Influence of shielding design on muon-induced neutron background

Michael Bauer

Eberhard Karls
UNIVERSITÄT
TÜBINGEN

Muon-induced neutrons

LN2-Water

LN2-Copper-Water

LN2-Lead-PE

Det. LN2 Water LScint. Det. LN2 Cu Water Det 1.85 m 3 m 5 cm 1,85m 5 cm 3 m

Det. LN2 Lead PE 1.85 m 30 cm 50 cm

neutron spectra in liquid nitrogen: LN2-Water

neutron kinetic energy [MeV]

neutron spectra in liquid nitrogen: LN2-Copper-Water

neutron kinetic energy [MeV]

neutron spectra in liquid nitrogen: LN2-Lead-PE

neutron kinetic energy [MeV]

Studies regarding the 3rd wall

LN2 – 45 mm Copper – Water – Copper

Studies regarding the 3rd wall

LN2 – 20 mm Cu – 20 mm Lexan – Water – Copper

neutron spectra in liquid nitrogen: LN2-Copper-Water-Copper

neutron kinetic energy [MeV]

neutron spectra in liquid nitrogen: LN2-Copper-Lexan-Water-Copper

neutron kinetic energy [MeV]

Summary and Outlook

- Simulations have shown that the shielding design has a influence on the neutron spectra inside
- avoiding high-Z materials really seems to give a advantage
- Lexan wall gives less neutrons below ~ 3 MeV than copper wall
 - factor 2 at 1 MeV, 30% at 3 MeV
 - impact still needs to be studied, but probably no problem for the experiment: flux about 10⁻¹⁰ / (cm² s)