5° Internation Symposium on High-Energy Gamma-Ray Astronomy Heidelberg, 9-13 July 2012

AGILE AND SNRs W44 & W28

Martina Cardillo on behalf of the AGILE team

Università di Roma Tor Vergata & INAF-IAPS mcardillo@roma2.infn.it

INDEX SNR/CR main issues: Low Energy cut-off High energy spectral steepening Comparing W44 & W28: Morphology Models

SNRs

SNR (l,b)	distance	AGILE	Fermi-LAT	age[yrs]	MC detect.	${ m TeV}$
CAS A (111.7,-2.1)	3.4 kpc	no	yes	~ 300	yes	Veritas, MAGIC
Tycho $(120.1,+1.4)$	>3.3kpc	no	yes	~ 440	yes	Veritas
SN 1006 (327.6,+14.6)	2.2	no	no	$\sim 1,000$	-	HESS
RXJ1713 (347.3,-0.5)	$1-2 \rm \ kpc$	no	yes	$\sim 1,600$	yes	HESS
W49B (G43.3-0.2)	8-10kpc	no (we see it)	yes	1,000-4,000	no (W49a yes)	HESS
$\gamma\text{-}\mathbf{Cygni}\ (78.2,\!+2.1)$	1.5 kpc	in prep.	no	\sim 7,000	yes(?)	Veritas
W44 (34.7,-0.4)	3.1 kpc	yes	yes	$\sim 20,000$	yes	HESS
W51 (49.2,-0.7)	$6 \ \rm kpc$	no (we see it)	yes	>20,000	yes	MAGIC, HESS
IC443 (189.1,+3)	1.5 kpc	yes	yes	20,000-30,000	yes	Veritas, MAGIC
W28 (6.71,-0.05)	1.8 - 3.3 kpc	yes	yes	35,000-45,000	yes	HESS

SNRs

In Abdo et al (2010) Bremsstrahlung is excluded as dominant contribution assuming $n \sim 10^2$ and $K_{ep} \sim 10^{-2} \rightarrow B \sim 70 \mu G$

Parameter combinations

Giuliani, Cardíllo, Tavaní et al .(2011)

The clearest low-energy decay excludes all possible leptonic contributions

Giuliani, Cardíllo, Tavaní et al .(2011)

SNRs: steepening problem \rightarrow young

SNRs: steepening problem \rightarrow young

-

SNRs: steepening problem → young Spectral Steepening

All young SNRs have an index steeper than 2: $\alpha \sim 2.3$

Neutrals leakage from downstream to upstream and lower compression ratio (Blasi et al., 2012; Ohira et al., 2012) ?

CasA problem

"A priori" models for young SNRs provide a hard photon spectrum from CR acceleration mechanisms → why does CasA seem to have a cut-off at high energies? Maybe did it evolve in its progenitor wind ? (Vink 2012)

SNRs: steepening problem \rightarrow old

SNRs: steepening problem \rightarrow old

SNRs: steepening problem \rightarrow old We can conclude that all the old SNRs known until now have a photon index in a range $2.6 < \alpha < 3$

Which are the mechanisms that make CR photon spectrum so steep? We need to consider SNR enviroinment, magnetic field, MHD and non-linear DSA processes. SNRs: steepening problem \rightarrow old We can conclude that all the old SNRs known until now have a photon index in a range $2.6 < \alpha < 3$

Which are the mechanisms that make CR photon spectrum so steep? We need to consider SNR enviroinment, magnetic field, MHD and non-linear DSA processes.

A comparison of all SNR multiwavelength emissions.

> Gamma Cygni (Piano et al. in preparation)

IC443 (Tavani et al., 2010) W44 (Giuliani, Cardillo, Tavani et al. 2011)

W28 (Giuliani et al., 2010)

0.23 0.31 0.37 0.43 0.47 0.52 0.56 0.59 0.63

W44 & W28

W28 Gíulianí et al. 2010

Galactic Plane

- **1.8-3.3 kpc**
- $3.5 imes 10^4$ yrs

Mixed morphology

- Spectral index for E>1 GeV $\rightarrow \alpha$ =2.7 - Linear DSA model

W44 Giulianí, Cardíllo, Tavaní et al .(2011)

Spectral index for E>1
GeV → α=3
Linear DSA fails

Galactic Plane
3.1 kpc
2 × 10⁴ yrs
Mixed morphology

W44 & W28: gamma-ray vs radio

W44: radio contours are embedded in gamma-ray emission
→ inner shell?
W28: correlation with radio emission is no evident

W44 & W28: gamma-ray vs CO

W44: MC complex (40-43 km/s) is in the SE part of the remnant W28: good correlation with CO emission (3-27 km/s), in anticorrelation with the TeV one

W44 & W28

Linear DSA $D(E) = D_0 \left(\frac{E}{E_0}\right)^{\delta}$

Diffusion \rightarrow shell or

cloud?

Non linear mechanisms

Alfvèn damping (ion/neutrals collisions) (Malkov et al. 2011 and therein)

Better understanding of SNR environiment differences:
 MC structure → density behaviour and clumpiness
 X-ray filaments → shock nature

Conclusions

Two main problems in CR/SNRs context: low-energy spectrum and spectral steepening

AGILE find that W44 has the clearest low-energy decay →

Gamma-ray satellites with a substantial improvement of AGILE and Fermi-LAT PSF and sensitivities at low-energies are the only way to have confirmation of CR acceleration by other SNRs (Gamma Ligth, G400)

• Challenges for all theoretical mechanisms:

importance of SNR enviroinment \rightarrow deeper multiwavelenth analysis

• W44 and W28:

Possibility for understanding mutual effects between linear and non linear mechanisms → extension to other SNRs, IC443, Gamma-Cygni and W51c

