) = ηeĖ (11)

∞∫
Emin

AE−pinjdE = AE
1−pinj

min /(pinj − 1) = Ṅ (12)

If the above equations are solved analytically (under the obvious assumptions
that pinj > 2 and Emin � Emax) the ratio gives:

Emin
pinj − 1

pinj − 2
= ηeEtot/Ntot = ηeΓmpc

2 (13)

To avoid problems in the MCMC and make the calculations stable, the ratios are
computed numerically and the minimum energy is computed with an iterative
procedure. From the equations above, it follows that:

∞∫
Emin

AE−pinj+1dE

∞∫
Emin

AE−pinjdE

= ηeΓmpc
2 (14)
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Using the full electron distribution in the integrals, we first set the minimum
energy to 1 GeV (as it is close to the rest mass energy of a proton) and then
we compute how much the ratio between the first and the second term of the
equation (calling it K) is away from 1. After this, we shift down the value of
Emin by K. One iteration is enough to obtain a value K ∼ 1 for a reasonable
range of indices (most of the times within a factor 2 or less). Introducing
additional iterations would make the value more precise, but slow down too
much the fitting (this operation has too be done for every step of the MCMC).

2.3 Calculation of the normalization of the electron dis-
tribution

As we use ηe as free parameter, we need to associate it with the actual normal-
ization of the electron distribution because this is the parameter that in the end
NAIMA uses to build the electron distribution.

It starts with the internal energy density of the shocked plasma, which is

w = 2Γ2n0mpc
2 (15)

At this point we compute the Emin of the distribution from the values of α1

and ηe, and we construct an electron distribution with unitary normalization.
We then compute the integral to get the total energy density for this electron

distribution:

T =
1

V

∫ Emax

Emin

E
dN

dE
dE (16)

where the assumed volume is that of a spherical shell V = 4πR2(R/(9Γ)). In
this case the width of the shell is D = R/(9Γ). The numerical factor comes
from assuming that we are in the ISM environment, while in the wind case the
width would be R/(3Γ).

From this follows that the normalization parameter of the electron distribu-
tion A is

A =
ηew

T
. (17)

Once found A, we can proceed with the rest of the modelling because we now
have all the ingredients that NAIMA needs to compute the emitted radiation.

2.4 Constrains from the age of the system

The age of the system is given by the Lorentz-corrected time from trigger:

∆t′ = (t− t0)Γ (18)

where the time has been corrected for the relativistic boost (primed quantities
are in the shock frame). This means that the cooling break should be in a
position in the spectrum for which the energy of the particles have the same
cooling time as the age of the system. For a generic GRB, using this relations

5



can give some constrains on the intensity of the magnetic field imposing that
the cooling time of the electrons at the break is at the same level of the age of
the system.

This constrain is implemented in the prior function and can be switched off
in the initialization (setting the cooling constrain option to False).

2.5 Calculation of the internal absorption

The code takes into account the gamma-gamma absorption that affects the
emitted high energy photons when they interact with the synchrotron photons
inside the source (internal absorption).

To take this effect into account, we need the number density of the target
radiation field and the cross section of the absorption process.

The number density of the target radiation field nph is actually already
computed by NAIMA when we ask for the SSC component. The cross section
for the process is the analytical approximation coded in [Aharonian(2004)]. In
this way we can compute the optical depth parameter τ . Assuming that the
size of the region in which absorption and emission happens is R/(9Γ) for the
ISM case and R/(3Γ) for the Wind case.

In the code there are 2 different implementations for the absorption. The
default one takes into account that in the same region we have both emission
and absorption. In this case we have that:

F =
F ′

τ
(1− exp(−τ)) (19)

where with F ′ we indicate the intrinsic flux and with F the observed one
[Rybicki & Lightman(1979)]. In the code there is also the simple implemen-
tation F = F ′ exp(−τ).

2.6 Physical parameters fitted to the data

The final implementation puts together the inputs from the previous subsections
to build the model using NAIMA.

In the basic implementation, there are 5 parameters that are set free to vary:

• ηe: the fraction of energy available as non-thermal electrons

• Ebreak: energy of the break in the electron distribution

• α2: the power law index above the break in the electron distribution

• Ecut: cut-off energy of the electron distribution

• B: the intensity of the magnetic field

With the exception of α2, all parameters are fitted in logarithmic space (base
10). The low energy index α1 is not a free parameter because we are using the
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assumption that the break in the electron distribution is a synchrotron cooling
break so that α1 = α2 − 1. This is a plausible assumption.

The limits in which these parameters can vary are defined in the prior func-
tion. Thanks to the module structure, it is possible to add different model
functions and different priors that are called in the implementation. As an ex-
ample, the released code includes a different prior function in which the cut-off
of the electron distribution is not limited by the equilibrium between accelera-
tion and synchrotron cooling. The use of this prior can be initialized through
the flag synch nolimit set to True.

3 Easy extensions

The module is written in such a way that it is possible to simply add more
models and more priors and ensure they are called correctly by modifying the
load model and prior function.

4 Full code documentation

For practical use, the code has been documented using the numpy style and it
can be found here:

https://bitbucket.org/hess/grbmodelling/src/master/

This link is accessible by H.E.S.S. members using the instruction at this
internal page. This repository contains all the models explored when writing
the article on GRB190829A [H.E.S.S. Collaboration(2020)]. Every attribute
and method of the code has been nicely commented in the source code and the
example on how to run the code can be seen in the README file in the repository.

A public version of the software is available on my personal github account:
https://github.com/Carlor87

This version includes only a subset of the available models used for HESS.

5 Proof of concept: GRB190114C

Here we report the results that can be obtained using the data on the GRB
GRB190114C observed by the MAGIC telescope [MAGIC Coll. (2019)]. The
data are extracted from Figure 2 of the paper [MAGIC Coll. (2019)] for the
interval 1 (68 to 110 seconds after trigger) and we ran our code on those points.
The outcome is shown below in Figure 1.

The value of the magnetic field corresponds to ηB = 0.007.
These values were obtained using 64 parallel walkers, 50 steps of burn-in and

100 steps for the MCMC.
The plots below show also the behaviour of the MCMC chains for every

parameter (Figure 2) and the correlation plot between them (Figure 3). Of
course a greater number of walkers and more steps for the burn-in phase and
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Figure 1: MCMC fit on the data from the GRB 190114C in the time interval [68-
110] seconds after trigger as reported in [MAGIC Coll. (2019)]. The shaded blue
area indicates teh 1σ confidence interval derived from the posterior distribution
of the model parameters. the “method 1” in the IC absorption line refers to
the computation of internal absorption using the simple model that does not
account for emission and absorption in the same region.
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Parameter Night 1
log10(ηe) −1.44± 0.03
log10(Eb) [TeV] −1.65+0.3

−0.19

α2 3.14+0.4
−0.11

log10(Ec) [TeV] 1.3± 0.2
log10(B) [G] 0.27+0.05

−0.04

ηe 0.036
ηB 0.007

Table 1: Final parameters values for the interval 1 of GRB190114C as in Fig-
ure 1.
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Figure 2: Posterior distributions of the parameters from the fit reported in
Figure 1 and Table 1

for the actual chain could converge to a better result. This is however a good
proof of concept.

The README file shows how to run this example.
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