The Galactic distribution of SNRs

Dave Green

Cavendish Laboratory

University of Cambridge, U.K.

Outline

- a catalogue of 274 Galactic SNRs
- selection effects
- the Σ -D relation
- the Galactic SNR distribution
- conclusions

A Catalogue of Galactic SNRs

Since 1984 I have produced several catalogues of Galactic SNRs, see http://www.mrao.cam.ac.uk/surveys/snrs/

- latest version 2009 March contains 274 remnants (the first version, 1984, contained 145 remnants)
 Green 2009, Bulletin of the Astronomical Society of India, 37, 45
- contains:
 - basic parameters
 - (Galactic and equatorial coordinates, size, type, radio flux density at 1 GHz, radio spectral index, other names)
 - short descriptions of the observed structure in the radio, X-ray and optical
 - other notes (distances, pulsars or point sources nearby, etc)
 - references (with ADS links)
- it also includes lists of possible or probable SNRs reported in the literature

An example webpage from the SNR catalogue

Selection effects

The dominant selection effects are those that are applicable at radio wavelengths:

- 1) faint remnants are difficult to recognise against the varying Galactic background
 - most fainter SNRs are in regions with low Galactic background i.e. in the 2nd and 3rd quadrants at large Galactocentric radii (or away from $b = 0^{\circ}$)
- 2) small angular size remnants are not resolved in wide-field surveys, so are not recognised
 - so young but distant SNRs are missing from present catalogues
 - these missing SNRs are likely to be close to $b = 0^{\circ}$ and to $l = 0^{\circ}$, in complex regions of the Galactic plane, where confusion is a problem

Note: both selection effects apply more strongly nearer to $l = 0^{\circ}$

 Σ for all SNRs

 Σ for recently identified SNRs

- surface brightnesses completeness limit of $\approx 10^{-20}$ W m⁻² Hz⁻¹ sr⁻¹ (at 1 GHz) is suggested
- 69 SNRs brighter than this limit

Galactic distribution of (top) all Galactic SNR and (bottom) those SNRs with a surface brightness at 1 GHz greater than 10^{-20} W m⁻² Hz⁻¹ sr⁻¹ (the latitude and longitude axes are not to scale)

The angular size (θ) selection effect

Angular sizes of known Galactic SNRs (some larger remnants are omitted).

Surface brightness at 1 GHz against angular size for known Galactic SNRs of angular size ≤ 8 arcmin (the five historical remnants are indicated by additional crosses)

The Σ -D **relation: the ideal (1)**

Since distance are not available for most Galactic SNRs, many statistical studies of have relied on the ' Σ -D' relation

- for remnants with known distances, d, and hence known diameters $(D = \theta d)$, physically large SNRs are seen to be lower surface brightnesses (Σ) than small remnants
- this correlation can be modelled as

 $\Sigma \propto D^{-n}$

note that Σ is *distant independent*

The Σ -D relation: the ideal (2)

- a physical diameter can be deduced from the *observed* surface brightness of any remnant using the Σ–D correlation
- then a distance to the remnant can be deduced using its observed angular size

An idealised Σ –D relation for Galactic SNRs

Some reality (1): the observed $\Sigma - D$ relation

But, the observed ' $\Sigma - D$ ' relation shows a wide range of diameters for a given surface brightness

- for a particular surface brightness the diameters of SNRs vary by up to about an order of magnitude
- given the observational selection effects, this range may be even larger

Diameter / pc

The Σ -D relation for 47 Galactic SNRs with known distances

Some reality (2): which regression?

- least-squares regression by minimising the Σ differences, and by minimising the D differences, are *not* the same
- to predict D from Σ, then a least squares fit minimising deviations in D not in Σ should be used

e.g. Case & Bhattacharya (1998, ApJ, 504, 761) derived a relationship with $n = 2.65 \pm 0.30$ for Galactic SNRs by minimising deviations in Σ , which *overestimates* the diameters (and distances) of fainter remnants)

The Σ -D relation for 47 Galactic SNRs with known distances

Some reality (2): which regression?

- least-squares regression by minimising the Σ differences, and by minimising the D differences, are *not* the same
- to predict D from Σ, then a least squares fit minimising deviations in D not in Σ should be used

e.g. Case & Bhattacharya (1998, ApJ, 504, 761) derived a relationship with $n = 2.65 \pm 0.30$ for Galactic SNRs by minimising deviations in Σ , which *overestimates* the diameters (and distances) of fainter remnants)

The Σ -D relation for 47 Galactic SNRs with known distances

Observed longitude distribution

Observed and Model longitude distribution

Observed and Model longitude distribution

Observed l-distribution of 69 'bright' Galactic SNRs, plus projection of Case & Bhattacharya distribution with surface density

$$\propto \left(\frac{R}{R_{\odot}}\right)^{2.0} \exp\left[-3.6\frac{(R-R_{\odot})}{R_{\odot}}\right].$$

Observed and Model longitude distribution

Observed l-distribution of 69 'bright' Galactic SNRs, plus projection of a distribution with surface density

$$\propto \left(\frac{R}{R_{\odot}}\right)^{0.8} \exp\left[-3.5\frac{(R-R_{\odot})}{R_{\odot}}\right].$$

Galactocentric radial distribution

Galactocentric radial distribution for: solid black line: best-fit power-law/exponential dotted blue line: Case & Bhattacharya power-law/exponential.

Conclusions

- selection effects are important for statistical studies of SNRs;
- SNRs show a large range of properties, so the ΣD relation is unreliable for individual remnants;
- power-law/exponential distribution of bright remnants implies a more compact distribution than found by Case & Bhattacharya (1998),
 - but not a unique inversion to a radial distribution.

But:

- remaining selection effects mean this apparent distribution is likely to be too broad
- may not be the true distribution, depending on the observability of SNRs (e.g. brightness/visible lifetime changing with ISM density etc.)

The End!

The distribution of surface brightness against longitude for 258 Galactic SNRs

The distribution of surface brightness against latitude for 253 Galactic SNRs (the surface brightnesses of the other 5 remnants with $|b| > 7^{\circ}$ are indicated by arrows at the left and right edges of the plot)

The distribution of luminosity against diameter for SNRs with known distances.

- surface-brightness is plotted, as it is a distance-independent *observable* for all SNRs
- instead consider the radio luminosity of the remnants (*L*). Since

$$\Sigma \propto \frac{S}{\theta^2}$$
 and $L \propto Sd^2$

then

$$\Sigma \propto \frac{L}{(\theta d)^2}$$
 or $\Sigma \propto \frac{L}{D^2}$.

i.e. much of the correlation in the $\Sigma-D$ is inevitable, given this D^{-2} bias.