

Neutron background in the water tank scenario

Daniel Kollár

Max-Planck-Institut für Physik, München

GERDA Collaboration Meeting, Tübingen, 9 – 11 November 2005

Neutron background

⁷⁶Ge $0\nu\beta\beta$ signal window → 2039 ± 5 keV

- \rightarrow any β radioactive isotope with Q \geq 2039 keV is a potential source of background
- → many such isotopes can be produced by neutron activation of Ge isotopes in GERDA detectors while in operation

Aims: 1) identify the "dangerous isotopes"

- perform the simulations of neutron transport using LCS
 (MCNP) for simplified GERDA geometry (LN₂ + water)
- include neck into geometry
- 4) estimate the ⁷⁷Ge activity in crystals
- 5) do the same for LAr scenario → see my next talk ...

Dangerous isotopes

e.g. 76 Ge $(n,\gamma)^{77}$ Ge $(\beta^{-})^{77}$ As* (γ) $Q_{\beta} = 2702 \text{ keV}$ with $E_{\beta} + E_{\gamma} \ge 2039 \text{ keV}$

Nuclide	Reaction	Decay	Q-value	Half-life
			[keV]	
⁷⁷ Ge	$(n,\!\gamma)$	β-	2702	11.3 h
⁷⁶ Ga	(n,p)	eta^-	7010	32.6 s
⁷⁵ Ga	(n,pn)	eta^-	3392	126 s
⁷⁵ Z n	(n,2p)	eta^-	6000	10.2 s
⁷⁴ Ga	(n,p2n)	eta^-	5370	8.12 m
⁷⁴ Zn	(n,2pn)	eta^-	2340	96 s
⁷³ Zn	$(n,\!lpha)$	eta^-	4290	6.6 s
⁶⁹ Ge	(n,8n)	β^+ ,EC	2227	39.05 h
⁶⁸ Ga	(n,p8n)	β^+ ,EC	2921	9.49 h
•••	•••	•••	•••	***

Decay chains multiply the rate, e.g. $^{75}Zn(\beta^-)^{75}Ga(\beta^-)^{75}Ge$

Production reactions

A) Spallation reactions

- threshold reactions few MeV up to several tens of MeV
 - threshold higher when more particles
 produced, e.g. ⁷⁶Ge(n,8n)⁶⁸Ga
- typically no cross sections available, codes not reliable

B) Neutron capture reactions → ⁷⁷Ge

- no threshold reaction occurs at all energies
- cross sections below 20 MeV available

C) Inelastic scattering

- excitation of Ge nucleus to energy above 2039 keV
- neutron with energy equal to excitation energy (or higher) necessary

⁷⁷Ge excitation function

Neutron sources

Primordial: (α,n) + fission

- measured in Hall A
- low energies up to 10 MeV
- high fluxes
 - $\approx 5~x~10^3~neutrons~cm^{-2}~y^{-1}~total$

Muon induced:

- no measurements
- high energies up to few GeV
- low fluxes
 - $\approx 10^{-2} \ neutrons \ cm^{-2} \ y^{-1} \ total$

(Dementyev et al. 1999, Wulandari et al. 2994)

Simulated geometry

Spherical shells

Radius [cm]	Material
800–500	Air
500-490	Stainless Steel
490–167	Water
167–162	Copper
162–152	Vacuum
152–150	Copper
150–0	LN_2

- Simulated neutron transport inside the setup using LCS
- Calculated neutron spectrum inside the sphere in the center with R = 25 cm

Neutron fluxes in crystal area

Primordial incident neutrons:

- generated 10⁹ neutrons → corresponding to ≈ 2.5 years of irradiation
- no neutrons observed in crystal area
- not even in the surrounding nitrogen

Water shield stops all primordial neutrons

Muon induced incident neutrons:

- neutrons in crystal area for incident neutron energies > 40 MeV
- energetic incident neutrons produce large showers in outer stainless steel wall of the water tank

Neutron fluxes in crystal area (contd.)

Total flux:

5.2 x 10⁻⁴ cm⁻² y⁻¹

4 y⁻¹ in Ge area

⁷⁷Ge production rate:

$$P(^{77}Ge)=N(^{76}Ge)\int_{0}^{\infty}J(E)s(E)dE$$

 $P(^{77}Ge) = 1.2 \times 10^{-5} \text{ atoms kg}^{-1} \text{ y}^{-1}$

Geometry with neck - only primordials

- cylindrical neck with: R = 40 cm filled with N_2 gas
- hight above tank: 80 cm
- Lead cover: 15 cm thick

Primordial neutrons generated around the neck entrance

- + setup with neck half filled with LN₂
- + setup with PE shield around the neck entrance

Results for neck scenario

	Total neutron flux [cm ⁻² y ⁻¹] [y ⁻¹]		<i>P</i> (⁷⁷ Ge) [kg ⁻¹ y ⁻¹]
no neck	0	0	0
empty neck	2.1 x 10 ⁻³	16	9 x 10 ⁻⁵
half filled neck	10-4	0.8	5.6 x 10 ⁻⁷
empty neck 25 cm PE	0	0	0

Summary

- → Water shield can stop all primordial neutrons
- → ⁷⁷Ge production by muon induced neutrons in rock is well below the GERDA sensitivity
- → Neck irradiation with primordial neutrons doesn't look too bad

BUT!

→ differences to the real design:

water shield 50 cm thicker: reality WORSE → less moderation

outer stainless steel too thick: reality BETTER → smaller showers

copper walls too thick: reality WORSE → less absorption

Simulation setup is too optimistic

- originally only meant for LCS - MaGe cross-check

Good start but more needs to be done → MaGe

A few "neck" remarks

- 1) neck is no problem for primordials and LN₂
- 2) situation worse for LAr
 - \rightarrow as you will see in my next talk
- 3) most μ induced neutrons going downward
 - → high energy neutrons hit the thick Lead shield (or any high-Z-material above) and create huge neutron showers going down the neck towards the crystals
 - → these you cannot shield with PE around the neck
 - → has not yet been simulated