Neutron background comparison - LN2 vs. LAr ### Daniel Kollár Max-Planck-Institut für Physik, München GERDA Collaboration Meeting, Tübingen, 9 – 11 November 2005 ## Summary previous talk - Using LCS for neutron transport simulation - Irradiating with primordial neutron spectrum - Looking at the neutrons in central sphere with R = 25 cm - Calculating the neutron produced ⁷⁷Ge activity in crystal area Now compare the LN₂ vs. LAr for PRIMORDIAL NEUTRONS ## Nitrogen vs. Argon from neutron's point of view ### **Neutron moderation:** - neutrons loose energy mostly in elastic collisions with nuclei - lower A means more energy lost per collision - fraction of kinetic energy loss per collision (non-relativistic) mean: $$\langle f \rangle = \frac{2A}{(1+A)^2}$$ maximum: $f_{max} = \frac{4A}{(1+A)^2}$ maximum: $$f_{max} = \frac{4A}{(1+A)^2}$$ $- N: \langle f \rangle = 12.4 \%$ Ar: < f > = 4.8 % ### **Neutron absorption:** - different cross sections for neutron absorption - N: σ_{abs} = 1.9 barn Ar: $\sigma_{abs} = 0.66$ barn Nitrogen thermalizes the neutrons faster and absorbs them better ### Simulated geometry ### **Spherical shells** | Radius [cm] | Material | |-------------|------------------------| | 800–500 | Air | | 500-490 | Stainless Steel | | 490–167 | Water | | 167–162 | Copper | | 162–152 | Vacuum | | 152–150 | Copper | | 150–0 | $LN_2 \rightarrow LAr$ | - Simulated neutron transport inside the setup using LCS - Calculated neutron spectrum inside the sphere in the center with R = 25 cm ## Geometry with the neck - cylindrical neck with: R = 40 cm filled with Ar gas - hight above tank: 80 cm - Lead cover: 15 cm thick # Primordial neutrons generated around neck entrance - + setup with neck half filled with LAr - + setup with PE shield around the neck entrance ### Neutron spectra in the crystal area No neutrons observed for scenario without the neck as all neutrons are shielded away by the water tank. ### **Liquid Nitrogen** ### **Liquid Argon** ## Comparison - neutron flux | | Total neutron flux [cm ⁻² y ⁻¹] [y ⁻¹] | | | | |------------------------|---|-------|-----------------|------| | | LN ₂ | LAr | LN ₂ | LAr | | no neck | 0 | 0 | 0 | 0 | | empty neck | 2.1 x 10 ⁻³ | 0.13 | 16 | 1000 | | half filled neck | 10 ⁻⁴ | 0.03 | 8.0 | 240 | | empty neck
25 cm PE | 0 | 0.001 | 0 | 10 | ## Comparison - 77Ge production rate | | <i>P</i> (⁷⁷ Ge)
[kg ⁻¹ y ⁻¹] | | | |------------------------|---|------------------------|--| | | LN2 | LAr | | | no neck | 0 | 0 | | | empty neck | 9 x 10 ⁻⁵ | 0.01 | | | half filled neck | 5.6 × 10 ⁻⁶ | 0.002 | | | empty neck
25 cm PE | 0 | 2.5 × 10 ⁻⁵ | | ### Summary - → Argon is performing much worse in shielding the neutrons than Nitrogen - → In LAr setup the ⁷⁷Ge production still below sensitivity 0.01 ⁷⁷Ge kg⁻¹ y⁻¹ ⇒ background rate ≈ 10⁻⁶ kg⁻¹ y⁻¹ keV⁻¹ ### **BUT!** - → only one reaction calculated - → no muon induced neutrons taken into account - → geometry setup too optimistic Q: How much worse this can get? **A:** We have to investigate... ### A few "neck" remarks - 1) neck is no problem for primordials and LN₂ - 2) situation worse for LAr - → still no problem, but much closer to the edge - → need to investigate - 3) most μ induced neutrons going downward - → high energy neutrons hit the thick Lead shield (or any high-Z-material above) and create huge neutron showers going down the neck towards the crystals - → these you cannot shield with PE around the neck - → has not yet been simulated