Open Questions in GRB Physics

(Bing Zhang, University of Nevada Las Vegas) (Zhang 2011, Comptes Rendus Physique, 12, 206-225; arXiv:1104.0932)

Jul. 10, 2012 Gamma 2012, Heidelberg, July 9-13, 2012

Gamma-ray bursts: the most luminous explosions in the universe

The GRB field

- An active, exciting field
- Due to their elusive nature, it is very difficult to observe GRBs in all the temporal and spectral regimes
- the mystery of GRBs is gradually unveiled when new temporal or spectral windows are opened
- GRBs may be also strong emitters of nonelectromagnetic signals (e.g. high energy neutrinos, gravitational waves)
- A sketch of physical picture is available, but many details remain vague – many open questions

Physical Picture: A Sketch

Increasingly difficult to diagnose with electromagnetic signals

Open Questions in GRB Physics

- Progenitors & classification (massive stars vs. compact stars; others? how many physically distinct types?)
- Central engine (black hole, magnetar?)
- Ejecta composition (baryonic, leptonic, magnetic?)
- Energy dissipation mechanism (shock vs. magnetic reconnection)
- Particle acceleration & radiation mechanisms (synchrotron, inverse Compton, quasi-thermal)
- Afterglow physics (medium interaction vs. long-term engine activity)

Open Question 1: Origin of Afterglow

Physical Picture: A Sketch

Standard afterglow model

Synchrotron emission from external forward shock: Meszaros & Rees (1997); Sari et al. (1998)

Afterglow Closure Relations

	β	$\alpha~(p>2,~p\sim2.3)$	lpha(eta)	$\alpha~(1$	lpha(eta)
ISM, slow coo	ling				
$\nu < \nu_a$	2	$\frac{1}{2}$		$\frac{17p-26}{16(p-1)} \sim -0.06$	
$\nu_a < \nu < \nu_m$	$\frac{1}{3}$	$\frac{1}{2}$	$\alpha = \frac{3\beta}{2}$	$\frac{p+2}{8(p-1)} \sim 0.9$	
$\nu_m < \nu < \nu_c$	$-\frac{p-1}{2}$	$\frac{3(1-p)}{4} \sim -1.0$	$\alpha = \frac{3\beta}{2}$	$-\frac{3(p+2)}{16} \sim -0.7$	$\alpha = \frac{3(2\beta - 3)}{16}$
$\nu > \nu_c$	$-\frac{p}{2}$	$\frac{2-3p}{4} \sim -1.2$	$\alpha = \tfrac{3\beta + 1}{2}$	$-\frac{3p+10}{16} \sim -0.9$	$\alpha = \frac{3\beta - 5}{8}$
ISM, fast cool	ing				
$\nu < \nu_a$	2	1	в	1	в
$ u_a < \nu < \nu_c $	3	6	$\alpha = \frac{\mu}{2}$	6	$\alpha = \frac{\mu}{2}$
$\nu_c < \nu < \nu_m$	$-\frac{1}{2}$	$-\frac{1}{4}$	$\alpha = \frac{\beta}{2}$	$-\frac{1}{4}$	$\alpha = \frac{\beta}{2}$
$\nu > \nu_m$	$-\frac{p}{2}$	$\frac{2-3p}{4} \sim -1.2$	$\alpha = \tfrac{3\beta + 1}{2}$	$-\frac{3p+10}{16} \sim -0.9$	$\alpha = \frac{3\beta - 5}{8}$
Wind, slow co	oling				
$\nu < \nu_a$	2	1		$\frac{13p-18}{8(p-1)} \sim 0.4$	
$\nu_a < \nu < \nu_m$	$\frac{1}{3}$	0	$\alpha = \frac{3\beta - 1}{2}$	$\frac{5(2-p)}{12(p-1)} \sim 0.4$	
$\nu_m < \nu < \nu_c$	$-\frac{p-1}{2}$	$\frac{1-3p}{4} \sim -1.5$	$\alpha = \frac{3\beta - 1}{2}$	$-\frac{p+8}{8} \sim -1.2$	$\alpha = \frac{2\beta - 9}{8}$
$\nu > \nu_c$	$-\frac{p}{2}$	$\frac{2-3p}{4} \sim -1.2$	$\alpha = \frac{3\beta + 1}{2}$	$-\frac{p+6}{8} \sim -0.9$	$\alpha = \frac{\beta - 3}{4}$
Wind, fast coo	oling				
$\nu < \nu_a$	2	2		2	
$\nu_a < \nu < \nu_c$	$\frac{1}{3}$	$-\frac{2}{3}$	$\alpha = -\frac{\beta+1}{2}$	$-\frac{2}{3}$	$\alpha = -\frac{\beta+1}{2}$
$\nu_c < \nu < \nu_m$	$-\frac{1}{2}$	$-\frac{1}{4}$	$\alpha = -\frac{\beta+1}{2}$	$-\frac{1}{4}$	$\alpha = -\frac{\beta+1}{2}$
$\nu > \nu_m$	$-\frac{p}{2}$	$\frac{2-3p}{4} \sim -1.2$	$\alpha = \tfrac{3\beta + 1}{2}$	$-\frac{p+6}{8} \sim -0.9$	$\alpha = \frac{\beta - 3}{4}$
Jet, slow cooli	ng				
$\nu < \nu_a$	2	0		$\frac{3(p-2)}{4(p-1)} \sim -0.8$	
$\nu_a < \nu < \nu_m$	$\frac{1}{3}$	$-\frac{1}{3}$	$\alpha=2\beta-1$	$\frac{8-5p}{6(p-1)} \sim 0.2$	
$\nu_m < \nu < \nu_c$	$-\frac{p-1}{2}$	$-p \sim -2.3$	$\alpha=2\beta-1$	$-\frac{p+6}{4} \sim -1.9$	$\alpha = \frac{2\beta - 7}{4}$
$\nu > \nu_c$	$-\frac{p}{2}$	$-p \sim -2.3$	$\alpha=2\beta$	$-\frac{p+6}{4} \sim -1.9$	$\alpha = \frac{\beta - 3}{2}$

Well-predicted temporal decay indices and spectral indices

Sari, Piran & Narayan (1998) Chevalier & Li (2000) Dai & Cheng (2001)

Zhang & Meszaros (2004)

Pre-Swift: Confronting data with theory

Stanek et al. 99

Swift surprise

Gehrels et al. (2004)

Nousek et al. (2006), O'Brien et al. (2006)

Swift surprise

A Five-Component Canonical X-Ray Afterglow

Canonical lightcurves: Internal or external?

(Zhang et al. 2006; Nousek et al. 2006)

Puzzling fact: Chromatic breaks

Current afterglow picture

- The so-called "afterglow" is a superposition of the traditional external shock afterglow and internal dissipation of a long-lasting wind launched by a gradually dying central engine.
- The GRB cartoon picture no longer just describes a time sequence, but delineates an instantaneous spatial picture as well.
- Observed emission comes from multiple emission sites!

Physical Picture: A Sketch

Open Questions 2, 3 & 4: Origin of Prompt Emission:

Jet Composition (matter vs. magnetic) Energy dissipation (shock vs. reconnection) Radiation Mechanisms (thermal, synchrotron, inverse Compton)

centralphotosphereinternalexternal shocksengine(reverse)(forward)

What is the jet composition (baryonic vs. Poynting flux)?Where is (are) the dissipation radius (radii)?How is the radiation generated (synchrotron, Compton scattering, thermal)?

Fireball shock model

(Paczynski, Meszaros, Rees, Piran ...)

Fireball Predictions: Internal shock vs. photosphere

1276 F. Daigne and R. Mochkovitch

Daigne & Mochkovitch (02)

Fermi Satellite: Broad-Band High Energy Observatory

10⁵

 10^{8}

 10^{10}

?

Fermi surprise: GRB 080916C

Fermi Surprise: Photosphere component missing

Sigma: ratio between Poynting flux and baryonic flux:

 $\sigma = L_p/L_b$: at least ~ 20, 15 for GRB 080916C

The simplest fireball model does not work!

Theorists' view cannot be more diverse since the establishment of cosmological origin of GRBs!

Three distinct views:

The observed component is:

- The internal shock component
- The photosphere component
- Neither (Poynting flux dissipation component)

GRB prompt emission is from internal shocks Photosphere emission suppressed

(reverse) (forward)

Internal shock model

- Pros:
 - Naturally expected
 - Variability reflects engine activity, supported by the data
- Cons:
 - Bright photosphere, require a magnetized central engine and fast magnetic acceleration
 - Low efficiency
 - Only a fraction of electrons accelerated
 - Fast cooling problem
 - Ep Eiso (Liso) correlation inconsistency

Work: Daigne, Mochkovitch, Hacoet ...

engine

external shocks (reverse) (forward)

GRB prompt emission: from photosphere Internal shock emission suppressed

Photosphere model

- Pros:
 - Naturally expected in a hot fireball
 - Roughly right Ep, narrow Ep distribution
 - Roughly right empirical correlations
- Cons:
 - Low energy spectrum too hard (cf. Pe'er's talk)
 - Inconsistent with the 3 independent constraints (X-ray, optical, GeV) of large GRB emission radius

Work: Pe'er, Ryde, Ioka, Beloborodov, Giannios, Lazzati, Toma, Ruffini ...

Distance Scales in the ICMART Model

(Internal Collision-induced MAgnetic Reconnection & Turbulence)

Zhang & Yan (2011)

Earlier work: Lyutikoc & Blandford; Narayan & Kumar; Lazarian & Vishniac ...

ICMART Model

Zhang & Yan (2011)

(a) Initial collisions only distort magnetic fields

(b) Finally a collision triggers fast turbulent reconnection - An ICMART event (a broad pulse in GRB lightcurve)

See also Spitkovsky's talk

ICMART Lightcurves

Bo Zhang & BZ

See also Lyutikov's talk

Slow (central engine) vs. fast (turbulent reconnection) components

ICMART model

- Pros:
 - Overcome difficulties of the internal shock and photosphere models
 - Inherited strengths of the known models
- Cons:
 - Invoking more complicated physics in the Poynting flux dominated regime (turbulence development, reconnection in high-sigma flow, particle acceleration in reconnection ...).
 Investigations underway.

Less (but still) a surprise: GRB 090902B

(Abdo et al. 2009; Ryde et al. 2010; Zhang et al. 2011; Pe'er et al. 2012)

A clear photosphere emission component identified

Very special & rare event!

Something in between: GRB 110721A

(Fermi team: in preparation)

McGlynn et al. in prep.

Mixed thermal & non-thermal components

As expected, more common

Big Picture: GRB jet composition

- GRB jets have diverse compositions:
 - Photosphere dominated (GRB 090902B), rare
 - Intermediate bursts (weak but not fully suppressed photosphere, GRB 100724B)
 - Photosphere suppressed,
 Poynting flux dominated
 (GRB 080916C)

Energy (keV)

GRB 090902B

GRB 100724B

GRB 080916C

Non-detection of neutrinos by Icecube

- Icecube did not detected GRB neutrinos predicted by the most optimistic internal shock model
- The more conservative internal shock models may be still accommodated by the data
- If most GRBs are magnetically dominated and dissipate energy at large radii (e.g. ICMART model), the predicted neutrino flux level is much lower

Polarization data

- Four *bright* GRBs with polarization detections in gamma-rays: GRB 100826A: 27%±11% (Yonetoku et al. 2011)
- Early optical emission has "residual" ~10% polarization from reverse shock (Steele et al. 2009; Uehara et al. 2012)
- Consistent with dissipation of large scale magnetic field

Open Questions 5:

Central Engine: Black holes vs. magnetars?

Physical Picture: A Sketch

GRB central engine requirements

- Energetic and luminous (E_{iso} ~10⁵⁰-10⁵⁵ erg, L_{iso} ~10⁴⁹-10⁵³ erg/s)
- Clean relativistic ejecta ($\Gamma > \sim 100$)
- Rapid variability, diverse temporal behavior
- Intermittent, delayed activity with reducing amplitudes
- A Poynting flux dominated ejecta
- A possible long-lasting steady component in some GRBs (due to spindown?)

Hyper-Accreting Black Holes

Hyper-Accreting Black. Hole

Magnetically tapping BH spin energy (Blandford-Znajek)

Millisecond Magnetar Central Engine

Black Hole or Magnetar?

- BH-torus:
 - More possible for massive progenitors
 - Easy to produce prompt erratic behavior, less easier for very late flares
 - Not easy to produce smooth components
- Magnetars:
 - May need a special channel (event rate too high, progenitor cannot be too massive)
 - Easier to make late flares
 - Maximum energy budget
- Smoking gun? No
- Clues? Maybe
 - Plateaus with sharp drops: magnetars
 - Proto black holes?
- A bet: a mix: most BHs, some magnetars

Open Questions 6 & 7:

Progenitors & Classification

Physical Picture: A Sketch

Observation: Long-soft vs. Short-hard

Kouveliotou et al. 1993

Two Progenitor Models

NS-NS Merger (Eichler et al. 89; Narayan et al. 92 ...)

Massive Star Core Collapse (Woosley 93; Paczynsky 98 ...)

More observations: Massive star GRBs

- Long duration
- A handful secure GRB/SN associations (spectroscopically identified SNe)
- Star formation host galaxies
- Bursts located in active star formation regions.
- Possible scenarios:

. . .

- Single star core collapse
- Binary: merger-induced events
- Binary: supernova-induced events

More observations: Compact Star GRBs

- Most are short
- In different types of host galaxies, including a few in elliptical/early-type galaxies, but most in star-forming galaxies
- Large offsets, in regions of low star formation rate in the host galaxy. Some are outside the galaxy.
- Possible scenarios:
 - NS NS mergers
 - NS BH mergers
 - Accretion induced NS collapses
 - Magnetar giant flares

- ...

Magnetar Giant Flares

LIGO team

Oddball: GRB 060614 A nearby long GRB without SN

Odd ball: GRB 090426 A short GRB likely of a massive star origin

 $T_{90} = 1.28 \pm 0.09 \ s$ $T_{90}(rest) \sim 0.35 \ s$

Levesque et al. 2010 Antonelli et al. 2009 Thöne et al. 2011 Xin et al. 2011

Tip of iceberg? Lü et al. 2012

Oddball:

"GRB 110328A"=Swift 1644+57

Burrows et al.; Bloom et al.; Levan et al.; Zauderer et al.

- Triggered BAT multiple times
- Extended X-ray afterglow without significant decay
- Stringent historical X-ray flux upper limits
- z=0.354, source in the center of galaxy
- Minimum variability ~ 100 s: ~ 10⁶ M_☉ black hole
- Tidal disruption of a star by a spinning black hole

GRB 101225A="Christmas burst"

- Super-long GRB
- No SN, no host, no redshift
- Weird afterglow behavior
- Low Galactic latitude (~17°)
- Close to Andromeda and Local Group

Two scenarios:

- Cosmological Model: Helium star – neutron star merger (Thone et al. 2011)
- Local Model: NS/comet collision (Campana et al. 2011)

GRBs vs. Striped animals

An alien with a narrow field-of-view discovered a specie on earth and named them as "Striped Animals"

Striped animals

Gamma-Ray Bursts in the "Gamma-Ray" band

GRB 090902B Abdo et al. 2009

GRB 090510 Ackermann et al. 2010

105 107

Energy (keV)

GRB 090926A Ackermann et al. 2011

Or:

Not favorable for high energy

Prompt Spectral Components

Zhang et al. (2011)

Gamma-Ray Bursts in the "Gamma-Ray" band

Predictions: with favorable parameters, GRB afterglow can be detected up to TeV

Zhang & Meszaros (2001)

Wang et al. (2001)

Future: Multi-messenger Era

