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A B S T R A C T

Whether neutrinos are Majorana particles, i.e. their own antiparticles, has
not yet been determined. In this case, processes such as neutrinoless
double-beta (0νββ) decay could be observed in a number of isotopes. The
signature of this decay would be a peak in the summed electron spectrum
at Qββ. Chapter 1 introduces neutrinos and 0νββ decay and describes how
experimental sensitivity to this decay can be optimised, and the status of
the field.

The Gerda experiment searched for 0νββ decay in 76Ge (for which iso-
tope Qββ = 2039.006 keV), and operated between November 2011 and Novem-
ber 2019 (Chapter 2). It achieved the lowest background level and most
stringent half-life limit of any 0νββ decay experiment of T0νββ

1/2 > 1.8 · 1026 yr
(90% C.L.).

In this work, the energy calibration analysis for the germanium detec-
tors of Gerda is presented (Chapter 3). The energy scale of these detectors
was determined via their weekly exposure to 228Th sources. A major de-
velopment of the final Gerda 0νββ decay analysis was the division of the
data from each detector into stable sub-periods called partitions. For each
partition, the effective energy resolution at Qββ was determined. The av-
erage resolutions (± the standard deviation) at Qββ across the partitions
for the BEGe/Coaxial/IC detectors are (2.8± 0.3) keV, (4.0± 1.3) keV and
(2.9± 0.1) keV respectively. Dedicated studies were performed to study
various sources of systematic uncertainties to the resolution at Qββ, with
an average total uncertainty of 0.13 keV. The energy bias for the events
near Qββ was approximated as the residual of the single-escape peak of
208Tl at 2.1 MeV in the combined spectra. The average bias is −0.1 keV with
a standard deviation of 0.3 keV.

After the success of the Gerda experiment, the Legend collaboration
aims to build the next generation of 76Ge 0νββ decay experiments (Chap-
ter 4). The first stage, Legend-200, is under construction, and aims to
achieve a half-life sensitivity exceeding 1027 yr.

For the energy calibration of the germanium detectors, Legend-200 will
operate Source Insertion Systems that are able to deploy multiple sources
each, instead of just a single one as in Gerda (technical drawings can be
found in Appendix A). Monte Carlo simulation studies were performed to
determine the optimal source separations on the steel band, and the num-
ber and location of stopping points by the germanium detectors (Chapter 5).
Assuming a nominal source activity of 5 kBq, the time required to deter-
mine a precise energy scale within the experimental constraints is 94 min,
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excluding the time required to move the sources. As a comparison, Gerda

required 135 min to calibrate around 40 kg of detectors.
In Appendix B the characterisation of a photomultiplier tube with a

MgF2 window is described. Unlike many other materials, MgF2 is transpar-
ent to 128 nm wavelengths and thus is directly sensitive to the scintillation
light of liquid argon.
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1
N E U T R I N O S A N D D O U B L E - B E TA D E C AY

There is a theory which states that if ever anyone discovers exactly what the Uni-
verse is for and why it is here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable. There is another theory mentioned,
which states that this has already happened. - Douglas Adams, The Restaurant
at the End of the Universe

1.1 the standard model

The Standard Model of Particle Physics is one of the greatest achievements
in the history of physics. It classifies all known elementary particles into
fermions or bosons, as shown in Figure 1.1.
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Figure 1.1: The Standard Model. From [1].

The six leptons and six quarks make up the fermions, and are in turn
divided into three generations of isospin doublets. The lepton doublets
are each composed of one electrically charged particle, and one uncharged

1



2 neutrinos and double-beta decay

neutrino, as follows: (e−, νe), (µ−, νµ) and (τ−, ντ). Similarly the charged
quarks are coupled as follows: (u, d), (c, s) and (t, b).

The force transmitting bosons are the massless gluons, g (strong force),
the massive W± and Z bosons (weak force) and the massless photon, γ

(electromagnetic force). The weak force, mediated by the massive W and Z
bosons and thus having a much shorter range than the other forces, couples
to all the fermions. All fermions except the neutrinos carry electric charge
and thus experience the electromagnetic force. The quarks possess colour
charge and thus interact via the strong force. Since the gluons themselves
also possess colour charge, they self-interact, and result in the phenomenon
called confinement, where colour-charged particles cannot be isolated.

In addition to the fermions and force carrying bosons is the Higgs boson,
a spin-0 particle. This boson is implied by the Higgs mechanism where
electroweak symmetry breaking causes the Higgs field to obtain a vacuum
expectation value. The breaking of the electroweak symmetry results in
the W and Z bosons acquiring masses. In turn, the fermions gain masses
(specifically, Dirac masses) through their coupling with the Higgs field.

Since its development in the 1970s, the Standard Model has been success-
ful at predicting and explaining a range of phenomena. However, cracks
have begun to appear, particularly in the realm of neutrinos. Assuming that
neutrinos acquire their mass in the same way as the other fermions in the
SM requires unnaturally small coupling constants, as well as the introduc-
tion of as-yet unobserved right-handed neutrinos. Alternatively, neutrinos
may possess a Majorana mass, described more in Section 1.4, making pos-
sible beyond the Standard Model processes such as 0νββ decay, discussed
in Section 1.5. This thesis was completed in the context of the Gerda and
Legend collaborations which search for 0νββ decay. The study of these
light particles, that remain elusive due to their weakly interacting nature,
may yet uncover the next step in our understanding of the Universe.

1.2 discovery of the neutrino(s)

Neutrino history can be said to have begun in 1911 with observations of
the beta-decay energy spectrum by Meitner and Hahn [2]. In 1914, Chad-
wick determined that this energy spectrum was continuous [3], apparently
violating the conservation of energy, momentum and angular momentum.
The neutrino was then postulated by Pauli in 1930 to solve this problem [4].
Pauli suggested that an electrically neutral, spin 1

2 particle emitted along-
side the beta particle could carry missing energy away from the nucleus
and thus explain the continuous spectrum. This particle would have to
be extraordinary weakly interacting, to explain why it had not been ob-
served in these beta-decay experiments. Fermi’s theory of beta decay, writ-



1.3 neutrino oscillations 3

ten in 1934, formalised the introduction of the neutrino, giving a theoretical
framework to describe the decay of the neutron within a nucleus [5],

n→ p + β− + ν̄e. (1.1)

From this understanding came proposals on how to look for the neu-
trino, ranging from the observation of the nuclear recoil in beta-capture [6]
to neutrino-capture on a scintillating target [7]. It was by employing this
latter approach that Cowan and Reines conclusively demonstrated the ob-
servation of the neutrino in 1956 [8].

The muon, discovered in cloud chamber cosmic rays experiments in
1936 [9, 10], was shown to decay to an electron and seemingly nothing
else [11]. Following the intuition for beta decay, a neutrino (or a neutretto,
as named at the time) was postulated to be also emitted [12]. In 1962 the
muon neutrino was detected and distinguished from the electron neutri-
noby Leon Lederman, Melvin Schwartz and Jack Steinberger [13]. This
was in turn followed by the tau neutrino discovery in 2000 at Fermilab [14],
completing the picture of the three generations of neutrinos known today.

1.3 neutrino oscillations

Starting in 1962, the Homestake experiment set out to measure the solar
neutrino flux, by employing the following reaction:

νe +
37Cl→ e− + 37Ar. (1.2)

By 1992 it had become clear that the observed rate was distinctly lower
than the rate predicted by the Standard Solar Model (SSM) [15]: a rate
of only 2.5 SNU (Solar Neutrino Unit, 1 event per 1036 target atoms per
second) was measured, while the SSM predicted between 6-8 SNU. This
became known as the famous “Solar Neutrino Problem”, and for many
years, debate raged as to whether theoretical or experimental issues were
at fault for the discrepancy. For a time, some feared that the Sun was
burning out [16].

The solution to this puzzle finally came in 2001, with the SNO exper-
iment. SNO measured the solar neutrino flux through neutral current
events, which are sensitive to all neutrino flavours, as well as the electron
neutrino flux through charged current events, as shown in Figure 1.2. It
observed that the total neutrino flux was consistent with the SSM, with the
electron neutrinos contributing approximately 1

3 of the total [17].
This can be explained with neutrino flavour mixing, analogously to the

quark sector, as discussed by Maki, Nakagawa and Sakata [18], and oscilla-
tions between them, as proposed by Pontecorvo in 1957 [19].
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Figure 1.2: Neutrino interactions with deuterium in SNO. While all neu-
trino flavours can participate in neutral current (top right) and elastic
scattering (bottom) interactions, only electron-neutrinos can partipate in
charged current (top left) interactions.

If neutrinos are massive, and furthermore, the masses of the three neu-
trinos are not identical, then the three flavour eigenstates can be expressed
as a superposition of the three mass eigenstates:

να =
3

∑
i=1

Uαiνi, (1.3)

where i labels the mass eigenstates and α the flavour eigenstates: electron,
muon and tau. U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix, a 3×3 unitary matrix, commonly parametrised by three mixing angles
θ12, θ23, θ13, a CP-violating phase δCP and the two Majorana phases α1 and
α2, as follows:

U =

1 0 0
0 c23 s23
0 −s23 c23

 ·
 c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13

 ·
 c21 s12 0
−s12 c12 0

0 0 1


·
1 0 0

0 eiα1 0
0 0 eiα2

 , (1.4)

where cij ≡ cos θij and sij ≡ sin θij [20]. For Dirac neutrinos, α1 = α2 = 0,
whereas for Majorana neutrinos (see Section 1.4), the phases α1 and α2 can
take any value in the [0, 2π] range.
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The transition probability between neutrino flavours α and β is given by

Pα→β = δαβ − 4 ∑
i>j

Re
(

U∗αiUβiUαjU∗βj

)
sin2

(
∆m2

ijL

4E

)

+ 2 ∑
i>j

Im
(

U∗αiUβiUαjU∗βj

)
sin

(
∆m2

ijL

2E

)
, (1.5)

where L is the distance travelled, E is the neutrino energy and ∆m2
ij =

m2
i −m2

j is the squared mass difference between mass eigenstates [21].
The above expression is valid for neutrino oscillations in a vacuum. When

neutrinos instead travel through matter, their phase of oscillation is af-
fected, since the electron neutrino component of the propagating mass
eigenstates can scatter with the electrons through the charged current in-
teraction. This effect is known as the MSW effect [22]. The two-neutrino
equation of motion in matter can then be expressed as

i
d

dx

(
νe
νX

)
= 2π

(
− κ cos 2θ

Lvacuum
+ 1

Lmatter
κ sin 2θ

2Lvacuum
κ sin 2θ

2Lvacuum
0

)(
νe
νX

)
, (1.6)

where κ = sign(m2
2−m2

1) and Lmatter(vacuum) is the matter (vacuum) oscilla-
tion length in natural units, where the matter oscillation length depends on
the electron density [23]. For anti-neutrinos the sign in front of 1/Lmatter is
reversed.

Experimental evidence exists for neutrino oscillations in not only so-
lar [24–30] neutrinos, but also reactor [31–33], atmospheric [34, 35] and
accelerator [36–38] neutrinos. Global fits to this data have determined the
PMNS matrix elements and the absolute value of the mass squared differ-
ences.

By exploiting the MSW effect in the propagation of solar neutrinos, the
sign of ∆m2

21 has also been measured [20]. As yet, the sign of ∆m32 has
not been determined since this requires the observation of muon neutrinos
(produced on or near Earth) with very long baselines. Future long-baseline
reactor oscillation experiments such as Dune [39] and T2HK [40,41] aim to
measure this sign with high significance.

1.4 dirac or majorana fermions

In the Standard Model (SM), neutrinos are assumed to be exactly mass-
less [42]. In 1956, the Wu experiment demonstrated parity violation dur-
ing the β decay of 60Co [43], and later experiments showed that parity is
in fact maximally violated in weak interactions. Such evidence led Mar-
shak and Sudarshan to propose the left-handed V–A form for the weak
Lagrangian at a Padua-Venice conference in September 1957 [44,45], which
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was then shortly followed by a Feynman and Gell-Mann paper outlining
the same [46]. The Goldhaber experiment in 1958 showed that the neutri-
nos emitted in the electron capture decay of 152mEu are always of negative
helicity [47]. Since for a massless particle, helicity and chirality (handed-
ness) are the same, the neutrino was introduced to the SM as a purely
left-handed particle.

However, the existence of neutrino oscillations requires neutrinos to have
a non-zero mass. The simplest way of accounting for the mass of the
neutrino is analogous to the other fermions, by introducing right-handed
gauge-singlet counterparts, νR [48]:

LD = −LYνΦνR. + h.c. (1.7)

After spontaneous symmetry breaking, the Higgs acquires a vacuum ex-
pectation value, v, and the neutrino acquires a Dirac mass

mD =
v√
2

Yν, (1.8)

although the Yukawa couplings Yν are unusally small (by several orders of
magnitude), compared to the other fermions.

Alternatively, the neutrino, as the only electrically neutral fermion, could
possess a Majorana mass term [49].

LM = −1
2

νLMLνC
L + h.c. (1.9)

This would require the neutrino to be identical to the anti-neutrino, violat-
ing lepton number conservation, such that the two observed particles are
distinguished only by their chirality [48]. The observations of the Gold-
haber experiment described above could be explained by the smallness of
the neutrino mass, which makes helicity = chirality a good approximation
for neutrinos.

The smallness of the neutrino masses can then be explained naturally,
via the see-saw mechanism, which introduces heavy right-handed sterile
neutrinos [50–52]. These mix with the known neutrinos, suppressing their
masses.

LνR = −LYνΦνR −
1
2

νC
L MRνR + h.c. (1.10)

After spontaneous symmetry breaking, this can be rewriten by defining the
doublet

ν =

(
νC

L
νR

)
, (1.11)

i.e.
LνR = νMν. (1.12)

where

M =

(
0 mD

mD MR

)
. (1.13)
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Figure 1.3: Isobaric mass parabolae for odd-odd (upper) and even-even
(lower) nuclei. When a single β decay (red) is energetically forbidden, ββ

decay (blue) may be observable. Qββ indicates the energy released in ββ

decay, which is shared among the decay products. Adapted from [55] and
[56].

This matrix can be diagonalised to find the mass eigenstates. In the see-saw
limit, where MD � MR, the mass eigenstates are given by

mν ∼ −
m2

D
MR

, and MN ∼ MR. (1.14)

Additionally, the CP violating decay of these heavy sterile neutrinos
could potentially explain the dominance of matter over antimatter today
through leptogenesis [48, 53, 54].

1.5 double-beta decay

The SM process of neutrino accompanied double-beta (2νββ) decay is ob-
servable when β decay is either energetically forbidden (see Fig. 1.3) or
suppressed due to angular momentum differences between mother and
daughter nuclei [57]. Since this decay is a second-order process, the half-
lives for 2νββ decay are among the longest observed, ranging from 1019 yr
to 1024 yr [58].

If the neutrino is a Majorana fermion, that is, has a Majorana mass com-
ponent, the hypothetical lepton number violating process of neutrinoless
double-beta (0νββ) decay could be observed. The two processes are shown
in Fig. 1.4, with the summed energy spectrum of the two emitted electrons
in Fig. 1.5. Since the two neutrinos interact only weakly and therefore
would not be detected by a 2νββ decay experiment, the only way to distin-
guish between the two processes is in the energy of the two emitted elec-
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Figure 1.4: Feynman diagrams for 2νββ decay (left) and 0νββ decay (right).
Adapted from [55].
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Figure 1.5: The summed energy spectrum of the two emitted electrons in
2νββ decay (red) and 0νββ decay (blue). The ratio of the two processes is
unknown.

trons. 0νββ decay would exhibit a peak in the summed energy spectrum
at Qββ, while 2νββ produces a continuous spectrum [59], approximately
given by

F(E) = (E4 + 10E3 + 40E2 + 60E + 30)E(Qββ − E)5. (1.15)

In the simplest case where 0νββ decay is mediated by the exchange of a
single light Majorana neutrino, the half-life is given by [60, 61][

T0νββ
1/2

]−1
= G0ν(Qββ, Z) |M0ν|2

m2
ββ

m2
e

, (1.16)

where G0ν is the phase space integral, M0ν is the nuclear matrix element,
me is the electron mass and mββ is the effective Majorana mass, given by

mββ =

∣∣∣∣∣∑i
U2

eimi

∣∣∣∣∣ . (1.17)
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1.6 absolute mass scale and effective majorana mass

Oscillation experiments are not sufficient to determine the absolute mass
scale of neutrinos [62], but they provide measurements on ∆m2

ij as well as
the absolute sign of ∆m2

12 (see Section 1.3). The absolute sign of ∆m2
3l has

not yet been determined. If ∆m2
3l is positive, m1 < m2 < m3, called the

normal ordering (NO). Conversely, if ∆m2
3l is negative, m3 < m1 < m2,

called the inverted ordering (IO). Current limits on ∆m2
3l are [20]

∆m3l =

{
∆m2

31 = +2.525+0.033
−0.032 · 10−3 eV2 for NO,

∆m2
32 = −2.512+0.034

−0.032 · 10−3 eV2 for IO.
(1.18)

Cosmological measurements provide a limit on the sum of the three neu-
trino masses Σ [63, 64]:

Σ =
3

∑
i

mi < (0.12− 0.66) eV. (1.19)

Measurements of the end point of β decay spectra also probe the absolute
mass scale of neutrinos, giving limits on the effective electron neutrino
mass mβ [65]:

mβ =
√

∑
i

∣∣U2
ei

∣∣m2
i < 1.1 eV. (1.20)

Recent limits by KATRIN constrain mβ < 1.1 eV [65].
The effective Majorana mass can be expressed in terms of the mass of the

lightest neutrino, mmin, as follows [66]. In the case of normal ordering:

m1 = mmin

m2 =
√

m2
min + ∆m2

21

m3 =
√

m2
min + ∆m2

3l , (1.21)

whereas for inverted ordering:

m3 = mmin

m1 =
√

m2
min − ∆m2

3l − ∆m2
21

m2 =
√

m2
min − ∆m2

3l . (1.22)

Using equation 1.5, the effective Majorana mass can be expressed as the
absolute value of a sum of three complex masses Mi:

|mββ| =
∣∣∣∣∣ 3

∑
i=1

U2
eimi

∣∣∣∣∣
=
∣∣∣c2

12c2
13m1 + s2

12c2
13m2eiα1 + s2

13m3eiα2
∣∣∣

= |M1 + M2 + M3| (1.23)
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Fig. 1.6 shows the absolute value of these complex masses Mi, using
best fit values for s2

12, s2
13, ∆m2

21 and ∆m2
3l from [20]. For a certain range

of mmin, depending on the Majorana phases α1 and α2, mββ may vanish
in the normal ordering case. Fig. 1.7 shows the allowed parameter space
for mββ. The range of allowed values is given by varying the unknown
Majorana phases between 0 and 2π. Notably, if the ordering is inverted,
the minimum Majorana mass would be approximately 18 meV.
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mmin (eV)
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i| 

(e
V)

NO
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|M1| |M2| |M3| m  can vanish

Figure 1.6: The absolute value of the complex effective masses Mi as de-
fined in equation 1.23. The left figure shows the case for the normal or-
dering, and the right figure shows the inverted ordering case. The shaded
region indicates where the complex effective masses may combine to give
an effective Majorana mass mββ of zero.

1.7 experimental sensitivity to T0ν
1/2

Experiments searching for 0νββ are comparable through their limits on
mββ. Individually, they constrain the half-life for that isotope, T0ν

1/2, which
can be translated to constraints on mββ via equation 1.16.

The experimental sensitivity to T0ν
1/2 can be derived considering a simple

counting experiment. The following derivation closely follows that set out
in [61]. For an initial sample of N0 0νββ decaying nuclei, the number of
0νββ decays that occur in time t is given by

nd = N0

(
1− exp

(
− ln 2

T0ν
1/2

t

))
' N0

ln 2
T0ν

1/2
t, (1.24)

where the expansion is valid for t� T0ν
1/2. The observed number of decays

is then given by folding in the experimental efficiency ε.
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Figure 1.7: Allowed parameter space for mββ, as a function of the mass
of the lightest neutrino mmin (left), Σ (centre), and mβ (right). The region
permitted in the case of normal ordering is shown in red, while the region
permitted in the case of inverted ordering is shown in green. Where these
regions overlap is shown in yellow, called the degenerate region. The centre
figure shows limits on Σ from cosmology, while the right figure shows the
expected sensitivity of the KATRIN experiment [65] to mβ after 5 years. The
figure is adapted from [67].

If no signal is observed, the limit that can be set corresponds to the
degree of fluctuations in the background that could ‘hide’ a signal, i.e. for
a Poisson fluctuating background:

√
nb > εnd, (1.25)

which results in a sensitivity to the half-life S0ν
1/2 of

S0ν
1/2 = ln 2 · ε N0t√

nb
. (1.26)

The number of 0νββ decaying nuclei N0 can be expressed as fenrNAM/A,
where fenr is the enrichment fraction, i.e. the fraction of the 0νββ decaying
isotope in the sample, M is the mass of the sample, NA is Avogadro’s
number, and A is the atomic mass of the isotope.

The number of background events can be expressed as

nb = BI ·Mt · ∆, (1.27)

where BI is the so-called background index (events per mass per time per
energy) and ∆ is the energy resolution. The sensitivity is then given by

S0ν
1/2 = ln 2 · ε fenrNA

A

√
Mt

BI · ∆ . (1.28)

Here the experimental sensitivity can be improved by either:

1. increasing the signal efficiency ε or enrichment fraction fenr,
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2. increasing the sample mass M or observation time t,

3. reducing the background rate, or

4. improving the energy resolution.

Alternatively, consider a scenario where there is no background. In this
case, the limit that can be placed is given by the maximum signal rate that is
consistent at some confidence level with zero observed events. For Poisson
statistics, the probability of observing zero events for an given expectation
number of 0νββ decays εnd is:

P = e−εnd > P0, (1.29)

where P0 is some threshold defining a confidence level. Then

εnd < − ln P0 = const. (1.30)

The sensitivity is then proportional to:

S0ν
1/2 ∝ ε fenr ·Mt, (1.31)

i.e. the sensitivity will increase approximately linearly with the acquired
exposure (defined as Mt).

The ‘background-free’ condition can be defined by

√
nb < − ln P0, (1.32)

because in this case the sensitivity is determined by Equation 1.30, instead
of Equation 1.25. For P0 = e−1, the condition becomes

BI ·Mt · ∆ < 1. (1.33)

Therefore, the ‘background-free’ regime requires a low background index
and high resolution, and will eventually be exited with increasing exposure,
as shown in Figure 1.8.

1.8 searches for double-beta decay

As explained in Section 1.5, isotopes for which single-beta decay is forbid-
den are candidates for 0νββ. Since the 1990s, various experiments have
searched for 0νββ in a number of these isotopes [69–71].

As seen in Section 1.7, the best experimental sensitivity is obtained by
maximising the target mass, enrichment fraction, observation time and sig-
nal efficiency, and minimising background rate and energy resolution. In
general, a trade off is required among these criteria. For example, some el-
ements have a naturally high isotopic fraction of the 0νββ candidate, such
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Figure 1.8: The sensitivity to 0νββ decay as a function of exposure and
background. In this calculation, ε fenr is given by 60%. Figure adapted
from [68].

as 130Te, while other isotopes have a value of Qββ which is above the end-
point of most natural radioactive gamma backgrounds, such as 48Ca, 82Se
and others, and therefore have a reduced background rate around Qββ.
Different experimental approaches are used for various isotopes.

The next generation of 0νββ experiments will be ton scale experiments,
seeking to reach the minimum of the allowed region in the mββ parameter
space for the inverted mass ordering. This will require ton-scale experi-
ments and half-life sensitivities up to 1028 years. Some recent and future
experiments are highlighted below.

Large liquid scintillator detectors, such as KamLAND-Zen, using 136Xe,
and SNO+ [72], using 130Te, are easily scalable with mass and thus can
obtain large exposures. In 2016, KamLAND-Zen was the first experiment
to set a 0νββ half-life limit of greater than 1026 years, corresponding to
a Majorana mass limit of 61-165 meV, close to the inverted mass ordering
region [73]. The upgrade to KamLAND2-Zen will improve the energy res-
olution from 4.6% to 2% and reduce the background by an order of mag-
nitude [74]. The EXO-200 [75] experiment also uses 136Xe, but in a Time
Projection Chamber (TPC). nEXO is an upgrade of EXO-200 to be filled
with 5 tons of xenon isotopically enriched at 90% [76]. The future DAR-
WIN experiment has the main aim of searching for dark matter, but as a
low-background TPC with more than 3.5 tons of 136Xe, it can also be used
to search for 0νββ decay [77]. The NEXT and PandaX experiments both aim
to operate a TPC containing gaseous xenon, which would improve position
reconstruction, and allow improved rejection of background events [78,79].
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The CUORE collaboration operates cryogenic bolometers to search for
0νββ [80]. These detectors benefit from a comparatively good energy res-
olution of 0.2% FWHM in their region of interest, allowing the rejection
of 2νββ events. CUPID (CUORE Upgrade with Particle Identification) is
a R&D project that will incorporate particle identification via the measure-
ment of light signals generated through the Cherenkov effect or scintilla-
tion [81, 82].

Finally, there are the experiments using germanium semiconductor de-
tectors, which exhibit the best energy resolution among 0νββ detectors,
Gerda and Majorana [83]. Both experiments operated high-purity ger-
manium detectors isotopically enriched in 76Ge. The Gerda experiment,
as the experiment under which the majority of this thesis was completed,
is described in more detail in Chapter 2.

The success of the Gerda approach has inspired the formation of the Leg-
end collaboration, formed of the Gerda and Majorana groups and other
worldwide institutions, which aims to reach a sensitivity of 1028 years by
operating 1 ton of enriched germanium detectors [84]. The Legend experi-
ment is described in more detail in Chapter 4.



2
T H E G E R D A E X P E R I M E N T

The Gerda experiment searches for 0νββ decay of 76Ge by operating high
purity germanium diodes that have been isotopically enriched in 76Ge up
to ∼ 87% [85]. For 76Ge, Qββ is located at (2039.006± 0.050) keV [86]. The
diodes therefore act simultaneously as both the source and detector of the
decay, resulting in a high signal efficiency.

Gerda data taking began in 2011 with Phase I [87]. Phase II started in De-
cember 2015 after a substantial upgrade campaign [85]. Additionally, there
was a minor upgrade in 2018 where new detectors were introduced [88].
Data taking was completed in November 2019.

This chapter provides an overview of the Gerda experiment and its
search for 0νββ decay, and is structured as follows. Section 2.1 details
the experimental setup of Gerda, while Section 2.2 describes the use of
semiconductors as particle detectors, and the Gerda detectors in particu-
lar. Section 2.3 presents the 0νββ decay search analysis, with details on
event digitisation and selection, and the statistical analysis to produce the
constraint on the half-life.

2.1 experimental setup

The Gerda experiment is located underground at the Laboratori Nazionali
del Gran Sasso (LNGS) in central Italy [89]. The rock overburden of 1400 m
(3500 m water equivalent) reduces the cosmic muon flux by six orders of
magnitude to (3.41± 0.01) · 10−4 m−2 s−1 [90].

The experimental setup is shown in Fig. 2.1. In order to reach the strin-
gent low background requirements of Gerda an extensive screening cam-
paign was conducted to select low-background materials, and the multiple
layers passively and actively shield the germanium detectors.

Firstly, a 10 m diameter water tank surrounds the experiment, shielding
from external γ and neutron radiation. Above the water tank is a clean
room with a glove box and lock, used for the assembly of and accessing
the experiment. The water tank is instrumented with photomultiplier tubes
(PMTs) which detect Cherenkov light caused by residual cosmic muons.
Additional plastic scintillator panels on top of the clean room detect muons
passing through with a high incident angle.

Inside the water tank is a 4.2 m diameter cryostat, containing 64 m3 high-
purity liquid argon (LAr), which acts as a coolant and as background
shielding. The cryostat is lined with 6 cm thick radiopure copper to reduce
primarily γ ray emission from the stainless steel cryostat.

15
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Figure 2.1: The Gerda experiment. The outermost layer is a water tank (1)
instrumented with PMTs (2) as a Cherenkov cosmic muon veto. Inside is
the liquid argon (LAr) cryostat (3), instrumented with photosensors (4), the
optical fibre curtain (5) and the copper shroud (6). The calibration sources
are lowered down alongside the detector array from the lock (7) through
access points (8). Individual detectors (9) are mounted in strings, forming
an array. Signal cables (10) lead from the detectors to pre-amplifiers (11).
Above is the clean room (12), containing the cryostat lock (7) and glove box
(13) for access, topped with an additional muon veto of plastic scintillator
panels (14). Figure adapted from [91].

The germanium detectors are arranged in vertical columns, referred to
as strings, forming an array, in the centre of the cryostat, contained in low-
activity silicon holders. Each detector string is enclosed by a transparent
nylon cylinder, known as a ‘mini-shroud’, which mitigates the drift of 42K
ions towards the detectors, caused by their high voltages supplies, a poten-
tial source of background [85].

As part of the Phase II upgrade, the liquid argon was instrumented with
photosensors for the detection of the scintillation light stimulated by en-
ergy deposits in the liquid argon by background events. The photosensors
consist of 16 3

′′ photomultiplier tubes (PMTs, R11065-20 type, produced by
Hamamatsu) arranged above and below the array, and silicon photomul-
tipliers (SiPMs) above the array. The SiPMs (PM33100 type, produced by
KETEK [92]) are coupled to a curtain of wavelength shifting (WLS) fibres
(BCF-91A type, produced by Saint-Gobain Crystals [92]) that surround the
array, which are coated with tetraphenyl-butadiene (TPB), a wavelength
shifting material, that shifts the wavelength of the scintillation light to bet-
ter match the absorption spectrum of the WLS fibres, which then transmit
the light to the photosensors [93, 94]. LAr is only semi-transparent to its
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own scintillation light at 128 nm, but transparent to the blue light emitted
by TPB. Additionally, copper shrouds located above and below the fibre
curtain are lined with TPB [95] coated Tetratex [96] to effectively shift and
reflect light towards the WLS fibres and photosensors. The nylon mini-
shrouds surrounding the germanium detectors are also coated with TPB.

2.2 germanium detectors

2.2.1 Semiconductor detectors

Materials are classified according to their conductivity into three types: con-
ductors, semiconductors and insulators. The conductivity of a material is
determined by their electronic band structure, that is, the range of ener-
gies that electrons may take in that material. Since electrons are fermions,
the Pauli Exclusion Principle requires that no two electrons may have the
same state. In a material’s ground state, the electrons will thus fill up the
lowest energy bands first, until reaching the Fermi level, EF, as pictured in
Figure 2.2.

Conductor Semiconductor Insulator

Conduction
band

Valence
band

E
−

E
F

Figure 2.2: Schematic band structure of conductors (left), semiconductors
(centre) and insulators (right). In a band, black indicates filled states and
blue indicates vacant states.

When a voltage is applied to a material, whether a current can flow de-
pends on whether the electrons in the material are able to absorb energy
from an electric field by moving to different states. In a conductor, the
Fermi level lies within a band (the conduction band), and the highest en-
ergy electrons are therefore free to move. In an insulator, the Fermi level
lies between bands, and for any electron to move would require overcom-
ing the energy gap between the top filled band (valence band) and the next
(conduction band). The band structure of semiconductor is similar to that
of the insulator, except that the band gap is on the order of the energy of
the thermal excitations.
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Figure 2.3: Formation of a depletion region in a diode. A p-type semicon-
ductor has an excess of holes, in the valence band, while an n-type semi-
conductor has an excess of electrons in the conduction band (left). Placing
the two together will cause the free electrons to drift towards the p-type
conduction band, and vice versa. The recombination of electrons and holes
will result in a region with no charge carriers, the depletion region (centre).
Applying a voltage across the diode will increase the size of the depletion
region (right). Adapted from [55].

If a semiconductor is cooled, the current due to thermal excitations is
suppressed. Semiconductors can thus be exploited as particle detectors,
because ionising radiation will excite electrons to the conduction band, al-
lowing a current to flow. The absence of an electron in the otherwise full
valence band is known as a hole, and can also act as a positively charged
particle moving under the influence of an applied electric field.

It is difficult to entirely avoid the presence of impurities during the ger-
manium crystal growing process. Impurities will donate an excess of either
electrons or holes, which will allow current to flow when an electric field
is applied, behaviour which is undesirable in a semiconducting particle de-
tector. However, doped materials, into which impurities have intentionally
been introduced, can be combined to create regions where no free charge
carriers remain, see Figure 2.3. This depletion region forms the region of
the detector sensitive to interactions. The size of the depletion region can be
increased by the application of an electric voltage between the two regions.

The electric field will then cause electrons and holes produced by an
interaction to drift. According to the Shockley-Ramo theorem [97, 98], they
will thus induce a current on the readout electrode:

Ireadout(t) = −
∫
∇Φweighting · vdrift(t)dq, (2.1)

where the integral runs over all the charge carriers q (electrons and holes),
vdrift is their instantaneous velocity and Φweighting is the so-called weight-
ing potential at the position of q. This weighting potential is the electric
potential divided by 1 V at the position of the charge when the readout
electrode is at unit potential, all other electrodes are at zero potential and
all other charge carriers are removed.



2.2 germanium detectors 19

2.2.2 The Gerda detectors

Between the start of Phase II in December 2015 and the upgrade in 2018,
Gerda operated two types of detectors: 10 Coaxial and 30 Broad Energy
Germanium (BEGe). Three of the Coaxial detectors have a natural abun-
dance of 76Ge, while the other detectors are enriched in 76Ge to ' 87%.
During the upgrade of 2018, five Inverted Coaxial Point Contact (IC) detec-
tors, a new type of detector, were installed, replacing all the non-enriched
Coaxial detectors and one enriched Coaxial detector. Photos of the detec-
tors are shown in Figure 2.4, and schematics are shown in Figure 2.5.

Figure 2.4: Photos of a Coaxial (left), BEGe (centre) and IC (right) detector.
Not to scale.

Figure 2.5: Schematic cross-section and indicated dimensions of Coaxial
(left), BEGe (centre) and IC (right) detectors. The electrons and holes cre-
ated due to particles interaction drift to n+ (shown in green) and p+ (shown
in red) electrodes, respectively.

All these detectors are read out via their grounded p contact, while the
depletion voltage is applied to the n contact. The p contact is formed by the
implantation of boron atoms via an ion beam, with a thickness ofO(10) nm.
The n contact is formed by the thermal diffusion of lithium atoms, and has
a thickness of O(1)mm. Charge carriers produced in this region are not
effectively collected on the readout electrode, so this region is known as the
dead-layer. This region, though reducing the active region of the material
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and thus the signal efficiency to 0νββ, shields the detector from surface
contaminants such as α particles. A groove separates the two electrodes.

The Coaxial detectors are larger and were inherited from previous 76Ge
0νββ experiments, Heidelberg-Moscow and IGEX [70, 71, 99], with a total
enriched mass of 15.6 kg. They have a cylindrical shape with a height of
70-110 mm, with an internal borehole that forms a large p contact.

The BEGe detectors were developed for Gerda [100]. Though smaller,
these detectors do not have a borehole, and their p contact is instead a
O(1) cm2 point on one side. The electric field is thus concentrated close to
the p contact, such that most of the signal is caused by the holes moving in
this region (see Equation 2.1). The shape of the signal is therefore relatively
independent of the interaction point. The resulting dependence of the sig-
nal shape on the interaction type can be exploited to reject background
events such as those caused by multiple interactions in the detector vol-
ume, or α events. The BEGe detectors also benefit from a superior energy
resolution relative to the Coaxial detectors, due to their smaller electronic
capacitance and therefore larger signal-to-noise ratio [55, 101] (see Section
3.1.1).

The IC detectors combine the larger size of the Coaxial detectors with
the similar pulse shape and energy resolution properties of the BEGe de-
tectors [102,103]. Though they have a similar shape as the Coaxial detectors,
their p contact is not on the borehole, but is instead a point contact on the
closed surface of the crystal. Larger detectors allow a greater mass per de-
tector channel, thus reducing complexity and auxiliary material that must
be introduced to the cryostat for a given total mass of 76Ge.

2.3 data analysis and physics results

2.3.1 Event digitisation

The electronics chain for the read out of the signal from the germanium
detectors consists of the Very Front End section (VFE) integrated into the
detector holders, and the Charge Sensitive Preamplifier (CSP) located ap-
proximately 1 m above the array [104]. This separation avoids radioactive
components close to the detectors while minimising noise contributions to
the signal. A feedback loop returns the input voltage to its baseline value.
A resulting signal shape is shown in Figure 2.6.

To monitor the stability of the electronics chain, a test pulse of fixed
amplitude is injected every 20 s into each of the preamplifiers.

The signals are digitised by a Flash Analogue to Digital Converter (FADC)
in the clean room. These are saved as Majorana-Gerda Data Objects (MGDO)
inside ROOT files [105], forming the so-called tier1 data type of Gerda. Ad-
ditionally, the signals from the LAr veto photosensors and the muon veto
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Figure 2.6: A typical digitised waveform after baseline subtraction. Taken
from [56].

are recorded and synchronised to those of the germanium detectors. For
more information, see [87, 93]

Dedicated calibration runs and analyses are used to extract energy ob-
servables for each detector in an event. This is described in detail in Chap-
ter 3.

2.3.2 Event selection

To optimise the sensitivity to 0νββ signal events, events consistent with
other topologies (see Figure 2.7) and characteristics are rejected. Only
data taken during stable operating conditions are used for physics anal-
ysis, which is about 80% of the total.

Quality cuts reject events not consistent with a physical energy deposi-
tion. This includes flat and featureless waveforms consistent with only the
baseline, events that saturate the dynamic range of the FADC, and pile-up
events. These cuts reject ' 100% of non-physical events, while maintaining
a signal efficiency of greater than 99.9%. More details are given in [106].

The shape of the collected waveform varies depending on the topology of
the event interaction. For example, events with multiple energy deposits in
a detector (so called multi-site events, or MSE) will differ from those with
only localised energy deposits (single-site events, or SSE), shown schemati-
cally in Figure 2.7. Similarly, events that place close to either of the two elec-
trodes will exhibit either fast or slow charge collection respectively. This is
shown in Figure 2.8. The exploitation of the time structure of the signals is
called Pulse Shape Discrimination (PSD).

For the BEGe and IC detectors, PSD takes the form of a cut based on a
single parameter, A/E, where A is the maximum current amplitude and
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Figure 2.7: Schematic of possible event topologies in Gerda. 0νββ decay
events will deposit energy only in ∼ 1 mm3 of a single detector (light blue).
Events depositing energy in multiple locations in a detector, or on the sur-
face can be rejected by pulse shape discrimination (PSD) techniques, see
text (magenta). Events that trigger the LAr veto and deposit energy in a
germanium detector are also rejected (green), for example decays of 42K.
Cosmic muons events depositing energy in a germanium detector and ei-
ther the water tank or plastic scintillation panels can be rejected by the
muon veto (red). Events that deposit energy in multiple detectors are re-
jected by the detector anti-coincidence (AC) cut (dark blue).
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Figure 2.8: Example signals in a BEGe detector for a single-site event (top
left), a multi-site event (top right), an event close to the p contact (bottom
left) and a surface event on the n contact (bottom right). Figure from [107].

PSD efficiency
Before upgrade Coaxial (69.1± 5.6)%

BEGe (88.2± 3.4)%
After upgrade Coaxial (68.8± 4.1)%

BEGe (89.0± 4.1)%
IC (90.0± 1.8)%

Table 2.1: Combined pulse shape discrimination efficiency for 0νββ decay
events for different detector types and before/after the upgrade.

E is the energy of the event, determined from the maximum of the fil-
tered waveform (see Section 3.1.2). For the Coaxial detectors, where the
electric field more strongly varies across the detector volume, an artificial
neutral network (ANN) is used to discriminate between SSEs and MSEs.
In addition, a cut on the signal rise time rejects events on the p contact of
the Coaxial detectors. Finally, for all detectors, to fully reject events with
slow or incomplete charge collection, a cut based on the difference between
two energy estimators, derived from the same digital filter using different
shaping times, is employed. The combined signal efficiency for all PSD
techniques is given in Table 2.1.

Events within 10 µs of a trigger from the muon veto system are discarded.
Similarly, events where a photosensor of the LAr veto system measures a
signal greater than one photoelectron within 6 µs are also rejected. The
dead time due to the muon veto is less than 0.01%, and for the LAr veto
are (2.3± 0.1)%/(1.8± 0.1)% before/after the upgrade.



24 the gerda experiment

Finally, highly ionising radiation such as high energy γs that deposit
energy in multiple detectors are rejected by the detector anti-coincidence
cut.

2.3.3 Phase II energy spectrum and backgrounds

The Phase II data collected by Gerda between December 2015 and Novem-
ber 2019 corresponds to an exposure of 103.7 kg yr. Additionally, prior to
Gerda Phase II, Phase I had an exposure of 23.5 kg yr.

The full Phase II energy spectrum before and after cuts is shown in Fig-
ure 2.9.
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Figure 2.9: Combined energy spectrum for Phase II, before and after the
LAr veto and PSD cuts. The blue dashed line shows the position of Qββ.
The black solid line shows the expected spectrum of 2νββ events with a
half-life as measured in [108]. Prominent γ lines are shown, as well as
the α peak at high energies. More information about Gerda Phase II pre
upgrade background data and modelling can be found in [109].

The lower energy region is dominated by 2νββ events, for which Gerda

Phase I measured a half-life of (1.926± 0.094) · 1021 yr [108].
The two strongest γ lines are those at 1461 keV due to 40K and 1525 keV

due to 42K in the LAr. The decay of 42K is a cascade of a β and γ. The emit-
ted β particle deposits energy in the LAr and thus the corresponding decay
can be detected by the LAr veto system. The intensity of the 42K line is
therefore suppressed by the LAr veto by about a factor of five. Conversely,
the decay of 40K is an electron-capture event, so no additional particle can
deposit energy in the LAr, and the LAr veto cannot suppress this line. The
suppression of the two potassium lines is shown in Figure 2.10.

Additional weak γ lines due to the decay of 214Bi and 208Tl contaminants
are labelled in Figure 2.9. The energy region above 3 MeV is dominated
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Figure 2.10: The γ lines in the background spectrum due to 40K and 42K.
The 42K line is suppressed by the LAr veto due to the emitted β particle,
while the 40K decay takes place via electron capture and therefore cannot
be suppressed.
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by α events due to the decay of 210Po on the p contact of the detectors.
Detailed background modelling was performed for Phase II data taken be-
tween December 2015 and April 2018 [109]. Figure 2.11 shows the indi-
vidual contributions to the background around Qββ. Approximately equal
contributions to the backround index are seen from α particles with de-
graded energy, decays from isotopes in the 232Th and 238U chains, and 42K
decays.
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Figure 2.11: Background model around Qββ.

2.3.4 Statistical analysis

The energy range fitted for the 0νββ analysis is between 1930 keV and
2190 keV excluding ±5 keV regions around the two expected γ lines at
2104 keV and 2119 keV due to the decay of 208Tl and 214Bi, respectively.

Previous Gerda 0νββ analyses have been reported in [67,91,110–112]. To
avoid possible bias, events with energy Qββ±25 keV are not analysed until
the 0νββ analysis and cuts are finalised, a so-called ‘blinded’ analysis.

The data is divided into 408 partitions, labelled by k, i.e., data coming
from each detector divided into stable periods of time during which pa-
rameters such as the efficiencies and energy resolution are stable in all
detectors. In the fit, the signal strength parametrising the half-life and the
background index are common parameters to all partitions, with the excep-
tion of the Phase I data sets, which are introduced as separate partitions
with differing background indices.

The fit model consists of a Gaussian distribution centred at Qββ, with the
width of the energy resolution σk = FWHM/2.35, and a flat distribution
for the background.

The number of signal events µs,k is given by

µs,k =
ln 2NA

T1/2m76
εkEk, (2.2)
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where NA is Avogadro’s number, m76 is the molar mass of 76Ge, and Ek
and εk are the exposure and 0νββ decay detection efficiency respectively of
the k-th partition. The number of background events is given by

µb,k = B× ∆E× Ek, (2.3)

where ∆E is the net width of the analysis window and B is the background
index. The likelihood function is then given by

L =∏
k

[
(µs,k + µb,k)

Nk e−(µs,k+µb,k)

Nk!
×

Nk

∏
i=1

1
µs,k + µb,k

×
µb,k

∆E
+

µs,k√
2πσk

e
−

(Ei−Qββ)
2

2σ2
k

] (2.4)

where Ei labels the energy of the Nk events in the k-th partition.
An unbinned fit is performed in both frequentist and Bayesian frame-

works, with the Frequentist fit shown in Figure 2.12. Systematic uncertain-
ties on the limit are computed by repeating the fits, each time varying the
input parameters according to their uncertainties, and are on the percent
level.

Under the frequentist analysis, the best fit for the number of signal events
is zero, and the lower half-life limit is given by

T0νββ
1/2 > 1.8 · 1026 yr at 90% C.L., (2.5)

Figure 2.12: Combined energy spectrum of Gerda Phase II after unblinding
and analysis cuts in the fitting window. The grey areas indicate regions in
which γ lines are expected. The best fit for the background index and its
68% C.L. interval are shown by the green line and band respectively. The
blue line shows the function corresponding to the hypothetical 0νββ decay
signal with a half-life given by the 90% C.L. Frequentist lower limit.



28 the gerda experiment

with a derived Phase II background index of

B = 5.2+1.6
−1.3 · 10−4 counts/(keV kg yr). (2.6)

This is the lowest background index achieved for any 0νββ experiment, and
means that Gerda has succeeded in its aim to remain in the background-
free regime for all of Phase II [88].

For a constant prior in 1/T0νββ
1/2 between 0 and 10−24 yr−1, the Bayesian

analysis results in a lower limit of T0νββ
1/2 > 1.4 · 1026 yr at 90% C.I.

The limit on T0νββ
1/2 can be converted into a limit on mββ using Eq. 1.16.

For the set of nuclear matrix elements from [113–123], a limit of

mββ < (79− 180)meV (2.7)

is obtained, which is competitive with limits obtained with other isotopes [73,
75, 124].

Gerda has successfully demonstrated the technique of operating germa-
nium detectors in liquid argon, and instrumenting that liquid argon as a
veto, paving the way for the next generation of 76Ge experiments.

In addition to the 0νββ analysis, the excellent energy resolution and
low background have enabled Gerda to make a number of other physics
analyses, including a search for bosonic superweakly interacting dark mat-
ter [125] and a search for decays of 76Ge to excited states of 76Se [126].



3
E N E R G Y C A L I B R AT I O N F O R G E R D A P H A S E I I

A key part of all Gerda analyses is the energy determination of events.
As the signature of 0νββ decay in germanium detectors is a sharp peak
at the known energy of 2039 keV, the energy calibration is an essential
ingredient in the search for this decay. The better the energy resolution
of the detectors, the smaller the effective region of interest, and the more
clearly identifiable a peak-like excess over the continuous background is.

Importantly, the energy is in fact the only way by which 2νββ decays
can be distinguished from 0νββ decays, as shown in Figure 3.1. The frac-
tion F of the 2νββ events occuring within one resolution of Qββ can be
approximated by [127]

F ' 7Qββδ6

me
, (3.1)

where δ = ∆E/Qββ is the fractional energy resolution. For a resolution
given by 0.1% of Qββ, similar to Gerda, the probability for a 2νββ event to
fall within 3σ of Qββ is only ∼10−14, compared to 0.011 for a resolution of
10% of Qββ.
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Figure 3.1: A worsening resolution leads to more 2νββ events being recon-
structed at an energy above Qββ: (left) the 2νββ spectrum near the endpoint
at Qββ for a number of energy resolutions, given as fractions of Qββ; (right)
the fraction of 2νββ events reconstructed within 3σ of Qββ follows an ap-
proximate power law relative to the energy resolution, as in Eq. 3.1.

The main goals of the calibration analysis are to define and maintain a
stable energy scale over the years of data taking, and determine the resolu-
tion of the detectors. It is necessary to identify the right peak region (and
reject all background events with different energy), combine data from dif-
ferent detectors over extended periods of time, and efficiently exploit the
excellent energy resolution of germanium detectors.

29
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This chapter describes how the germanium detectors are calibrated and
this data was analysed for Gerda Phase II, and is structured as follows.
The remainder of this introduction details the theory behind the energy de-
pendence of the resolution of germanium detectors, and how an estimate
for the energy of an event is formed. Section 3.2 describes the procedure
for taking calibration data. In Section 3.3 the method for determining of
the energy scale is detailed. The stability of the energy scale and resolution
is presented in Section 3.4. Section 3.5 presents the combined calibration
analysis that partitions the data and calculates the energy resolution at
Qββ for the 0νββ analysis, along with a study of systematic uncertainties.
Section 3.7 describes the calculations of and correction of residual energy
biases close to Qββ. The last section of the chapter, Section 3.8, presents
a comparison of the conclusions of the calibration data with Gerda back-
ground data.

3.1 introduction

3.1.1 Origin of energy resolution

The width of the peaks in the energy spectrum is the result of a number of
sources of uncertainty between the emission of the γ ray and its detection.
The resolution is usually expressed as the Full Width of the peak at Half
Maximum height:

FWHM = 2.355ω, (3.2)

where the total variance, ω, can be expressed as [128]

ω2 = ω2
I + ω2

P + ω2
C + ω2

E. (3.3)

Here, ωI is the uncertainty on the energy of the γ ray emitted by the de-
caying nucleus, ωP is the variance in the produced number of electron-hole
pairs, ωC is the variance in the fraction of charge collected by the detector,
and ωE is the result of electronic noise.

Of these contributions, ωI is the smallest. According to the Heisenberg
uncertainty principle, it can be expressed as

ωI =
h̄

2.355τ
(3.4)

where τ is the lifetime of the excited state emitting the γ ray. For a typical
lifetime on the order of 10−12 s, this contribution is <10−3 eV, i.e. negligible.

As for ωP, the number of electron-hole pairs produced will depend on
the energy deposited in the crystal. At 77 K, the average energy required
to produce an electron-hole pair, ε, is 2.96 eV. Thus for an energy deposit
of E, the average number of electron-hole pairs produced will be n = E/ε.
If the production of electron-hole pairs was a purely Poisson process, the
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variance in the number of pairs would be ∆n =
√

n. However, since con-
secutive ionisations are not independent processes, an additional factor, the
Fano factor F, must be included, such that ∆n =

√
Fn [129]. Theoretical

values for the Fano factor in germanium are around 0.13 [130], while mea-
surements put the value between 0.05 and 0.12 [131, 132]. ωP can then be
expressed as

ωP = ε∆n =
√

FEε. (3.5)

Incomplete collection of the charge carriers produced in an event in a de-
tector can generate low-energy tails. This can be caused by charge trapping
in the crystal due to impurities, or by a preamplifier time constant that is
quicker than the rise time of the germanium signal, or shaping filter time
(see Section 3.1.2). Empirically, ωC is given by

ωC = dE, (3.6)

where d is a proportionality constant.
The final component is electronic noise, ωE, which itself can be divided

into three components

ω2
E = ω2

parallel + ω2
series + ω2

flicker, (3.7)

called parallel, series, and flicker noise respectively.
The parallel component is associated with a current flowing in the feed-

back circuit of the preamplifier, which may be due to thermal noise in
the feedback resistor or leakage current in the detector itself. It can be
expressed as

ωparallel ∝
(

ID +
2kT
Rf

)
τS, (3.8)

where ID is the current, T is the temperature of the resistor and τS is the
shaping time of the preamplifier.

The series component is associated mainly with the capacitance of the
detector and the detector-preamplifier connection. It can be expressed as

ωseries ∝ C2
(

2kT
gmτS

)
, (3.9)

where C is the total readout capacitance, T is the preamplifier temperature
and gm is the transconductance of the preamplifiers, or its gain, given by
current in divided by voltage out.

The optimal shaping time, τS, is chosen to minimise the combination of
the parallel and series noise.

Finally, the flicker noise or 1/ f noise is associated with the variation in
the direct current of the circuit. It is the smallest of the three electronic
components.
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The energy dependence of the resolution can be found by combining all
these components as in 3.3.

FWHM = 2.355
√

ω2
E + FεE + d2E2, (3.10)

= 2.355
√

a + bE + cE2, (3.11)

where here the ωI component has been neglected. The charge collection
term c is often also neglected (see Section 3.6.3). This expression implies
that b = Fε ∼ 10−4 keV, and should be the same for all detectors.

3.1.2 Energy estimators

In order to extract an estimator for the energy deposited in a detector, the
waveforms are first shaped with dedicated filters, which minimise the con-
tribution of electronic noise. The two shaping filters used in higher level
data analysis are the pseudo-Gaussian filter and the ZAC (Zero Area Cusp)
filter. An estimator for the deposited energy in the detector is then given
in both cases by the maximum of the filtered waveform.

The Gaussian, or pseudo-Gaussian, filter is implemented as a sequence
of operations on the waveform, as shown in Figure 3.2. First, a delayed
differentiation with a time constant of 5 µs is applied, that is, the difference
in amplitude is evaluated between sampling points separated by 5 µs. Then,
a 10 µs moving average window is applied 25 times. The resulting filtered
waveform is quasi-Gaussian shaped, whose height is then extracted to be
used as an energy estimator, “the Gauss energy”. These operations reduce
the contribution of high-frequency noise contained within a waveform to
the energy estimator. Since the parameters of this filter do not require any
optimisation, this energy estimator is used for the online monitoring of the
data.

The ZAC filter is a 2-sided sinh-curve connected by a flat top, such that
its total area is zero, shown in Figure 3.3. The waveform is convoluted
with the combination of the inverse preamplifier response function and the
ZAC filter. Again, the height of the resulting waveform is used as an energy
estimator, “the ZAC energy”. To maximise its performance, the parameters
of the filter, such as the flat top length, are optimised for each detector and
each calibration run to minimise the resolution of the 2.6 MeV peak in the
calibration spectrum, requiring additional offline processing. Uncalibrated
ZAC energy estimators and thus the resulting calibration curves of any
two calibrations are generally not comparable. However, an improvement
in the energy resolution of ∼0.3 keV relative to the Gauss energy can be
achieved with this method [133].
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Figure 3.2: Top left: the initial waveform. Top right: the waveform after
delayed differentiation. Bottom: the signal after one (left) and 25 (right)
moving average operations. Figure from [55].
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Figure 3.3: A ZAC filter (left), showing the finite cusp (red), the zero-area
constraint (green) and the resulting summed filter (black). On the right,
the inverse preamplifier function is shown (red) and the final filter applied
to waveforms, after convolution with the ZAC filter on the left, is shown
(black). Adapted from [55].
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228Th
(1.9 yr)

224Ra
(3.6 d)

220Rn
(55.6 s)

216Po
(0.15 s)
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Figure 3.4: The 228Th decay chain. α decays are shown in red, while β

decays are shown in blue. The half lives of all isotopes are reported in
parentheses. Values from [135].

3.2 procedure

To convert the uncalibrated Gauss and ZAC estimators to physical energy
values (into keV) the germanium detectors are exposed to 228Th sources,
lowered from above the cryostat alongside the detector strings.

3.2.1 Sources

The germanium detectors are calibrated by exposing them to three 228Th
sources with activities of about 10 kBq each. The 228Th sources used were
custom produced as a collaboration between the University of Zurich, the
Paul Scherrer Institute (PSI) and the University of Mainz. Their encapsu-
lation in gold foils reduces the rate of (α, n) reactions. It is important that
the sources have a low neutron emission rate, to prevent the production
of 77Ge through neutron activation, whose β decay with Q = 2.9 MeV and
t1/2 = 11.3 h would pose a problematic background for the 0νββ decay
search. For more information about the production of these low-neutron
emission sources, see [134].

228Th is the calibration isotope of choice for a number of reasons. Its half-
life of 1.9 yr is convenient with respect to the experiment’s lifetime of a few
years. It decays via a number of α and β decays until reaching the stable
208Pb, see Figure 3.4. The consequent radiative decays after α and β decays
to excited states produce monoenergetic γ rays, spanning a broad energy
range. The pattern of γ lines in the resulting energy spectrum can then
be exploited to identify certain γ lines and calibrate the energy scale of a
detector with their known physical energies. Additionally, the detectors’
energy resolutions can be determined from the width of the γ lines.

The topologies of particular γ ray events from the calibration are used
to calibrate the pulse shape discrimination techniques. The highest energy
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and highest intensity γ ray in the decay chain is the 2.6 MeV γ ray emitted
in the 208Tl decay with a branching ratio of 99.754(4)%. When this γ ray
interacts in the detector volume, due to its high energy it may undergo e+e−

pair production. The electron will deposit its energy in the detector, while
the positron will quickly thermalise and then annihilate with an atomic
electron in the detector. The resulting annihilation γ rays may then either
be absorbed inside the detector or escape, as shown in Figure 3.5.

The peak in the energy spectrum produced when all energy is contained
in the detector is called the Full Energy Peak (FEP), at 2.6 MeV. The peaks
produced when one (two) annihilation γ ray(s) escape are called the Single
Escape Peak (SEP) and the Double Escape Peak (DEP) respectively. For the
SEP, the average energy deposited in the detector is 2.6 MeV−mec2 = 2.1 MeV.
For the DEP, the deposited energy is 2.6 MeV− 2mec2 = 1.6 MeV.

For the SEP, there will be some additional broadening to the width of
this peak caused by the variance in the lost annihilation γ ray energy. This
additional variance is caused by the momentum uncertainty of the anni-
hilating atomic electron, and is called Doppler broadening since the rest
frame of the atomic electron and positron is no longer the rest frame of
the detector [136]. This contribution can be estimated using Heisenberg’s
uncertainty principle.

∆x∆p ∼ h̄/2. (3.12)

If ∆x corresponds to the size of the germanium atom (around 1.25 Å [137]),
we find ∆p ∼ 0.8 keV, i.e. we expect an additional contribution to the reso-
lution of around a keV.

The DEP is of particular interest since the energy deposited by the elec-
tron positron pair is contained within 1 mm3, similarly to the two electrons
in a ββ decay. Conversely, the FEP of 212Bi at 1621 keV is more multi-site
like. These peaks are therefore used to train and calibrate the various pulse
shape discrimination methods.

3.2.2 Operation

Calibration data is taken approximately every 7-10 days. In total, 167 cali-
brations were performed during Phase II from December 2015 to November
2019. Since some periods of time were excluded from the final 0νββ decay
analysis, only 142 of these calibrations were used to calibrate physics data.

During normal operation, the 228Th sources are stored on top of the lock,
at about ∼ 8 m above the array and above the level of the LAr. Each source
is encapsulated within stainless steel capsules and attached to a tantalum
absorber used for shielding. Three Source Insertion Systems (SIS), devel-
oped at UZH [138] and shown in Figure 3.6, are responsible for lowering
the sources into the cryostat and positioning them next to the detectors.
The sources are lowered ∼ 8 m via a rotary system that unrolls steel bands
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Figure 3.5: Possible event topologies due to a 2.6 MeV γ ray: 1) all the en-
ergy is contained within the detector (left), resulting in a peak at 2.6 MeV,
the Full Energy Peak (FEP), or 2) one annihilation photon escapes (centre),
resulting in a peak at 2.1 MeV, the Single Escape Peak (SEP), or 3) both an-
nihilation photon escape (right), resulting in a peak at 1.6 MeV, the Double
Escape Peak (DEP).

holding each source. The three sources are arranged around the detector
array in order to expose them as homogeneously as possible, as shown in
Figure 3.7. The sources are lowered to three heights, close to the bottom,
centre and top of the array, at 8570, 8405 and 8220 mm below their initial
storage position.

Figure 3.6: Drawing of the system used to lower the individual source from
its parking position to the detector array.

During calibrations, the PMTs of the LAr veto are shutdown due to the
high event rates they would otherwise observe. Until 28th August 2017 the
high voltage supply of the SiPMs could not be ramped down, and so to
limit data acquisition rates, only one source was lowered at a time, with
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Figure 3.7: Top view of the detector strings (grey) and calibration sources
(black). Not to scale.

data taken at each position data for 15-20 min. Afterwards, the voltage
of the SiPMs was lowered during calibration, and all three source were
lowered at once, with data taken at each height for 30 min. The time is
chosen such that stronger lines and especially the double escape peak are
clearly visible in every detector, while minimising the total experimental
time devoted to calibrations. Typically around 1000-3000 events in the line
at 2.6 MeV are observed in the smaller BEGe type detectors and 6000-10000

in the larger Coaxial and Inverted Coaxial type detectors.

The resulting energy spectrum is recorded for every detector separately.
The summed spectra for each detector type from all calibrations are shown
in Fig. 3.8 The calibration data is processed during data production to cre-
ate tier1 data, containing waveforms in ROOT [105] format, and tier2 data,
containing processed properties of the waveforms, including the Gauss and
ZAC energy estimators. The calibration is performed on tier2 data with the
uncalibrated energy estimators. The resulting calibration curves describing
the relationship between uncalibrated energy estimators and physical ener-
gies are applied when producing tier3 data, where only the physical ener-
gies are then stored. The structure of Gerda data is briefly summarised in
Table 3.1.

3.3 calibration of the energy scale

The output of the analysis for each calibration run is calibration curves,
i.e. functions for each detector, which describe how the uncalibrated en-
ergy estimators are transformed into physical units. Dedicated software
automates much of this analysis, based on ROOT.
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Data type Format Content
tier0 Binary Waveforms, timestamp,

muon flags, etc.
tier1 ROOT Waveforms, timestamp,

muon flags, etc.
tier2 ROOT Uncalibrated energy,

baseline, trigger, rise-time,
etc.

tier3 ROOT Calibrated energy,
uncalibrated A/E, etc.

tier4 ROOT Calibrated energy, event
flags

Table 3.1: Gerda data structure

Firstly, the tier2 files are read, and quality cuts are applied to reject non-
physical events. These quality cuts are similar to those used on background
data and described in Section 2.3.2, but feature additional cuts to more
effectively reject pile-up events since they occur more frequently during
calibration runs than during physics runs due to the higher event rate,
as well as those events due to the test pulser. Additionally, a cut on the
uncalibrated Gauss energy of 400 a.u. removes events with low energy
depositions. For more details on these cuts, see [55, 106].

The remaining events are binned into energy spectra, one for each detec-
tor. The bin width is fixed for each energy estimator and corresponds to
approximately 0.3 keV, less than the expected width of the peaks. The up-
per range of the histograms is also fixed and corresponds to about 4 MeV,
greater than the energy of the highest visible line in a single calibration, the
2.6 MeV line. Such a spectrum is shown in Figure 3.9.

A search is then performed for peaks in the spectrum, using ROOT’s
TSpectrum method. This algorithm searches for peaks with height greater
than some threshold (5% of the height of the largest peak, in our case)
and with an approximate width σ (2 bins in our case). The result is the
number of peaks and their approximate positions. Each peak position is
then determined more precisely by finding the position of the maximum
in the ±3 bins around the estimated peak position. The located peaks are
indicated with red triangles in Figure 3.9.

γ ray lines observed with energy above 2.6 MeV are summation lines
caused by the almost simultaneous emission of two γ rays as part of a
cascading nuclear decay. Since these lines are of a too low intensity to
be observed in a single calibration spectrum, the high intensity 2.6 MeV
line can reliably be identified as the highest energy peak found. From
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Figure 3.8: Energy spectra of 228Th sources recorded with the germanium
detectors of Gerda and prominent lines due to 208Tl (black) and 212Bi (grey).
These are summed spectra over all calibrations and detectors, for each of
the three detector types.

the location of this peak, TFEP, a preliminary calibration for the energy
estimator T is applied assuming a linear energy scale without offset:

E0(T) =
EFEP

TFEP
· T . (3.13)

A candidate peak is confirmed if its preliminary estimated energy is within
6 keV of an energy in the literature values list, given in Table 3.2. The line
at 510.8 keV is excluded, since this energy coincides with the annihilation
peak at 511 keV, which is also affected by Doppler broadening.

The approximate energy threshold is located by looking for a sharp in-
crease in the bin content, that is greater than 8 times the standard deviation
of the first 100 bins. If the fitting region of a peak is within 20 bins of this
threshold, the fit is not performed, since the shape of the threshold cannot
easily be modelled. This minimum energy threshold is shown in purple in
Figure 3.9, along with its estimated position in keV.

To determine the position and energy resolution of the γ line peaks, fits
are performed locally around the identified peaks. The sizes of these asym-
metric windows are configured individually for each peak to avoid inter-
ference from neighbouring peaks. The fitting windows vary from 10 keV to
20 keV.

Depending on the particular properties of a peak, such as the intensity,
different fit functions are used to model the distribution of the energy spec-
trum.
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Figure 3.9: Example spectrum of the ZAC energy estimator, for the BEGe
type detector GD91B from the calibration on 2nd February 2018. The min-
imum energy threshold for fitting, as determined by detecting the energy
threshold is shown in purple, together with its estimated energy. The red
triangles denote peaks found by the TSpectrum::Search method in ROOT.
The vertical green lines indicate those peaks that were successfully iden-
tified with a literature value and fitted, and are labelled with their deter-
mined energies.

Isotope Energy Branching ratio Fitting category
208Tl 583.2 keV 84.5% High statistics

763.1 keV 1.81% High statistics
860.6 keV 13% High statistics

1592.5 keV N/A SEP/DEP
2103.5 keV N/A SEP/DEP
2614.5 keV 99.8% High statistics
3125.5 keV N/A Low statistics
3197.7 keV N/A Low statistics
3475.1 keV N/A Low statistics

212Bi 727.3 keV 7% High statistics
785.4 keV 1.1% Low statistics
893.4 keV 0.38% Low statistics

1078.6 keV 0.6% Low statistics
1512.7 keV 0.3% Low statistics
1620.5 keV 1.5% Low statistics

Table 3.2: 228Th and 212Bi peaks implemented in the calibration software,
with branching ratios and the peak fitting category (see text).

As a minimum, a Gaussian function, g, is used to describe the signal,
with a linear function, flin, describing the underlying background, defined
as:

g(E|n, µ, σ) =
n√
2πσ

exp
(
− (E− µ)2

2σ2

)
, (3.14)
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flin(E|a, b) = a + b · E, (3.15)

where n, σ, and µ are the intensity, width, and position of the peak , and
a and b give the level of the constant and linear background components
respectively.

For high statistics peaks (as listed in Table 3.2), and the single- and
double-escape peaks, a step function fstep is added to model the flat back-
grounds occurring only above or below the peak from multiple Compton
scatters:

fstep(E|µ, σ, d) =
d
2

erfc
(

E− µ√
2σ

)
. (3.16)

where d is the height of the step function.
Finally, for the high statistics peaks, a low energy tail is added to model

the effects of incomplete charge collection:

h(E|µ, σ, c, β) =
c

2β
exp

(
E− µ

β
+

σ2

2β2

)
erfc

(
E− µ√

2σ
+

σ√
2β

)
, (3.17)

with additional fit parameters c and β parametrise the height and slope of
the tail respectively. Examples of peak fits are depicted in Figure 3.10.

Peaks must then pass goodness of fit selection criteria or are excluded
from further analysis. The resolution, as given by the FWHM, must be
greater than 1.5 keV and less than 11 keV. The amplitude of the peak must
also be at least ten counts, and greater than 2.5 times the underlying back-
ground level. Finally, the error on the Gaussian width must be less than
the central value itself. The 2.6 MeV line is not required to pass these cuts
to ensure at least an approximate calibration curve can be determined. Typ-
ically around 5–8 peaks per detector survive all selection criteria. γ rays
below 500 keV do not typically form peaks in the calibration spectrum due
to the calibration data acquisition energy threshold.

To determine the calibration curve, the peak positions in terms of the
uncalibrated energy estimator T of identified peaks is plotted versus their
physical energy according to literature E, and a linear function is fitted:

E(T) = p0 + p1 · T. (3.18)

This curve describes the peak positions within a few tenths of a keV. An
example calibration curve for the ZAC energy estimator is shown in Fig-
ure 3.11.

Typically, the calibration curve is used to obtain an energy estimator
for the physics data until the next calibration is taken. However, if a cali-
bration is taken due to changes in the experimental setup, or instabilities
in the detector array are observed, the calibration curves may be applied
retrospectively to additionally calibrate the period after instabilities. The
unstable period itself would be not be used for physics analysis.
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Figure 3.10: Examples of fits to peaks in the calibration spectrum for the
Coaxial detector ANG1 on 19th March 2018. The left peak is the low statis-
tics γ line at 1620 keV, and is fitted with the minimum fitting function of
a Gaussian and linear background. The right peak is the high statistics γ

line at 2615 keV, whose fitting function additionally includes a step func-
tion and low energy tail. The top (middle) panel shows the spectrum and
fit with a logarithmic (linear) scale. The bottom panel shows the residuals
of the histogram to the total fitted function.

3.3.1 Quadratic correction

After the 2018 upgrade, several detectors (the new IC detectors and one
coaxial detector, ANG2) exhibited larger residuals in their calibration curves
compared to the other detectors, up to 2.5 keV at 1.5 MeV, for ANG2. These
effects could be largely accounted for by the incorporation of a quadratic
correction to the calibration curves

E(T) = m0 + m1 · E0(T) + m2 · E2
0(T), (3.19)

where E0 is the energy estimator after the application of the linear calibra-
tion curve as described in Section 3.3.

The parameters m0, m1 and m2 were determined by fitting the residuals
of each detector’s calibration curves, as shown in Figure 3.12. These param-
eters were observed to be stable, with the exception of a single jump for
IC48A, IC50A and IC50B following operations in the clean room, as shown
in Figure 3.13. Therefore a single correction for each detector’s stable pe-
riod was applied, using average parameters.

After the quadratic correction, the remaining residuals were within a few
tenths of a keV as for the other detectors (see Section 3.7).
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Figure 3.11: Calibration curve (left) and residuals (right) for the BEGe type
detector GD91B, from the calibration taken on 2nd February 2018.
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Figure 3.12: Fitting the residuals of the calibration curve with a quadratic
function, as shown for detector ANG2 for the calibration on 15th October
2018.

3.4 monitoring of detector performance and stability

To consistently combine data over an extended period of time while pre-
serving the excellent energy resolution of the germanium detectors, it is
vital to monitor the stability of the energy scale and exclude periods with
shifts and fluctuations which would degrade the peaks’ widths. At the
same time, as much data should be preserved for the 0νββ decay search
analysis in order to reach the highest possible sensitivity.

As explained in Section 2.3.1, test pulses are regularly injected into the
readout electronics to monitor the stability of the data acquisition system.
Periods with significant (> 1 keV) jumps or drifts in the output of the
electronics chain are excluded from data analysis and a calibration is per-
formed once the affected detectors stabilise.
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Figure 3.13: Stability of the quadratic components to the residual over
time. While the parameters of the quadratic correction are stable for ANG2,
IC50B exhibits a significant jump and therefore two corrections are applied.
While IC74A is as equally stable as ANG2, the other IC detectors have
a jump at the same time as IC50B and two corrections are applied (not
shown). The lines and bands show the fitted central values used in the
correction.
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We observe the position and width of the high intensity 2.6 MeV γ line in
the calibration spectrum, using the Gauss energy estimator. If the position
of this line changes beyond 1 keV between successive calibrations without
an identifiable reason (such as maintenance works or some specific inci-
dent such as the earthquake in August 2016), the data of the respective
detector is discarded for that period of time. Smaller or temporary drifts
may still affect the obtainable effective energy resolution and are discussed
as a systematic uncertainty in Section 3.6.3.

The shift in energy scale is defined as the shift in the position of the
2.6 MeV γ line, approximated as

∆E = (T1 − T2) ·
2614.5 keV

T2
, (3.20)

where T1 and T2 label the position of the line in uncalibrated units for the
two successive calibrations.

If the energy scale changes beyond what we consider tolerable between
calibrations, around 1 keV, without an identifiable reason (maintenance,
longer break, incident), data of the respective detector is discarded from
the analysis dataset, and the detector is used only in anti-coincidence (AC)
mode, i.e. only to determine the event multiplicity, and not contributing
exposure to the 0νββ decay search analysis.

The energy resolution is monitored by comparing the width of the 2.6 MeV
γ line between successive calibrations. As we use average resolutions de-
rived from multiple calibrations (see Section 3.5) for each detector’s par-
tition (see Section 3.5.1) in the statistical analysis, the resolution must be
sufficiently stable during the time period of each partition, so the average
resolution is indeed representative. Smaller or temporary drifts may still
affect the obtainable energy resolution and are discussed as a systematic
uncertainty in Section 3.6.3.

Plots and tables detailing the shifts and resolution of the 2.6 MeV line
for each detector channel are reported to the collaboration after each cali-
bration, in addition to general comments on the calibration’s stability. An
example is shown in Figure 3.14. In Figure 3.15 the fluctuations in the
energy scale are depicted over time, while in Figure 3.16 the stability of
the detectors’ resolutions is shown. Figure 3.17 shows the average stability
performance, where each calibration’s shift is estimated as the mean of all
shifts for each detector type with the standard deviation shown as error
bars. The estimated mean (± standard deviation) shift is (0.01± 0.37) keV,
(−0.03± 0.45) keV, and (−0.01± 0.35) keV for the BEGe, Coaxial and IC
detector types, respectively.
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Figure 3.14: Monitoring plots as sent to the gerda-runteam email list for
the calibration of 26th April 2019. The grey lines separate the detectors on
different strings.
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Figure 3.15: Shifts in energy scale (as defined in Eq. 3.20) between calibra-
tion for the three detector types. Each colour represents a different detector
of a given detector type.
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Figure 3.16: Resolution of the 2.6 MeV line over time for the three detector
types. Each colour represents a different detector of a given detector type.
Note the differing ranges of the y-axis in each case. While the resolution
of the BEGe detectors generally improved after the mid-2018 upgrade, the
resolution of the Coaxial detectors became more unstable after this point.
In particular the resolution of the Coaxial detector ANG2 (shown in blue)
at 2.6 keV eventually degraded to more than 10 keV.
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Figure 3.17: Stability of the 2.6 MeV line over time, averaged for each de-
tector type. The centre point indicates the mean value, while the error bar
indicates the RMS variation across detectors for that calibration.

3.5 analysis of combined calibration spectra

As described in Section 2.3.4, the 0νββ decay analysis requires inputs for
each of the 408 partitions, such as the signal efficiency and energy res-
olution. In addition, parameters such as the uncertainty on the energy
resolution and energy reconstruction are required to determine the uncer-
tainty on the limit. This section describes how the partitions are divided
according to the stability of the detectors, and how the necessary values
are evaluated.

In earlier Gerda 0νββ decay analyses, partitioning was not performed,
and data from multiple detectors was combined to form a dataset for each
detector type. Therefore effective values were calculated for the resolution
and energy construction uncertainty for each dataset, by combining data
from multiple detectors. The partitioning was introduced as a more fine-
grained approach to take advantage of additional information about our
detectors. However, this approach comes with an increase in complexity
and required computing power. Since both approaches are valuable for
describing modular experimental setups such as Gerda, Majorana and
Cuore, they are each described here.

3.5.1 Partitioning

Due to hardware changes, the detectors may experience jumps in their en-
ergy resolution and energy scale over time. To more accurately reflect the
properties of a detector at a certain time, for the final Gerda analysis [88],
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we divide the full data taking period into stable sub-periods called parti-
tions.

The stability is judged based on two parameters: the resolution at the
FEP (2.6 MeV) and the residual at the SEP (2.1 MeV), defined as

∆E = Etrue − Ecal, (3.21)

where Etrue = 2103.512 keV is the literature value for the SEP energy, and
Ecal is the calibrated position of the peak, determined by fitting the cali-
brated energy spectrum. The former reflects the changes in the detector
resolution, while the latter catches the changes in the energy bias at the
energy peak closest to Qββ, with an energy difference of 65 keV. Examples
are shown in Figure 3.18.

All divisions are based on visual inspections with a rough guideline,
e.g., resolution jumps & 0.3 keV were generally considered in making a
division. The majority of the detectors have only one division at the time
of the upgrade that took place in mid-2018. Other times where a division
was made coincide with hardware operations, as shown in Table 3.3, and
the start time is given by the validity start of the following calibration.

After these divisions, each detector is divided into one to four periods, as
shown in Figure 3.19. For the purposes of the statistical analysis, a partition
is defined by a period where all detectors’ parameters are stable. Therefore
by this definition, 408 partitions are formed, split by detector and the times
given on the y-axis of Figure 3.19. During the calibration analysis each
detector is treated separately, thus in the following the word partition will
be used to describe the stable sub-periods of each detector. We therefore
count 85 partitions for which the resolution and other parameters must be
evaluated.

3.5.2 Combined calibration spectra

We calculate the relevant parameters for the 0νββ decay search analysis
for each partition from combined energy spectra of all calibrations in that
partition. This needs to be performed on calibrated spectra with consis-
tent binning to consistently sum same energy bins in the histogram and
avoid deterioration of resolution or peak shape due to fluctuations of the
uncalibrated energy scale over time.

As an improvement to the previous method of simply adding all cali-
bration spectra, the combined spectra are now formed by first normalising
each calibration to account for varying statistics. The statistics collected
during a calibration vary for a number of reasons, including the decay of
the sources with their half-life of 1.9 yr, replacement of the sources, and
the variation in the length of the calibration runs themselves. A proxy for
the degree of statistics collected is given by the number of events above
2.4 MeV, and is shown in Figure 3.20a.
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Figure 3.18: Examples of partitioning based on the stability of the resolu-
tion of the 2.6 MeV γ line and the residual of the SEP at 2.1 MeV. Different
groups are shown in different colours. Most detectors are partitioned only
at the time of the upgrade in mid-2018, as an improvement in the resolu-
tion of most BEGe detectors was observed, along with a degradation in the
resolution of the Coaxial detectors.
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Time in UTC Calibration Reason

2015-12-20 14:42:52 run0053, 20151223 start of data taking
2016-07-21 16:42:26 run0069, 20160722 residual change in GD02C
2016-09-23 08:35:06 run0072, 20160923 residual change in GD79C,

resolution change in ANG2

2017-06-02 13:24:00 run0083, 20170606 water tank refilled, resolu-
tion change in ANG3

2017-07-03 13:07:18 run0084, 20170706 after HV filter change, resolu-
tion change in ANG4

2018-07-20 12:56:28 run0095, 20180725 start of data taking after up-
grade

2018-10-15 07:27:35 run0098, 20181015 resolution change in ANG4

and RG2, some HV adjust-
ments to other channels

2018-12-21 18:39:59 run0100, 20181229 after special calibration run,
resolution change in GD00C

2019-01-05 18:47:28 run0101, 20190106 after power loss, resolution
change in ANG2

2019-01-19 22:06:46 run0103, 20190121 after Ra calibration (same
as quadratic correction split),
resolution change in ANG4,
RG2, and RG1

2019-01-31 13:04:32 run0104, 20190131 after power loss, resolution
change in GD76B

Table 3.3: Timestamps used for splitting the data taking period in different
detectors.
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Figure 3.19: The division of the detectors’ data into partitions. The majority
of the detectors have only one split at the time of the upgrade that took
place in mid-2018. Additional divisions are made for 9 detectors: ANG2,
ANG3, ANG4, GD00C, GD02C, GD76B, GD79C, RG1 and RG2. Here the
dark blue, bright blue, green and yellow colour blocks indicate the zeroth,
first, second and third partitions respectively of each detector. White blocks
indicate where a detector does not contribute data.

They are then weighted according to the period where the corresponding
calibration curves were applied to physics data. For ANG3, this can vary
between 0.29 days and 22 days, with an average of 7.9 days, as shown in
Figure 3.20b.

This entire procedure for forming such a combined energy spectrum, or
superspectrum, for each detector and partition, is therefore defined as:

superspectrumdet, partition = Σcals wdet, cal · spectrumdet, cal, (3.22)

where

wdet, cal ∝
physics duration

events above 2.4 MeV
(3.23)

The effect of this weighting is shown schematically in Figure 3.21. The
combined spectrum for ANG3 for its first partition is shown in Fig. 3.22.

3.6 energy resolution

3.6.1 Resolution curves

Once the calibration spectrum is formed, peaks can be located by their
literature values, since this is now a calibrated spectrum. The fit procedure
described in 3.3 is then applied to determine the width of each peak.

Lines are excluded with energy less than 500 keV which may be close to
the data acquisition threshold, as well as summation peaks. Since Doppler
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Figure 3.20: Left: the number of events above 2.4 MeV for each calibra-
tion run for ANG3. Right: the amount of time calibrations are applied to
physics data for ANG3.
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Figure 3.21: The effect of weighting calibration contributions to the com-
bined spectrum for the first partition of ANG3. In the top image, each bar
represents a calibration and the width is given by the amount of statistics
gathered in each calibration. This shows the contribution each calibration
would make to the combined spectrum if they were simply summed. In the
bottom image the width is given by the exposure contribution of that cali-
bration to the physics data. This shows the contribution of each calibration
after the weighting procedure.
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Figure 3.22: Combined ZAC energy spectrum for the first partition of
ANG3. The red lines show the fits to peaks in the spectrum.

broadening is expected in the SEP at 2.1 keV, this is also excluded. Broad-
ening is also observed in the double escape peak, hypothesised to origi-
nate due to the events occurring more frequently in the outer regions of
the detectors and thus being more susceptible to incomplete charge collec-
tion [139]. This line is therefore excluded as well.

The remaining resolutions are then fitted with the semi-empirical for-
mula

FWHM = 2.355 σ = 2.355
√

a + bE, (3.24)

with energy E and fit parameters a and b. Figure 3.23 shows the resolution
curve obtained for the first partition of ANG3.

Resolutions at Qββ and best fit parameters for Eq. 3.24 are listed in Ta-
ble 3.4. The uncertainties listed are purely statistical and derived from the
fit. See Section 3.6.3 for a discussion of systematic uncertainties.

3.6.2 Effective resolution of a dataset

While resolution curves for detector partitions give the most fine-grained
information about the behaviour of the germanium detectors, various anal-
yses require the combination of multiple detectors’ data, and therefore ef-
fective resolutions, possibly at numerous energies, describing the behaviour
of that group are required. Effective resolutions are also convenient for de-
scribing the behaviour of the array as a whole, for example for presentation
purposes.

The method used for calculating effective resolutions depends on the
specific application. In the following, the resolution curves used for back-
ground modelling, and those previously used for the 0νββ decay search,
are discussed.
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Figure 3.23: ZAC energy resolution of peaks of the combined calibration
spectrum for the first partition of ANG3. The parameters in Equation 3.24

are determined from a fit, and the value at Qββ is then interpolated.

FWHM at Qββ [keV] a [keV2] b [10−4 keV]
Detector Partition
ANG1 0 3.425± 0.006 1.187± 0.008 4.56± 0.06
ANG2 0 4.014± 0.007 1.28± 0.01 7.96± 0.08

1 4.168± 0.005 1.014± 0.006 10.39± 0.06
2 6.78± 0.02 1.05± 0.03 35.5± 0.3
3 8.81± 0.01 0.51± 0.02 66.1± 0.3

ANG3 0 3.340± 0.005 1.005± 0.007 4.94± 0.05
1 3.615± 0.008 1.24± 0.01 5.47± 0.08
2 3.406± 0.005 0.987± 0.007 5.42± 0.05

ANG4 0 3.129± 0.004 0.713± 0.007 5.16± 0.04
1 3.431± 0.008 0.93± 0.01 5.84± 0.08
2 3.878± 0.005 0.644± 0.009 10.14± 0.06
3 6.00± 0.01 0.19± 0.02 30.8± 0.2

ANG5 0 3.288± 0.006 0.967± 0.006 4.82± 0.05
GD00A 0 3.03± 0.01 0.830± 0.009 4.0± 0.1

1 2.334± 0.009 0.220± 0.005 3.74± 0.05
GD00B 0 2.988± 0.007 0.859± 0.008 3.68± 0.06

1 2.484± 0.007 0.336± 0.005 3.81± 0.05
GD00C 0 2.631± 0.005 0.476± 0.004 3.79± 0.04

1 2.50± 0.01 0.327± 0.006 3.93± 0.07
2 2.786± 0.009 0.485± 0.009 4.49± 0.07

GD00D 0 2.787± 0.006 0.656± 0.007 3.65± 0.05
1 2.514± 0.007 0.350± 0.005 3.87± 0.05

GD02A 0 2.391± 0.006 0.253± 0.003 3.81± 0.04
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FWHM at Qββ [keV] a [keV2] b [10−4 keV]
Detector Partition

1 2.414± 0.009 0.276± 0.005 3.80± 0.05
GD02B 0 2.91± 0.01 0.78± 0.01 3.7± 0.1

1 2.55± 0.01 0.385± 0.008 3.85± 0.07
GD02C 0 2.67± 0.01 0.310± 0.008 4.79± 0.09

1 2.688± 0.008 0.308± 0.005 4.88± 0.06
2 2.681± 0.007 0.315± 0.005 4.81± 0.05

GD32A 0 3.34± 0.02 0.49± 0.02 7.4± 0.1
1 2.56± 0.01 0.374± 0.008 3.97± 0.07

GD32B 0 2.692± 0.005 0.483± 0.003 4.04± 0.03
1 2.554± 0.008 0.356± 0.005 4.02± 0.05

GD32C 0 2.760± 0.006 0.544± 0.005 4.07± 0.04
1 2.493± 0.007 0.297± 0.006 4.04± 0.05

GD32D 0 3.020± 0.005 0.795± 0.006 4.17± 0.04
1 2.645± 0.007 0.435± 0.006 4.05± 0.05

GD35A 0 3.121± 0.005 0.976± 0.007 3.83± 0.05
1 2.665± 0.007 0.499± 0.006 3.83± 0.05

GD35B 0 2.600± 0.004 0.382± 0.003 4.11± 0.03
1 2.473± 0.006 0.310± 0.006 3.89± 0.04

GD35C 0 2.338± 0.005 0.193± 0.003 3.89± 0.03
1 2.409± 0.008 0.257± 0.004 3.87± 0.05

GD61A 0 3.347± 0.008 1.032± 0.008 4.84± 0.07
1 2.809± 0.009 0.409± 0.008 4.97± 0.07

GD61B 0 2.997± 0.006 0.741± 0.009 4.31± 0.06
1 2.732± 0.008 0.351± 0.005 4.88± 0.06

GD61C 0 3.265± 0.006 1.15± 0.01 3.79± 0.06
1 2.600± 0.008 0.425± 0.007 3.90± 0.06

GD76B 0 3.30± 0.01 1.14± 0.02 4.0± 0.1
1 2.44± 0.02 0.38± 0.01 3.4± 0.1
2 2.65± 0.01 0.35± 0.01 4.5± 0.1

GD76C 0 2.562± 0.006 0.329± 0.004 4.19± 0.04
1 2.398± 0.006 0.206± 0.003 4.07± 0.03

GD79B 0 2.936± 0.007 0.353± 0.005 5.89± 0.05
1 2.86± 0.01 0.270± 0.008 5.89± 0.08

GD79C 0 3.55± 0.02 0.75± 0.02 7.4± 0.2
1 3.53± 0.01 0.86± 0.01 6.8± 0.1
2 3.110± 0.008 0.356± 0.006 6.81± 0.06

GD89A 0 3.185± 0.008 1.07± 0.01 3.71± 0.08
1 2.427± 0.007 0.332± 0.005 3.58± 0.05

GD89B 0 3.84± 0.01 1.83± 0.01 4.0± 0.1
1 2.536± 0.009 0.391± 0.007 3.77± 0.06

GD89C 0 3.149± 0.007 0.747± 0.009 5.11± 0.06
1 2.790± 0.008 0.375± 0.006 5.04± 0.06

GD89D 0 2.671± 0.009 0.548± 0.007 3.62± 0.07
1 2.385± 0.009 0.278± 0.007 3.67± 0.06

GD91A 0 2.390± 0.006 0.245± 0.004 3.85± 0.04
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FWHM at Qββ [keV] a [keV2] b [10−4 keV]
Detector Partition

1 2.409± 0.007 0.250± 0.005 3.91± 0.05
GD91B 0 3.48± 0.01 1.46± 0.02 3.6± 0.1

1 3.169± 0.008 0.919± 0.009 4.37± 0.07
GD91C 0 3.70± 0.02 1.33± 0.02 5.6± 0.2

1 3.026± 0.008 0.427± 0.006 6.01± 0.06
GD91D 0 2.856± 0.006 0.682± 0.007 3.87± 0.05

1 2.444± 0.006 0.288± 0.005 3.87± 0.04
IC48A 0 2.744± 0.004 0.283± 0.004 5.27± 0.03
IC50A 0 2.944± 0.005 0.343± 0.005 5.98± 0.04
IC50B 0 2.874± 0.005 0.197± 0.004 6.34± 0.04
IC74A 0 2.841± 0.006 0.293± 0.005 5.70± 0.05
RG1 0 3.683± 0.006 1.194± 0.009 6.14± 0.06

1 3.74± 0.01 1.49± 0.02 5.1± 0.1
2 4.13± 0.01 1.02± 0.01 10.1± 0.1

RG2 0 3.861± 0.005 0.982± 0.008 8.36± 0.05
1 4.122± 0.009 1.23± 0.01 9.0± 0.1
2 4.69± 0.02 0.96± 0.02 14.8± 0.2

Table 3.4: Resolution at Qββ and parameters and errors of Eq. 3.24 for all
enriched detectors and partitions
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Gaussian mixture for background modelling

One application concerns the fitting and modelling of the Gerda back-
ground spectrum, as in [109]. Here, events are divided into three datasets
depending on the event multiplicity and the detector geometry, namely
BEGe detectors and Coaxial detectors. Simulations are used to model con-
tributions to the energy spectra, where event energies are smeared with
resolution curves to better describe the data.

When the data from different detectors are combined into a single dataset,
Gaussian peaks in the individual spectra combine to become the sum of
multiple Gaussian distributions with different centroids and resolutions: a
Gaussian mixture. An example with constrasting properties of individual
Gaussians is shown in Fig. 3.24. If instead the properties of the individual
Gaussians are sufficiently similar, the resulting peak will be approximately
Gaussian and can be modelled as such. The width of a Gaussian which
models the Gaussian mixture is defined as the effective resolution.
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Figure 3.24: Schematic to show the combination of two gamma lines with
different positions and resolutions to a Gaussian mixture (black).

The variance of a distribution f (x) with mean µ is defined as:

σ2 = E
[
(x− µ)2

]
= E

[
x2
]
− E [x]2 . (3.25)

A Gaussian mixture can be expressed as

f (x) = ∑
i

wig(x|µi, σi), (3.26)
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where g(x|µi, σi) is a normal distribution with mean µi and variance σ2
i , and

weights wi. The moments of the Gaussian mixture can be easily computed:

E[x(k)] =
∫

x(k) f (x)dx

=
∫

x(k) ∑
i

wig(x|µi, σi)dx

= ∑
i

wi

∫
x(k)g(x|µi, σi)dx

E[x] = ∑
i

wiµi (3.27)

E[x2] = ∑
i

wi(σ
2
i + µ2

i ) (3.28)

The variance of a Gaussian mixture is thus given by:

σ2 = ∑
i

wi

(
σ2

i + µ2
i

)
−
(

∑
j

wjµj

)2

. (3.29)

For a dataset comprised of individual detector partitions, these param-
eters stand for the individual detector partition’s resolution σi, and peak
position µi. The peak positions can be different due to independent sys-
tematic effects on the energy scale. The weights are the expected relative
event count contributions of individual detectors. For peaks that are pro-
portional to exposure Ei = mi · ti, with individual detector’s mass mi and
runtime ti, the relative contribution is:

wi =
Ei

E , (3.30)

where E = ∑j Ej is the total exposure of the dataset.
Assuming the positions of the peaks to be the same, i.e., biases in energy

scale to be negligible (see Section 3.7), Eq. 3.29 simplifies to:

σ =

√
1
E ∑

i
Ei σ2

i , (3.31)

with total error δσ resulting from the errors of individual detector resolu-
tions δσi :

δσ =

√
1
E2σ2 ∑

i
(Eiσiδσi)

2, (3.32)

assuming negligible uncertainty in the weights.
As an example, Fig. 3.25 shows the Gaussian mixture model for two

datasets: one for the IC detectors, and one for the Coaxial detectors after
the mid-2018 upgrade. Red lines indicate Gaussian shaped peaks for indi-
vidual detectors partitions, with the resolution taken at Qββ, and the offset
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given by the observed deviation of the single escape peak position from
literature. These are then weighted by their exposures and summed to give
the Gaussian mixture (black line). The blue line is the signal model used to
model a peak at Qββ, which is a simple Gaussian with zero offset with the
FWHM as given by the effective resolution of the dataset. For the IC detec-
tors, the Gaussian mixture model appears very close to a Gaussian shape,
as the offsets are small and the detectors in each dataset have similar resolu-
tions. However, for the Coaxial detectors, the resolution of ANG2 is much
worse than the other detectors, and makes the simplifying assumption of
a single effective resolution for the dataset ill advised. This motivates the
partitioning approach for the 0νββ decay search.
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Figure 3.25: Comparison of simplified Gaussian signal model (dashed blue)
to the more detailed Gaussian mixture signal model (solid black) for IC
detectors (left) and Coaxial datasets before the mid-2018 upgrade (right).
Red lines show individual partition’s contributions.

To calculate the effective resolution curves, first, the individual detector
partition resolutions for lines in their combined calibration spectra are de-
termined as in Section 3.6.1. All lines excluded for the detector partition
resolution curves, described in Section 3.6.1, are also excluded here, namely
lines below 500 keV, the single- and double-escape peaks, and the summa-
tion lines. Additionally, all gamma lines for which not all detectors in a
dataset observe that gamma line are excluded.

The remaining detector partition resolutions are combined to form effec-
tive resolutions for each dataset according to Eq. 3.31.Their energy depen-
dence is then fitted with the function in Eq. 3.24.

Calculated effective resolution curves for the three detector types and
using Eq. 3.31 are shown in Fig. 3.26. The parameters of the function for
the different divisions of the datasets are shown in Tab. 3.5, along with the
resolution at Qββ.
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Figure 3.26: Effective resolution curves for the entire Phase II period and
the three detector types.

Detector
type

Period a [keV2] b [10−4 keV]

BEGe pre upgrade 0.681± 0.001 4.27± 0.01
post upgrade 0.363± 0.001 4.32± 0.01
all Phase II 0.551± 0.001 4.294± 0.009

Coaxial pre upgrade 1.025± 0.002 6.47± 0.02
post upgrade 0.898± 0.006 20.00± 0.06
all Phase II 0.985± 0.002 10.73± 0.02

IC all Phase II 0.280± 0.002 5.83± 0.02

Table 3.5: Parameters and errors of Eq. 3.24 for the various divisions of the
Phase II period and the three detector types.
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Weighted average for 0νββ decay search

Another application where input resolutions are required is the 0νββ decay
search. As mentioned before, in earlier Gerda 0νββ decay analyses such
as [67], partitioning was not performed, and data from multiple detectors
was combined to form a dataset for each detector type. In this case, very
few events (in fact, only one) are observed close to Qββ, so using a signal
model of a Gaussian with an effective resolution as in Section 3.6.2 is not
appropriate. Instead, a simple weighted average of the partition resolutions
at Qββ gives the expected resolution to be associated with a single event,
i.e.:

σ = ∑
i

wiσi, (3.33)

where the sum goes over the partitions with standard deviations σi and
weights wi. The spread (or here, exposure-weighted standard deviation) in
resolutions across the partitions then gives the uncertainty. The resulting
resolutions and uncertainties are reported in Table 3.6.

Detector type Period FWHM at Qββ [keV]
BEGe pre upgrade 2.9± 0.3

post upgrade 2.6± 0.2
all Phase II 2.8± 0.3

Coaxial pre upgrade 3.6± 0.3
post upgrade 4.9± 1.9
all Phase II 4.0± 1.3

IC all Phase II 2.9± 0.1

Table 3.6: Energy resolutions at Qββ (FWHM) for the various divisions of
the Phase II period and the three detector types. The uncertainty is given
by the exposure weighted standard deviation.

As expected, the BEGe and IC detectors exhibit a better energy resolu-
tion than the Coaxial detectors. The Coaxial detectors’ effective resolution
degraded by 1.3 keV after the mid-2018 upgrade, largely due to the poor
resolution of ANG2 (8.8 keV).

3.6.3 Systematic uncertainties on the resolution at Qββ

The statistical uncertainty on the energy resolution at Qββ in Tables 3.4 and
3.5 decreases with rising statistics over time, and is on the order of only
a few eV. As such, we are dominated by systematic uncertainties, which
require dedicated analyses to study their various sources.

Possible sources of systematic uncertainty in the resolution at Qββ are
considered, given here in decreasing order of their contribution: (i) res-
olution shifts over time; (ii) energy scale shifts over time; (iii) the choice
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of the resolution fitting function.Due to the nature of these uncertainties,
their magnitude will not decrease over time (but might change if the de-
tector setup or analysis methods change). The total systematic uncertainty
is obtained by quadratically summing individual contributions, thereby as-
suming no correlations. Table 3.7 lists the obtained contributions to and
total uncertainty for each detector partition. In the following sections we
explain how individual contributions were determined.

Resolution shifts over time

As seen in the left figures of Fig. 3.18, while partitioning accounts for large
(> 0.3 keV) changes in the resolution, there are still variations in the resolu-
tion of the 2.6 MeV line among calibrations.

The variation is quantified by the RMS standard deviation in the resolu-
tion across a single partition σFEP, with respect to the partition resolution
at 2.6 MeV, as determined from the partition resolution curves described in
Section 3.6.1. This is then translated to the energy at Qββ, by rescaling with
respect to the resolution at Qββ, FWHMQββ

:

σQββ
=

σFEP

FWHMFEP
FWHMQββ

(3.34)

where σQββ
is the variation in the resolution at Qββ and FWHMFEP is the

resolution at the 2.6 MeV line.
The chosen method of rescaling is relatively agnostic with respect to the

cause of the variation in the resolution. Equation 3.24 can be rewritten as:

FWHM = c
√

d + E, (3.35)

where c ≡ 2.355
√

b and d ≡ a/b. If we assume all changes in the resolution
are due to changes in c, and d is constant,

∆FWHM = ∆c
√

d + E =
∆c
c

FWHM, (3.36)

recovering the relation in Equation 3.34. This assumption is supported by
the high degree of correlation between the fit parameters a and b, with an
average of -0.81 for the fitted partition resolution curves. Similarly, the Ma-
jorana collaboration finds a high degree of correlation ∼ 1 between

√
a

and b [140]. The distribution of this component of the resolution uncer-
tainty is shown in Figure 3.27. The mean value is 0.11 keV, with a standard
deviation of 0.06 keV.

Energy scale shifts over time

Once the energy scale is determined via a calibration, its stability is as-
sumed until the next calibration. Several parameters are monitored to en-
sure stability (see Section 3.4), but smaller fluctuations of the energy scale
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Resolution
shift [keV]

Pulser shift
[keV]

Fitting
function
[keV]

Total [keV]

Detector Partition
ANG1 0 0.07 0.04 0.02 0.09

ANG2 0 0.27 0.21 0.15 0.37

1 0.18 0.20 0.11 0.29

2 0.19 0.06 0.11 0.23

3 0.37 0.05 0.12 0.39

ANG3 0 0.09 0.11 0.05 0.15

1 0.07 0.11 0.07 0.15

2 0.06 N/A 0.02 0.06

ANG4 0 0.09 0.17 N/A 0.19

1 0.09 0.16 N/A 0.18

2 0.18 0.20 0.05 0.27

3 0.21 0.13 N/A 0.25

ANG5 0 0.16 0.14 N/A 0.21

GD00A 0 0.09 0.02 0.03 0.10

1 0.06 0.02 N/A 0.06

GD00B 0 0.10 0.02 N/A 0.10

1 0.12 0.12 N/A 0.17

GD00C 0 0.05 0.22 N/A 0.22

1 0.10 0.04 0.06 0.12

2 0.17 0.04 N/A 0.17

GD00D 0 0.06 0.07 N/A 0.09

1 0.08 0.03 N/A 0.09

GD02A 0 0.06 0.12 N/A 0.13

1 0.09 0.10 N/A 0.13

GD02B 0 0.10 0.02 0.04 0.11

1 0.08 0.04 0.06 0.11

GD02C 0 0.11 0.03 0.10 0.15

1 0.06 0.03 0.07 0.10

2 0.07 N/A 0.09 0.12

GD32A 0 0.35 0.04 0.12 0.38

1 0.08 0.27 N/A 0.28

GD32B 0 0.06 0.08 N/A 0.10

1 0.08 0.13 N/A 0.16

GD32C 0 0.07 0.07 N/A 0.10

1 0.07 0.12 N/A 0.14

GD32D 0 0.10 0.02 N/A 0.11

1 0.06 0.04 N/A 0.07

GD35A 0 0.11 0.08 0.05 0.14

1 0.09 0.10 N/A 0.13

GD35B 0 0.06 0.03 N/A 0.07
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Resolution
shift [keV]

Pulser shift
[keV]

Fitting
function
[keV]

Total [keV]

Detector Partition
1 0.06 0.06 N/A 0.08

GD35C 0 0.07 0.12 N/A 0.14

1 0.07 0.05 N/A 0.09

GD61A 0 0.10 0.01 0.06 0.12

1 0.10 0.06 N/A 0.12

GD61B 0 0.08 0.32 N/A 0.32

1 0.09 0.10 N/A 0.14

GD61C 0 0.07 0.25 0.02 0.26

1 0.08 0.06 0.02 0.11

GD76B 0 0.13 0.25 0.03 0.29

1 0.15 0.04 N/A 0.16

2 0.17 0.04 N/A 0.17

GD76C 0 0.14 0.11 N/A 0.18

1 0.08 0.07 0.02 0.11

GD79B 0 0.06 0.02 N/A 0.07

1 0.06 N/A N/A 0.06

GD79C 0 0.06 0.04 0.02 0.07

1 0.12 0.04 0.18 0.22

2 0.13 0.06 0.15 0.20

GD89A 0 0.07 0.03 0.04 0.09

1 0.07 0.06 N/A 0.10

GD89B 0 0.08 0.03 0.01 0.08

1 0.06 0.05 N/A 0.08

GD89C 0 0.06 0.18 N/A 0.19

1 0.10 0.02 N/A 0.10

GD89D 0 0.08 0.03 N/A 0.09

1 0.07 0.07 N/A 0.10

GD91A 0 0.07 0.04 N/A 0.08

1 0.05 0.03 N/A 0.06

GD91B 0 0.16 0.07 0.11 0.21

1 0.21 0.08 N/A 0.23

GD91C 0 0.18 0.02 N/A 0.18

1 0.05 0.03 N/A 0.06

GD91D 0 0.07 0.07 N/A 0.10

1 0.05 0.02 N/A 0.05

IC48A 0 0.06 N/A N/A 0.06

IC50A 0 0.04 N/A N/A 0.04

IC50B 0 0.08 N/A 0.05 0.09

IC74A 0 0.09 N/A 0.01 0.09

RG1 0 0.10 0.22 0.01 0.25
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Resolution
shift [keV]

Pulser shift
[keV]

Fitting
function
[keV]

Total [keV]

Detector Partition
1 0.10 0.07 N/A 0.12

2 0.07 0.06 0.06 0.11

RG2 0 0.16 0.16 0.03 0.23

1 0.11 0.08 0.10 0.17

2 0.31 0.07 0.14 0.35

Table 3.7: Contributions to the systematic uncertainty in the resolution at
Qββ for all enriched detectors and partitions. The total uncertainty is given
by the sum in quadrature of the three components, from resolution shifts,
energy scale shifts, and the choice of resolution curve fitting function.
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Figure 3.27: Distribution of FWHM uncertainty due to FEP variation per
detector partition.

still can deteriorate the resolution for physics data compared to calibration
data. Fluctuations on time scales below the typical calibration duration
(1.5 h) will be present in the calibration data as well and contribute to the
observed resolution in the resulting energy spectrum. However, fluctua-
tions on larger time scales, up to weeks, can add additional uncertainty to
the resolution in physics data compared to that obtained from calibration
data.
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One indicator for gain stability is the pulser position. By evaluating the
fluctuations in the pulser position in the time between calibrations, the
resulting contribution to the resolution can be estimated.

First, we divide the physics data into periods of 1.5 h, in order to average
out fluctuations on time scales below this which are already included in
calibration data. This amounts to 270 pulses, as one pulse is injected every
20 s. Additionally, the precision on the average position during each 1.5 h
period is improved from about 1 keV for individual pulses to 0.1 keV, en-
abling sensitivity to fluctuations of this smaller magnitude. Periods where
the input pulser itself is unstable are removed, as are periods where a de-
tector does not contribute data to the physics analysis, e.g. it is set to AC
mode. 1.5 h periods that do not contain exactly 270 pulser positions are
also excluded.

The average pulser position in the first 1.5 h period after a calibration, E0,
is used as a reference point and shifts in the following positions, Ej, are
defined as

∆Ej = Ej − E0, (3.37)

where ∆Ej is the residual with respect to the first pulser position. In Fig-
ure 3.28, this is shown for ANG3.
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Figure 3.28: Residual of pulser position averaged over 1.5 h periods relative
to the first period after a calibration. Calibrations are marked with red
vertical lines. The period of the mid-2018 upgrade is indicated in grey.

To statistically evaluate the gain fluctuations we analyse the distribution
of the residuals ∆E, normalised by their uncertainty. Were there no energy
shifts between calibrations, these standard residuals would be distributed
normally. Additional fluctuations beyond this will degrade the resolution
and the width of this distribution, and are modelled with an additional
uncertainty, σi, where i labels the detectors, that is added quadratically to
the residuals.

σj → σ′j =
√

σ2
j + σ2

i (3.38)

This is assumed to be constant in time, other than a split before and after
the mid-2018 upgrade. This size of this additional uncertainty can be eval-
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uated as that required to reduce the standard deviation of the distribution
of the standard residuals to one.

Concretely, we define α and σi such that

std

(
∆Ej

σj

)
≡ α (3.39)

std

(
∆Ej

σ′j

)
≡ 1. (3.40)

To simplify the calculations, the σj are replaced by the median value, σmed.
Then,

σ′

σmed
= α

σ′ = ασmed

= std
(
∆Ej

)
. (3.41)

Equation 3.38 can then be used to find σi:

σ2
i = std

(
∆Ej

)2 − σ2
med (3.42)

This can equivalently be expressed as

std
(
∆Ej

)2
= σ2

med + σ2
i , (3.43)

i.e. the total resolution is given by the combination of statistical fluctuations
and the additional component accounting for systematic energy shifts.

Determined values for σi are typically around 0.2 keV in standard devia-
tion, or around 0.6 keV in FWHM.

To estimate the effect of this additional component to the resolution of a
given partition, we evaluate the change in that partition’s resolution after
the contribution has been added quadratically:

σsys. =
√

FWHM2 + (2.355σi)2 − FWHM. (3.44)

The mean value for σsys. is 0.08 keV, with a standard deviation of 0.07 keV.

Choice of resolution function

We use the square root of a linear function to model the resolution as a
function of energy (Eq. 3.24). The simplest alternative to this function is to
add a quadratic term under the square root:

FWHM = 2.355
√

a + bE + cE2, (3.45)

where c is bounded to be positive, as would be motivated physically. Both
functions describe the data reasonably well between 500 keV and 2.6 MeV,
as shown in Figure 3.29.
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As an estimate for how much the resolution in Qββ varies throughout
the different reasonable choices of functions for interpolation, we use dif-
ference in the values obtained for the two choices, the square root of linear
(Eq. 3.24) and quadratic (Eq. 3.45) functions. For 40 of the 85 partitions, the
best fit value for c is zero. Of the other partitions, the average difference in
the resolution at Qββ is 0.05 keV, with a standard deviation of 0.05 keV.
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Figure 3.29: The resolution of peaks in combined calibration spectrum for
the first partition of ANG3, with square root of linear and quadratic func-
tions fit to them.

3.7 energy bias

If we look at a certain event, its reconstructed energy will fluctuate statisti-
cally according to the resolution. However, it might also be systematically
displaced due to static effects connected to the calibration procedure and
assumptions therein. The size of these biases can be estimated by compar-
ing the observed position of gamma lines in physics and calibration data
to their literature positions. For calibration data, the statistics in combined
calibration spectra are sufficient to reach sub 0.1 keV precision for the peak
position.

To evaluate any remaining energy bias after the calibration procedure
and quadratic correction, we look at the residual at the SEP, a proxy for
events near Qββ. While the average bias for all partitions is centred around
0, the standard deviation among partitions is 0.3 keV, as shown in Fig-
ure 3.30a. Since the 0νββ decay search is extremely sensitive to the energy
of the events falling close to Qββ, it was decided that as part of the sta-
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tistical analysis, the energies of events in the region of interest would be
corrected by adding the calculated bias.
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Figure 3.30: Left: observed energy bias at the SEP. Right: energy bias un-
certainty.

This approach was justified by studying the 42K peak (at 1525 keV) in the
physics data and the DEP (at 1593 keV) in the calibration data, which are
two closely located peaks with the former appearing in the physics data
and the latter in the calibration data, similar to Qββ and the SEP. Based on
the residual at DEP, one can correct for the energies of the events in the
42K peak. This is shown in Figure 3.31. This correction reduces the mean
residual at the 42K line from −0.14 keV to 0.01 keV.

AN
G1

AN
G2

AN
G3

AN
G4

AN
G5

GD
00

A
GD

00
B

GD
00

C
GD

00
D

GD
02

A
GD

02
B

GD
02

C
GD

32
A

GD
32

B
GD

32
C

GD
32

D
GD

35
A

GD
35

B
GD

35
C

GD
61

A
GD

61
B

GD
61

C
GD

76
B

GD
76

C
GD

79
B

GD
79

C
GD

89
A

GD
89

B
GD

89
C

GD
89

D
GD

91
A

GD
91

B
GD

91
C

GD
91

D
IC

48
A

IC
50

A
IC

50
B

IC
74

A
RG

1
RG

2

Detector

1524.0

1524.5

1525.0

1525.5

1526.0

1526.5

En
er

gy

Uncorrected Corrected

Figure 3.31: The position of the potassium lines before (blue) and after (or-
ange) a correction is applied based on the residual at the DEP. The dashed
black line indicates the literature position of the DEP.

For the energy reconstruction uncertainty, we consider the fluctuations
in the residual of the SEP over time. The variation is quantified by the RMS
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standard deviation in the residual at the SEP across a single partition, with
respect to the partition residual at the SEP in the combined spectrum (see
Section 3.5.2).

In addition, we add a systematic uncertainty of 0.02 keV accounting for
the difference between the bias at the energy at the SEP and that at Qββ.
This was roughly evaluated by linearly interpolating between the mean
residuals across all partitions at the DEP and the SEP. This is shown in
Figure 3.32a.
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Figure 3.32: Left: correlation of bias between SEP and DEP. Right: interpo-
lating residuals between DEP and SEP.

The distribution of the energy reconstruction uncertainty per partition is
shown in Figure 3.30b.

3.8 comparison with resolutions in physics data

The two strongest gamma lines in our physics data spectrum are those due
to 40K (1461 keV) and 42K (1524 keV) decays, as shown in Figure 2.9. The
measured resolution of these lines allows for a cross-check to those derived
from calibration data (see Sect. 3.6.1). For every detector and partition,
the energy spectrum around each line is fitted using a Gaussian for the
signal and a linear function for the background. The background rate was
constrained to be non-negative across the fitting window. Lines with low
counting statistics, i.e. those whose best fit is compatible with zero counts,
are excluded from further analysis.

Given their close energy proximity, the extracted resolution for each of
the two lines is expected to be within 0.05 keV of each other. Indeed, the
distribution in the resolution difference between the two lines across the
detectors in keV, normalised by the uncertainty in keV, was found to have
a mean of −0.07± 0.14 and a standard deviation of 1.29± 0.14, suggesting
that only small systematic effects remain. The comparison is shown in
Figure 3.33.
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Figure 3.33: Comparison of the measured resolutions of the 40K and 42K
lines.

The comparison between calibration and physics data for the higher-
statistics 42K line is shown in Fig. 3.34a. The systematic uncertainty for the
calibration resolution is calculated in the same way as for as in Sect. 3.6.3.
The measured resolutions and predicted values from calibration data show
a high degree of correlation, with a Pearson correlation coefficient of 0.92,
and with 66% compatible within one sigma. Similar results are obtained
for the 40K line.
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Figure 3.34: Left: measured resolutions of the 42K line compared to pre-
dicted resolutions from calibration data. Right: distribution of the differ-
ence in measured and predicted resolutions, normalised by uncertainty.

3.9 conclusion

A reliable and stable energy scale is crucial to all physics analyses per-
formed with the Gerda experiment. The germanium detectors are cali-
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brated weekly using 228Th sources. The energy scale is then determined
by identifying γ peaks in the recorded spectrum the energy scale. Between
December 2015 and November 2019, 142 calibrations were analysed to pro-
vide energy estimates to events.

For each calibration, the stability of the energy scale and resolution is
monitored via the FEP line from 208Tl decays. Based on the stability of
the energy scale and resolution, the detectors’ data is divided into stable
sub-periods called partitions.

For each partition, a combined calibration spectrum is produced to de-
termine the energy dependence of the resolution. Over the entire Phase
II, we obtain exposure-weighted average resolutions at Qββ for the BEGe/-
Coaxial/IC detectors of (2.8± 0.3) keV, (4.0± 1.3) keV and (2.9± 0.1) keV
respectively. Dedicated studies were performed to study various sources
of systematic uncertainties to the resolution at Qββ. The average total sys-
tematic uncertainty across all partitions is 0.13 keV.

Alternatively, effective resolution curves for modelling the signal due to
combined datasets can be calculated by considering the signal as a Gaus-
sian mixture.

The energy bias for the events near Qββ is estimated and corrected based
on the residual of the SEP. The average bias is -0.1 keV with a standard
deviation of 0.3 keV. The average uncertainty of these biases is 0.2 keV.

The energy scale, partitioning, resolutions and uncertainties discussed in
this paper are essential in the search for 0νββ decay with Gerda described
in [88].
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T H E L E G E N D E X P E R I M E N T

The Legend (Large Enriched Germanium Experiment for Neutrinoless ββ

Decay) collaboration has been formed with the aim of building the next
generation of germanium based 0νββ decay experiments [84]. The collab-
oration was formed in October 2016, and will benefit from the combined
experience of the Gerda and Majorana collaborations, as well as other
groups. The proposed experimental program is divided into stages, with
a 200 kg array (Legend-200) currently under construction, and an ultimate
plan of building a ton-scale 76Ge 0νββ decay experiment (Legend-1000).

The goal is to operate close to the background-free regime, reaching a
half-life sensitivity of 1027 yr with Legend-200, and 1028 yr with Legend-
1000. In both cases the sensitivity refers to both for setting a 90% C.L. half-
life limit as well as for discovery of 0νββ decay defined as a 50% chance for
a signal at 3σ significance [84].

Legend-200 will reuse much of the existing infrastructure of Gerda at
LNGS, and uses the same general approach, operating the germanium de-
tectors directly in LAr which is instrumented as an active veto. It will
reach its sensitivity goal with an exposure of 1 t · yr and background index
of 0.6 cts/(FWHM·t·yr). In turn, Legend-1000 aims to achieve an exposure
above 10 t · yr and an even lower background of 0.03 cts/(FWHM·t·yr) [68].
The dependence of the sensitivity with exposure and background rate is
shown in Figure 1.8. In comparison, Gerda reached a background of
1.5 cts/(FWHM·t·yr) in the IC detectors, and Majorana reached a back-
ground level of 4.0 cts/(FWHM·t·yr). Figure 4.1 shows the projected back-
ground contributions of both phases of Legend.

4.1 legend-200

In February 2020 the use of the Gerda infrastructure was handed over to
the Legend collaboration, and the commissioning of Legend-200 is now
underway. Physics data taking should begin in mid-2021, and a run time
of about 5 years is envisaged to reach the target exposure of 1 t · yr. To
reach the targeted 200 kg of enriched detectors, the Gerda cryostat will
be instrumented with 14 strings, each containing approximately seven to
ten germanium detectors, arranged radially as shown in Figure 4.2a. To
accommodate the longer strings, a new lock system is being produced. The
30 BEGe detectors (20.0 kg), and 5 IC detectors (9.5 kg) of Gerda and the
35 p-type point contact (PPC) [142] detectors of Majorana (29.7 kg) will be
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Figure 4.1: Projected background contributions at Qββ for Legend-200 (top)
and Legend-1000 (bottom). The dashed black line indicates the back-
ground goals in both cases. Data from [141].
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reused. The Coaxial detectors of Gerda may either be reused or recycled,
and are estimated to contribute 11.2 kg.

The remaining ∼130 kg of detectors will be IC detectors produced for
Legend-200 by two detector vendors, ORTEC and Mirion. Current projec-
tions suggest that a total of around 140 kg to 150 kg of detectors will be
ready for mounting in Legend-200 in 2021. The remaining detectors will
be mounted later.

1
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4

(a) Top view (not to scale).

1

2

3

(b) Cutaway view of LAr veto. The
copper shroud is not shown.

Figure 4.2: The Legend-200 detector array and LAr veto. The 14 detec-
tor strings (1) are arranged radially. Inner (2) and outer (3) fibre shrouds
are coupled to SiPMs to read out LAr scintillation light. An outer copper
shroud (4) acts as a WLS reflector. Figures adapted from [143].

In addition to the excellent resolution and PSD performance of the IC
detectors, their higher mass reduces the total number of detectors needed.
This in turn reduces the requirement for nearby material that contributes
to the background.

The sensitivity goals of Legend-200 require a ∼4-fold reduction in the
background rate, compared to Gerda.

Despite the lack of an internal active veto system, the Majorana Demon-
strator achieved a low background through careful selection of materials
close to the detectors, such as the use of underground electroformed cop-
per [144]. Building on this experience, radiopure low mass crystal holders
will be produced for the detectors, using electroformed copper and base
plates made of polyethylene naphthalate (PEN) [145]. PEN is a scintillating
plastic, allowing background events originating in the plate to be rejected
by the LAr veto. New TPB-coated nylon mini-shrouds are also being pro-
duced. Radioimpurities will also be reduced by producing new lower mass
cables, connectors and other components.

A new liquid argon veto system is being developed, consisting of an
outer and inner optical fibre shroud, and an outer electroformed copper
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shroud, as shown in Figure 4.2b. The copper shroud is lined with TPB
coated Tetratex, and acts as a WLS reflector. The outer fibre shroud curves
under the detector strings to increase the efficiency of the LAr veto, and
is read out by SiPMs on both ends of the fibres. The inner fibre shroud
cannot be read out at both ends of the fibres due to the activity of the
SiPMs structure and cabling, so each fibre bends 180◦ at the bottom and is
only read out at the top.

Majorana reached the milestone of the best resolution in the field of
(2.53± 0.08) keV (FWHM at Qββ) [146], through the development of low
noise readout electronics [147,148]. The readout electronics design for Leg-
end-200 will be a hybrid design of the Majorana front end boards close
to the detectors, and the Gerda preamplifiers, located 33 cm away from the
top detectors. Low noise will result in improved PSD power and energy
resolution.

Figure 4.3: Readout electronics for Legend-200. Left: Prototype detector
mount with BEGe detector and front end board. Right: Prototype pream-
plifier. Figures from [149].

After the transfer of the Gerda infrastructure to Legend in February,
a series of R&D activities for Legend, the post-Gerda tests (PGT), took
place, and were completed in August. Four detector strings, including
BEGe and IC detectors from Gerda, PPC detectors from Majorana, and
new IC detectors from ORTEC and Mirion, were installed using the new
Legend-200 holders, shown in Figure 4.4.

The electronics chain for Gerda was disassembled and replaced, includ-
ing the high-voltage modules and cables for biasing the detectors, and the
readout electronics (preamplifiers, front end boards and digitisers). A new
Source Insertion System (SIS), able to deploy multiple sources at once was
also successfully tested. This system is described in more detail in Sec-
tion 5.1.1. Both background and calibration (shown in Figure 4.4) data was
taken.
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Figure 4.4: Left: four detector strings deployed as part of the PGT. Right:
228Th calibration spectra acquired during the PGT.

4.2 legend-1000

The second stage of Legend, Legend-1000 will operate about 1 t of germa-
nium detectors for a run time of about 10 yr to reach the target exposure
of 10 t · yr. After a site is chosen, and funding is secured, the earliest start
date of Legend-1000 would be in 2026. In order to start data taking as soon
as possible, the detectors would be installed in four independent 250 kg
modules, as shown in Figure 4.5. The modular approach would allow for
uninterrupted data taking of the already installed modules. Although not
required to reach the background aim of Legend-1000, the development of
even larger detectors, with double the mass of the Legend-200 detectors,
would mean fewer detectors are needed in total, and therefore also less
background-contributing material.

The ambitious goal of Legend-1000 is to achieve close to background-free
conditions with a background index of 0.03 cts/(FWHM·t·yr). To achieve
this, Legend may have to move to a site deeper than LNGS to reduce the
backgrounds caused by activation via cosmogenic muons, such as 77mGe, al-
though the location has not yet been determined. Possible sites include the
Sanford Underground research Facility (SURF) [150], SNOLAB [151, 152]
and China JinPing Laboratory (CJPL) [153]. A delayed coincidence cut ex-
ploiting the short half-life (53.7 s) of 77mGe may reduce this background to
the point where locating Legend-1000 at LNGS can still reach the back-
ground requirements [154].

Contributions due to natural radioactivity will be minimised by increas-
ing the efficiency of the LAr veto, perhaps by doping the argon with small
concentrations of xenon [155]. The LAr itself may be replaced by depleted
argon obtained from underground sources [156], eliminating the contribu-
tion due to 42K decays. This would also allow a lower energy threshold



80 the legend experiment

Figure 4.5: Baseline design for Legend-1000. Four modules of about 250 kg
are contained in a large LAr cryostat (left). Each module consisting of a
detector array and LAr veto instrumentation (right) is self-contained by a
copper cylinder containing underground LAr. From [68].

and thus low energy physics searches for solar axions, bosonic dark matter
and others, as were made using the Majorana Demonstrator [140].

Material selection and minimisation would continue to play a role. Inac-
tive materials could be replaced with PEN as with the detector base plates
of Legend-200.
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M O N T E - C A R L O S I M U L AT I O N S F O R T H E L E G E N D - 2 0 0

C A L I B R AT I O N S Y S T E M

5.1 introduction

For Legend-200, as was the case for Gerda, regular calibrations of the ger-
manium detectors and liquid argon veto system with radioactive sources
will be necessary. As the Legend-200 experiment will operate in the Gerda

cryostat, an approach similar to that of Gerda can be taken to expose the
germanium detectors to sources. However, the increased number of detec-
tor strings relative to Gerda, required in order to reach the targeted 200 kg
of enriched germanium detectors, entails an increased number of calibra-
tion sources.

The calibration work for Legend is primarily performed by the UZH and
Los Alamos National Laboratory (LANL) groups.

The rest of this section outlines the current design of the calibration sys-
tem for Legend-200. Section 5.2 describes the goals of the simulations per-
formed, and Section 5.3 describes how the geometry was implemented and
the simulations performed. Section 5.4 describes the conclusions drawn
from the simulations.

5.1.1 Calibration system design

The altered geometry of Legend-200 as described in Section 4.1 will require
a total of four Source Insertion Systems (SIS), i.e., an increase by one relative
to Gerda, to adequately expose the detectors such that enough events are
gathered for a precise energy calibration in a reasonable period of time.

A calibration system has to fit in the overall detailed design which de-
termines entry ports, available pathways, and the storage location. The
locations of the LAr veto and the detector electronics fixes the possible
radius of the sources at 150 mm from the centre of the detector array, as
shown in Figure 5.3. In addition, the longer strings of Legend-200 relative
to Gerda (up to 90 cm [157] compared to Gerda’s 40 cm) require a taller
lock system to be installed. This has reduced the amount of vertical space
available for the SIS. For reference, the SIS for Gerda (developed at UZH)
is briefly described in Section 3.2.2.

For Legend-200 the SIS design has been modified to accommodate mul-
tiple sources attached to each steel band, as shown in Figure 5.1. This is
achieved by spot welding adaptors on the steel band, into which the source
capsules themselves can be mounted, as shown in Figure 5.2 (technical
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Figure 5.1: The design of the calibration source insertion system for Leg-
end-200. The sources are lowered down to the levels of the detectors by
the steel band when a calibration is performed.

drawings of the steel band, adaptors and source capsules can be found in
Appendix A). This will permit multiple detectors to be calibrated simulta-
neously, decreasing the amount of time required for calibrations.

Software has been developed jointly between UZH and INFN, to re-
motely control the deployment of the SIS, and enable exactly reproducible
calibrations. In contrast, the Gerda SIS control system required the manual
triggering of each source movement via a LabView interface.

5.1.2 Calibration sources

Both Gerda and Majorana have used 228Th sources as the standard cal-
ibration source with source activities between 10 kBq to 20 kBq. As dis-
cussed in Section 3.2.1, 228Th has many beneficial properties, including
its wide range of γ rays covering Qββ and convenient single- and double-
escape peaks with differing event topologies. For Legend-200 energy cal-
ibrations, 228Th will be used as the standard source, produced at LANL
following the custom design developed at UZH for Gerda [158]. Sources
composed of different isotopes, such as 226Ra, may be used to calibrate
the energy scale below 235 keV (the lowest observable peak of 228Th) to en-
able physics searches reliant on an accurate energy scale in the low energy
region.

By tuning activity and distribution of the source material in the calibra-
tion assembly, we aim to calibrate the detector array within a few hours.
Ideally, the activity of the source would be as high as possible to perform
calibrations as quickly as possible, resulting in only a small loss of run time
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Figure 5.2: Three source capsules (1) are attached to a steel band (2) via
adapters (3) spot-welded onto the steel band. The last (4) is attached to a
tantalum absorber (5).

for physics data. A precise calibration would require that the uncertainty
on the position of peaks is not limited by statistics. In Section 3.7, resid-
ual biases and associated uncertainty were both determined to be on the
order of 0.1 keV. For a peak with a FWHM of 3 keV, and assuming a purely
Gaussian shape, an energy precision of 0.09 keV could be reached with 200

events.
Two limitations prevent the use of high activity sources: the data acqui-

sition system (DAQ) and signal readout. The DAQ is designed such that
six detector channels are read out via one digitiser card, each of which can
accommodate 1000 Hz at one time with a dead time of 0.1%. A high count
rate can also result in events that sit on a baseline that has not been com-
pletely restored after the previous event (a pile-up event). The recovery of
the baseline is limited by the decay constant of the preamplifier which is
around 1 ms. In order to guarantee that the majority of events start after the
baseline has settled, a rate of less than 300 Hz per detector is favourable.

5.2 goals of the mc simulations

Some parameters of the calibration system, such as the source type, and
the radius at which they can be deployed, can be determined a priori con-
sidering the experimental requirements. However, more detailed studies
with Monte Carlo (MC) simulations are required to determine the optimal
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• number of sources,

• their activities,

• their separation on the steel band, and

• number and location of stopping points by the germanium detectors.

From these parameters, the minimum time required to perform a precise
energy scale determination within the constraints set by the DAQ can thus
be calculated, as described in Section 5.4.2. MC simulations can also de-
termine the number of events that will be observed in the double escape
peak (DEP) of 208Tl, which is used for the optimisation of PSD cuts. The
distribution of the events in the detectors can also be studied.

5.3 geometry implementation and simulations

The Gerda, Majorana and Legend collaborations perform simulations
using the MaGe [159] framework, based on Geant4 [160].

The implementation of the detector is shown in Figure 5.3. 14 strings,
each of which has eight detector units, arranged radially at a distance of
235 mm from the centre. For these initial simulations, the detectors are
all identical IC type detectors, as shown in Figure 5.4. Future simulations
will require the implementation of a more realistic geometry, including the
arrangement of the existing BEGe and PPC detectors.

Figure 5.3: The Geant4 implementation of the Legend-200 geometry. The
left figure shows a side cutaway view of the experiment, with detector
strings (cyan) surrounded by nylon mini-shrouds (pink). The inner and
outer fibre shrouds are in grey, with the WLS reflector in green. The right
figure shows a top view. Dimensions are given in mm.
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Figure 5.4: The Geant4 implementation of the ideal Legend-200 IC detector,
in solid (left) and cutaway (right) views. Dimensions are given in mm.

The calibration source is implemented in three parts, as shown in Fig-
ure 5.5. During a simulated calibration, 228Th nuclei decay uniformly
within the inner gold volume.

Figure 5.5: The Geant4 implementation of the Legend-200 calibration
source, in solid (left) and transparent (right) views. The source is com-
posed of the inner gold foil (grey), outer steel encapsulation (blue), and
a tantalum absorber (gold). 228Th nuclei decays are simulated uniformly
within the inner gold volume. Dimensions are given in mm. When config-
urating the simulation, one can adjust the height of the absorber, or remove
it entirely (see Section 5.4.1).

In Figure 5.6, the four proposed source positions are shown, just within
the inner fibre shroud. The four-fold symmetry can be exploited to reduce
the number of simulations to only the positions at S1 and S2.

From here onwards, source heights are given with respect to the centre
of the topmost detectors. Simulations were performed at source positions
S1 and S2 and vertical heights ranging from −1250 mm to 300 mm in incre-
ments of 10 mm with respect to the centre of the topmost detectors (i.e. 156

heights in total), with 5 · 105 events per height and source position. Each
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Figure 5.6: Top view of the 14 detector strings and four calibration source
positions S1-S4. Dimensions are given in mm.

event is then processed to sum the energy deposits in each detector. In ad-
dition, for each event and detector, the location of the first energy deposit
is saved. Figure 5.7 shows the distribution of the first energy deposit of
each event for a simulation with a source located in position 2 at a height
of −360 mm.
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Figure 5.7: Distribution of energy deposits for a source located at position
2 and at a height of −360 mm. For visualisation purposes, this particular
simulation was performed with 10 times the standard statistics. The colour
scale indicates the number of events in each bin.

Following the procedure in [134], to model the detector response, includ-
ing a finite energy resolution and a low-energy tail modelling the effects
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of ballistic deficit or incomplete charge collection, the energies are smeared
according to:

E→ E + ∆E, (5.1)

where E is the initial event energy, and ∆E is generated randomly. With
97% probability, ∆E is drawn from a Gaussian function, with a mean of
zero and a FWHM given by the resolution curve determined for the IC
detectors in Section 3.6.2,

FWHM(E) = 2.355 σ = 2.355
√

a + bE, (5.2)

where a = 0.280 keV2 and b = 5.83 · 10−4 keV. With 3% probability, ∆E is
drawn from a function f describing a low energy tail as in Eq. 3.17, with
parameters defined by the average of those for the tail of the 2.6 MeV line
in the combined Gerda Phase II IC detectors spectra:

f (∆E) = exp

(
∆E
β

+
σ2

FEP
2β2

)
erfc

(
∆E√
2σFEP

+
σFEP√

2β

)
, (5.3)

where σFEP is determined from Eq. 5.2 with E = 2614.5 keV, and β =
2.66 keV.

Figure 5.8 shows both the smeared energy spectra for all detectors and
the smeared energy spectrum with the greatest number of events in a single
detector, with Figure 5.9 showing the same data zoomed into the regions
around the FEP, SEP and DEP. These results are from the same simulation
used to generate data shown in Figure 5.7.

5.4 discussion

For each source position and each detector, the following was calculated:
the number of total events, the number of events above 200 keV (an ap-
proximate energy threshold to calculate event rates), and the total number
of events within 0.1 keV of the energies of the FEP and DEP respectively.
Uncertainties are purely statistical and are calculated assuming Poissonian
statistics.

5.4.1 Source separation

Figure 5.10 shows the rates of events above 200 keV for a single 5 kBq source
in either positions 1 or 2, in detectors in the closest string (string 1 for
position 1, and string 4 for position 2). As to be expected, the event rate
in each detector is maximised when the centres of the inner sources and
detector align.

If the SIS lowers four sources at a time, the eight detectors of the string
can be calibrated by holding the source assembly at two different positions.
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Figure 5.8: Summed energy spectrum for all detectors (blue) and the 5th
detector in string 4 (red), with prominent γ lines labelled.

The ideal separation between the sources is then given by the spacing be-
tween the centres of the detector units, 10 cm.

The bottommost source lowered by the SIS is not attached to the steel
band, but is instead mounted on a tantalum absorber. Figure 5.11 again
shows the rates of events above 200 keV for a source in position 1 in de-
tectors in string 1, with and without a tantalum absorber of height 60 mm.
The addition of the tantalum absorber shifts the event rate maximum by
(16.3± 1.8)mm and reduces the event rate by 8.5%. Therefore the effect of
the tantalum absorber can be compensated for by increasing the activity of
the source by 9% and by increasing the separation between the bottommost
source and the lowest one on the steel band by 16 mm.

Due to the height restrictions on the SIS, the vertical size of the absorber
may be reduced. Additional simulations were also made with absorber
heights ranging from 1 mm to 55 mm. As shown in Figure 5.12, the shift in
location of the rate maximum and intensity reduction are stable as long as
the absorber height remains at 7 mm or higher, or about twice the radiation
length of tantalum of 4.094 mm [161].

5.4.2 Exposure times

We can calculate the time required to perform a precise energy calibration
by considering the rates of FEP and DEP events observed in each detector.

Again, by symmetry, we can consider only the strings 1 to 4. Strings 1

and 4 are closest to the sources, so strings 2 and 3 will be the limiting cases.
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Figure 5.9: Zooms of Figure 5.8 to the regions around the DEP/SEP/FEP
are shown from the top left to bottom respectively. The 1621 keV γ line of
212Bi is visible to the right of the DEP.
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Figure 5.10: Event rates above 200 keV for a source in position 1 (solid lines)
and position 2 (dashed lines). In each case the event rate in detectors of the
closest string are shown, labelled by their position in the string.
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Figure 5.11: Event rates above 200 keV for a source in position 1 without
(solid lines) and with (dashed lines) a 60 mm tantalum absorber.
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Figure 5.12: Rate maximum shift (left) and intensity reduction (right) for
absorbers of various heights.

FEP event rate [Hz]
Source
position

Stopping
point

String 2 String 3

Det 1 Det 8 Det 1 Det 8

1 Top 8.41 ± 0.51 0.09 ± 0.04 3.43 ± 0.34 0.11 ± 0.05

Bottom 0.15 ± 0.07 8.20 ± 0.50 0.12 ± 0.07 3.20 ± 0.33

2 Top 2.29 ± 0.29 0.05 ± 0.04 5.21 ± 0.41 0.09 ± 0.05

Bottom 0.10 ± 0.05 2.06 ± 0.27 0.07 ± 0.03 4.57 ± 0.38

Table 5.1: FEP event rates in the top and bottom detectors of strings 2 and
3 for the top and bottom stopping points of a standard source string.

Table 5.1 shows the FEP event rates in the top and bottom detectors of
strings 2 and 3 when a source string formed of four 5 kBq sources is either
in the top or bottom stopping position. This is henceforth referred as the
standard source string. The rates of Table 5.1 are produced by summing the
single source FEP rates over each source height where the source centres
align with one of the top (or bottom) four detectors.

The time required for a calibration will be minimised by adjusting the
stopping times for each source position i and stopping position j, tij, such
that the events acquired in these detectors is equalised. The times can be
calculated by inverting the matrix M formed by the rates in Table 5.1. The
above can be expressed as

M


t1T
t1B
t2T
t2B

 ∝


1
1
1
1

 ,


t1T
t1B
t2T
t2B

 ∝ M−1


1
1
1
1

 , (5.4)
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where T and B label the top and bottom stopping positions. We then find
that 

t1T
t1B
t2T
t2B

 ∝


0.693
0.712
1.203
1.393

 (5.5)

To achieve 200 events in the DEP of the above detectors would require
a total of 47 min of source exposure, split according to Equation 5.5, as
detailed in Table 5.2. The minimum number of FEP events in any de-
tector would then be 6200, allowing for a determined position precision
of 0.02 keV. The total time required for a calibration would be given by
47 min× 2 = 94 min for additionally moving the sources at positions 3 and
4, as well as the time required to move the sources through these positions.

5.4.3 Event rates

DAQ requirements are such that the maximum event rate in a single detec-
tor is 300 Hz. Table 5.3 gives the event rates above 200 keV for source strings
formed of four 5 kBq sources. The maximum event rate observed in one
detector is 522.15 Hz, for string 1, detector 6, when the source in position 1

is at its lower stopping point. Figure 5.13 shows the event rate in that detec-
tor for varying energy thresholds. An energy threshold of 345 keV would
satisfy the maximum event rate of 300 Hz.

The DAQ also requires that the maximum event rate in a single digitiser
card, reading out six detector channels, is 1000 Hz. We make the simplify-
ing assumption that increasing the energy threshold to 345 keV reduces the
event rate in all detectors by the same ratio. Table 5.4 then gives the total
event rate (for eight detectors) above 345 keV in each string for each source
position and stopping position. None of these rates exceeds 1000 Hz, so

Source
position

Stopping
point

Stopping time [minutes]

1 Top 8.14

Bottom 8.36

2 Top 14.1
Bottom 16.4

3 Same as source 1

4 Same as source 2

Total 94.0

Table 5.2: Times required for each source string and at each stopping point
for a standard source string, for a minimal calibration reaching 200 DEP
events in all detectors.
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Event rate above 200 keV [Hz]
Source
position

Stopping
point

Detector String
1 2 3 4

1 Top 1 419.71 222.48 88.02 40.48

2 505.69 278.21 111.36 52.34

3 516.38 284.89 109.66 50.88

4 432.17 231.11 89.35 42.99

5 131.59 95.43 48.53 27.08

6 26.79 26.36 19.47 13.43

7 7.76 8.37 6.90 6.34

8 3.07 3.39 3.10 2.47

Bottom 1 3.47 3.31 3.50 3.17

2 8.68 9.31 7.90 6.14

3 29.99 28.31 21.06 13.55

4 139.71 98.51 49.65 27.19

5 422.60 223.79 88.58 42.16

6 522.15 289.19 114.35 52.03

7 518.88 285.80 113.77 50.76

8 413.36 222.16 86.97 40.27

2 Top 1 30.78 58.09 139.12 344.27

2 37.08 72.94 175.07 420.82

3 36.98 73.93 177.85 429.66

4 30.18 59.37 141.65 355.83

5 21.14 35.83 69.21 121.80

6 10.79 16.23 24.02 26.84

7 5.70 7.02 8.18 8.00

8 2.38 2.79 3.20 2.99

Bottom 1 2.67 2.69 3.36 3.79

2 5.62 7.72 8.91 9.24

3 11.38 16.62 24.63 30.05

4 20.09 35.86 70.52 126.64

5 30.93 59.38 136.79 347.64

6 38.01 73.87 179.44 435.35

7 37.88 73.64 179.85 432.97

8 30.84 56.56 134.89 341.27

Table 5.3: Event rates above 200 keV in strings 1 to 4 for a standard source
string at source positions 1 and 2.
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Figure 5.13: Event rate versus energy threshold, for string 1, detector 6,
when the source in position 1 is at its lower stopping point. The green
(orange) dashed line indicates that a threshold of 200 keV (345 keV) results
in an event rate of 522 Hz (300 Hz). The kink observed at 238.6 keV is due
to the strong γ line at that energy due to 212Pb decays.

String event rate above 345 keV [Hz]
Source
position

Stopping
point

String 1 String 2 String 3 String 4

1 Top 782.6± 3.0 440.6± 2.4 182.5± 1.6 90.4± 1.1
Bottom 788.6± 3.0 444.5± 2.4 186.1± 1.6 90.1± 1.1

2 Top 67.0± 1.0 124.9± 1.3 282.8± 1.9 655.1± 2.8
Bottom 68.0± 1.0 125.0± 1.3 282.8± 1.9 661.5± 2.8

Table 5.4: Total string event rates above 345 keV for a standard source string
at source positions 1 and 2.

combining groups of six detectors to each digitiser board should not pose
any problems.

5.4.4 Distribution of DEP and SEP events

In Section 3.6.1, we hypothesised that the broadening observed in the Dou-
ble Escape Peak (DEP) was caused by these events being more likely to
originate towards the edge of the detector. In [134], the Full Charge Col-
lection Depths (FCCD) for the Gerda IC detectors was determined to be
O(1 mm). Events taking place closer to the detector edge than the FCCD,
(i.e. not in the active region) are more likely to be affected by incomplete
charge collection.
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Figure 5.14 shows the distribution of the energy deposits for the FEP,
DEP, SEP, and other events with energies outside these peaks. Table 5.5
shows the mean event radius for these classes of events, where the detector
radius is 37 mm, and the fraction of events occuring outside of the active
region. DEP events are on average reconstructed (2.47± 0.18)mm further
towards the detector edge than other events. Additionally, a higher fraction
of the DEP events occur within 1 mm of the detector edge, outside of the
active region of the detector.
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Figure 5.14: Distribution of the energy deposits in FEP, DEP, SEP and other
events. Here, other events refers to those with energies outside of the FEP,
SDEP and SEP peaks. DEP events are more likely to be in the outer region
of the detector, since the two annihilation γs must escape.

Event type Mean event radius
[mm]

Fraction outside
active region [%]

FEP 24.03± 0.03 2.94(7)
DEP 28.82± 0.15 10.85(68)
SEP 26.40± 0.09 5.64(28)
other 26.35± 0.01 7.76(3)

Table 5.5: Mean event radii for FEP, DEP, SEP and other events, and the
fraction of events occuring outside of the active region (here defined as
within 1 mm of the detector edge).

5.5 conclusions

The purpose of the simulations described in this chapter was to determine
the parameters of the source strings and calibration procedure.
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In Section 5.4.1, we saw that for detector strings each formed of eight
identical detectors, the ideal source separation of a source string of four
sources is given by the detector unit separations, 10 cm in these simulations.

We also saw that the effect of adding a tantalum absorber to a source
was to shift the location of the peak event rate by 16 mm and to reduce
the event rate by 8.5%. These conclusions were valid for an absorber with
height between 7 mm and 60 mm. The effect of adding an absorber to the
lowest source on the string can be therefore compensated by increasing
the separation of the lowest two sources by 16 mm and by increasing the
activity by 9%.

The nominal activity of each source was taken to be 5 kBq (with an as-
sumed 9% increase for the bottommost source on the string). The new
sources are being produced at LANL. The activity of previous sources for
Gerda [134] varied by more than a factor of two, with even the two closest
activities differing by 11%. We therefore do not suggest attempting to tune
the activities of the sources in production, but to, for example, place the
sources with the highest activity with the absorbers.

Section 5.4.2 calculated the time required to perform a precise (0.1 keV
position precision on the DEP) calibration. By optimising the exposure
times for each source position and stopping point, a calibration can be
achieved within 94 min, with the addition of the time required for moving
the sources. This is based on moving each of the source strings individu-
ally.

The implementation of a more realistic detector geometry will alter the
above conclusions. In particular, the BEGe and PPC type detectors will
require longer exposure to the calibration sources, due to their smaller
mass, which is on average ∼30% of a IC detector.

Section 5.4.3 considered the total event rates that would be observed dur-
ing a calibration, both for a single detector and for each string of detectors.
By using an event threshold of 345 keV, the maximum event rate in a single
detector can be kept below 300 Hz, and the total event rate in a string will
not exceed 1000 Hz.

Finally, Section 5.4.4 showed that DEP events are more likely to be oc-
cur closer to the edge of the detector. The broadening observed in this
peak discussed in Section 3.6.1 could therefore be due to effects related to
incomplete charge collection in this region. The rise time of a waveform
depends on the location of the event in the detector. Therefore, a correction
to the energy based on the rise time, as was performed by Majorana [162],
could improve the resolution of this peak substantially.



6
C O N C L U S I O N S

The observation of neutrinoless double-beta decay (0νββ), a hypothetical
lepton-number violating process, would demonstrate the Majorana nature
of the neutrino. This thesis was completed in the context of the Gerda and
Legend collaborations, both of which search for 0νββ using high-purity
enriched 76Ge detectors. These detectors exhibit an excellent energy res-
olution of O(0.1)%, better than any other technology employed by 0νββ

experiments, which benefits the experimental sensitivity to the half-life of
this decay.

Phase II of the Gerda experiment acquired data between December 2015

and November 2019. The following results are from the final 0νββ analysis
of Gerda, derived from data corresponding to 103.7 kg yr of exposure [88].
In the region of interest, between 1930 keV and 2190 keV, a background
level of 5.2+1.6

−1.3 · 10−4 counts/(keV kg yr) was achieved. The best fit of the
data is achieved for a null signal strength, with a derived lower limit on the
0νββ half-life in 76Ge given by > 1.8 · 1026 yr at 90% C.L.. This corresponds
to a limit of mββ < (80− 182)meV. These are the most stringent half-life
limit and lowest background level obtained by any 0νββ experiment.

A reliable and precise determination of the energy scale and energy
resolution of the germanium detectors is vital for achieving this final re-
sult. This was achieved by the weekly exposure of the array to three 228Th
sources. In total, 142 calibration runs were used to determine the energy
scale of the detectors during Gerda Phase II. The observed pattern of γ

lines in the energy spectrum is then used to calibrate the detectors. The
positions of the strong 208Tl γ line at 2.6 MeV and of injected pulser events
are used to monitor the stability of the energy scale between calibrations.

A major development of the final 0νββ analysis was the division of the
data from each detector into stable sub-periods called partitions. The divi-
sions were determined by monitoring the stability of two parameters: the
resolution of the 208Tl full-energy peak at 2.6 MeV, and the residual of the
corresponding single-escape peak at 2.1 MeV.

For each partition, the effective energy resolution at Qββ was determined
from combined calibration spectra. The exposure-weighted average res-
olutions (± the standard deviation) at Qββ across the partitions for the
BEGe/Coaxial/IC detectors are given by (2.8± 0.3) keV, (4.0± 1.3) keV and
(2.9± 0.1) keV respectively. Dedicated studies were performed to study
various sources of systematic uncertainties to the resolution at Qββ, with
the average total uncertainty given by 0.13 keV. The energy bias for the
events near Qββ is approximated as the residual of the SEP in the com-

97
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bined spectra. The average bias is −0.1 keV with a standard deviation of
0.3 keV.

The Legend collaboration aims to build the next generation of 76Ge 0νββ

decay experiments. Legend-200 is currently being constructed at LNGS,
reusing much of the Gerda infrastructure. 14 strings of detectors will be
deployed, reaching a total mass of 200 kg. Various measures, including the
installation of a new LAr veto system and the reduction in the use of pas-
sive components, should allow Legend-200 to reach its goal background
level of 0.6 cts/(FWHM·t·yr). With 1 t · yr of exposure, the half-life (discov-
ery and limit) sensitivity of Legend-200 should exceed 1027 yr.

For the energy calibration of the germanium detectors, Legend-200 will
operate Source Insertion Systems that are able to deploy multiple sources
each, instead of just a single one as in Gerda. Some parameters of these
systems, such as the source isotope, and the radius at which they will
be deployed, are determined according to the experimental requirements.
Monte Carlo simulation studies have determined the optimal source sepa-
rations on the steel band, and the number and location of stopping points
by the germanium detectors. The effect of adding an absorber to the low-
est source on the string can be compensated by increasing the separation of
the lowest two sources by 16 mm and by increasing the activity by 9%. As-
suming a nominal source activity of 5 kBq, an energy threshold of 345 keV
will satisfy the DAQ maximum event rate of 300 Hz. The time required to
perform a precise energy scale determination has then been calculated at
94 min, excluding the time required to move the sources.

After Legend-200, the Legend-1000 experiment aims to achieve an expo-
sure above 10 t · yr and an even lower background of 0.03 cts/(FWHM·t·yr).
Legend-1000 aims to achieve a half-life sensitivity exceeding 1028 yr, and is
currently in the planning stage. A modular approach is envisioned, where
multiple payloads would be installed over the course of several years. This
approach would allow for continuous data taking while the experiment
continues to scale up to full size. Legend-1000 and other future ton-scale
experiments will be sensitive to Majorana masses in the entire parameter
space allowed for the inverted ordering.
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S O U R C E I N S E RT I O N S Y S T E M S C H E M AT I C S

Figure A.1: Schematic of a source capsule. The dimensions are given in
mm. The M4 thread serves to screw the source into either the tantalum
absorber or adaptors welded to the steel band of the SIS. Figure from [134].
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Figure A.2

Figure A.3: Schematic of a source adaptor. Dimensions are given in mm.
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Figure A.4: Schematic of the SIS steel band. Dimensions are given in mm.





B
C H A R A C T E R I Z AT I O N O F A P M T W I T H A M G F 2
W I N D O W

b.1 introduction

Photomultiplier tubes (or PMTs), are light detectors designed to be sen-
sitive to very low light intensities. In Gerda, PMTs formed part of the
liquid argon (LAr) veto system, detecting the 128 nm LAr scintillation light
stimulated by background events. The 3

′′ PMTs used are of the R11065-
20 Mod type, produced by Hamamatsu. Since, like most materials, their
quartz window is opaque to 128 nm wavelengths, the PMTs are coated with
a layer of wavelength shifting TPB.

One material transparent to 128 nm light is MgF2, as shown in Figure B.2.
Hamamatsu has produced a version of the R11065 PMT with a MgF2 win-
dow, shown in Figure B.1. This PMT could therefore be directly sensitive
to LAr scintillation light, without the use of additional wavelength shifting
materials close to the germanium detectors.

Figure B.1: R11065 PMT with a MgF2 window

This remainder of this section describes the operation of PMTs. In the
following sections, the experimental setups are introduced, and characteri-
sation of one such MgF2 PMT is described.

The basic structure and operating principle of a PMT is shown in Fig-
ure B.3. It consists of a vacuum tube containing a number of electric dyn-
odes, which are supplied with high voltage to create a voltage gradient
between the photocathode and the anode. A photon incident on the face-
plate of the PMT will pass through the window and interact with the pho-
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Figure B.2: Transmittance of quartz and MgF2. Data from Hamamatsu.

tocathode. Via the photoelectric effect, an electron will be emitted from
the photocathode. The electron accelerates towards the first dynode due to
the electric field, where additional electrons are emitted. These electrons
are then accelerated towards the next dynodes, each time being further am-
plified. The final dynode is connected to the anode where the signal is
read out. The MgF2 R11065 PMT has a round three-inch diameter bialkali
photocathode and 12 dynode stages.

photocathode

window

photoelectron dynodes
secondary
electrons

anode

Figure B.3: Schematic of PMT. Adapted from [163].

The probability that an incident photon produces a photoelectron at the
cathode is called the quantum efficiency (QE). This depends on the win-
dow and photocathode materials, as well as the wavelength of the photon.
The quantum efficiency of this PMT was measured by Hamamatsu, and is
shown in Figure B.4. The maximum QE is 38% at 185 nm. The QE at the
wavelength of LAr scintillation light, 128 nm, is 23%.
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Figure B.4: Quantum efficiency of the R11065 PMT with a MgF2 window.
Data from Hamamatsu.

b.2 experimental setups

b.2.1 Test facilities

Room temperature measurements of the MgF2 PMT were performed in
Sandbox. SandBox is a PMT characterisation facility developed at UZH [164, 165].
It consists of a light-tight black box, wherein a PMT and a light source (here
a 470 nm LED) can be placed facing each other. Feedthroughs are installed
to provide a bias voltage to the PMT and read out its signal, and to power
the LED. The facility is shown in Figure B.5.

Figure B.5: Sandbox, the light-tight black box PMT testing facility.

The Liquid Argon Setup (LArS) at UZH was first developed to test wave-
length shifting materials for the development of the Gerda liquid argon
veto [166]. It consists of a vessel which can be filled with either argon or
nitrogen, and is equipped with two temperature sensors, a liquid levelme-
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ter, and a 470 nm LED. A combination of liquid nitrogen flow and a small
heater are used to regulate the temperature. The PMT is installed facing
downwards. The facility is shown in Figure B.6.

Figure B.6: An external (left) and internal (right) view of LArS. On the
right, the copper cooling coils and PTFE PMT mount are visible.

b.2.2 Signal processing

A voltage divider base provides the voltage to each dynode from a single
high voltage supply. The anode signal is also read out from the base. The
base used for measurements of this PMT is the same as that used for the
R11410 PMTs used in the XENON1T experiment [167], and is shown in
Figure B.7.

Figure B.7: Base voltage divider circuit. K labels the photocathode, G the
focusing grid, D-12 the dynode and P the anode. Figure from [168].

To digitise the PMT signals, either a CAEN v1720 flash ADC (12 bit
resolution, 250 MHz sampling frequency), CAEN v1724 flash ADC (14 bit
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resolution, 100 MHz sampling frequency) or a CAEN v1730 flash ADC (14

bit resolution, 500 MHz sampling frequency) was used, depending on the
measurement. The signal may also be optionally amplified by a ten-fold
776 Philips amplifier prior to digitisation. Where an LED is used, the LED
and ADC are simultaneously triggered by a Telemeter TG55011 pulse gen-
erator.

Once PMT signals are digitised, they are processed using software de-
veloped at UZH, WARP [169]. This software calculates the baseline of the
waveform. It also locates peaks in a waveform, and calculates parameters
including their position, amplitude, area, etc. An example waveform is
shown in Figure B.8.

Figure B.8: An example waveform processed with WARP. The baseline
(green line) is calculated based on the waveform samples in the first 1 µs
(pink shaded area). A single peak is detected above a threshold of three
times the baseline (red shaded area), from which parameters such as the
amplitude and area can be calculated. Figure adapted from [169].

b.3 characterisation

This section describes the measurements that were taken to characterise
this MgF2 PMT.

b.3.1 Gain

The mean signal (secondary electrons collected at the anode) observed for
a signal photoelectron is called the gain G, which for typical PMTs of this
size will be on the order of a few million. It is given by the product of the
secondary emission ratios δi of each dynode i,

G = ∏
i

δi. (B.1)
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Empirically, the secondary emission ratio can be expressed as

δi = a∆Vk
i , (B.2)

where ∆Vi is the total voltage difference between the ith and (i− 1)th dyn-
ode, and a and k are constants depending on the dynode material. Where
∆Vi is constant for all n dynodes, the gain can be expressed as

G = ∏
i

a∆Vk
i = an

(
Vbias

n + 1

)kn
= cVα

bias, (B.3)

where Vbias is the voltage difference between the photocathode and anode,
and c and α are constants.

The gain of a PMT is extracted from a Single Photoelectron (SPE) spec-
trum. To acquire this, the LED intensity is adjusted to produce predomi-
nantly single photons. The LED power and the PMT data acquisition are
then simultaneously triggered via an external pulse generator. An example
of a resulting PMT waveform is shown in Figure B.9.

For each applied bias voltage, 500 000 events were acquired. This data
was taken with the PMT installed with the Sandbox facility, using the
CAEN v1724 ADC.
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Figure B.9: Example PMT waveform obtained during a gain measurement

From each waveform, the area of each pulse (i.e. the number of signal
electrons from the PMT) is calculated using WARP (see Section B.2.2. The
distribution of these areas then gives a SPE spectrum, shown in Figure B.10.
Such a spectrum consists of a noise peak and then successive peaks for each
number of photoelectrons produced. The fit function of the SPE spectrum
is thus given by

f (x) = A0 exp

(
− (x− µ0)

2

2σ2
0

)
+ ∑

i
Ai exp

(
− (x− iµ)2

2iσ2

)
(B.4)
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where A0, µ0 and σ0 label the amplitude, mean and standard deviation of
the noise peak, Ai label the amplitudes of the photoelectron peaks, and µ

and σ label the mean and standard deviation of the first photoelectron peak.
The centroid of the first photoelectron peak, µ, gives the mean number of
signal electrons produced by the PMT after a single photoelectrode has
been emitted from the photocathode, i.e. the gain.
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Figure B.10: Example of normalised SPE spectrum for a bias voltage of
1150 V. The spectrum consists of a noise peak (red), the SPE peak (green)
and the double photoelectron peak (blue). Here, the pulse areas are nor-
malised by the centroid of the SPE peak, i.e. the gain.
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Figure B.11: PMT gain as a function of bias voltage

Figure B.11 shows the measured gain relative to the bias voltage applied
to the MgF2 PMT. The best fit values for equation B.3 are given by c =
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Figure B.12: The mean collected PMT waveform when exposed to a 241Am
source in LArs, filled with liquid argon. The exponentially decreasing
amplitude due to the short (long) components of LAr scintillation light
is shown in blue (red).

3.1 · 10−18 and α = 7.7. The gain at the nominal operating voltage of 1500 V
is given by 6.5 · 106 electrons/photoelectron.

b.3.2 Observation of LAr scintillation light

In order to confirm the response of the PMT to liquid argon scintillation
light, an alpha-emitting 241Am source was placed with the PMT inside
LArS, which was filled with liquid argon. 241Am emits α particles with
energy 5.5 MeV during its decay to 237Np. The source was produced for
testing the wavelength shifting foils used in Gerda [166, 170], via elec-
trodeposition on a stainless steel substrate. This is then mounted on an
aluminium plate installed below the PMT.

The mean collected waveform is shown in Figure B.12 It displays the
characteristic exponentially decreasing amplitude from the short (O(10 ns))
and long (O(1.5 µs)) components due to the two excited states of of LAr
scintillation light, confirming its sensitivity at these wavelengths.

b.3.3 Dark current

An important characteristic of a PMT concerns its noise output. Thermal
fluctuations may result in the spontaneous emission of an electron from the
photocathode. This electron will then be amplified as it passes through the
dynodes, and will be measured at the anode. The rate of these unwanted
noise events is called the dark count (DC) rate.

To measure this, instead of digitising the signals, the unamplified PMT
signal is connected to a CAEN N845 discriminator, which is then fed to
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a CAEN v260 scaler. The result of this is to count the number of signals
above some threshold set in the discriminator. The discriminator threshold
is set to 0.3 times the average amplitude of a single PE signal.

An increase in the DC rate was observed during cooldown in an argon
environment, see Figure B.13. At room temperature, the dark count rate is
around 1.2 kHz. At around 90 K, (c.f. the boiling temperature of argon of
87.3 K), a sharp increase in the dark count rate is observed to a maximum
of 9 kHz.

However, in cooldown in a nitrogen environment, no such increase was
observed, see Figure B.14. At room temperature, the dark count rate is
again around 1.2 kHz. This rate sharply drops when cooled, stabilising at
around 0.3 kHz below a temperature of approximately 200 K.

These observations further indicate that the PMT is observing liquid
argon scintillation light, stimulated due to cosmic and/or atmospheric
muons.
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Figure B.13: Top: the temperature (black) and dark count rate (red) during
cooldown in LArS in a liquid argon environment. Bottom: the relationship
between the dark count rate and temperature.
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Figure B.14: Top: the temperature (black) and dark count rate (red) during
cooldown in LArS in nitrogen. Bottom: the relationship between the dark
count rate and temperature.
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b.3.4 Afterpulses

Afterpulses are peaks that are observed after a trigger peak in a PMT. They
are caused by photoelectrons ionising residual gas molecules inside the
vacuum chamber between the photocathode and first dynode. The positive
ions then drift back in the electric field towards the photocathode, and
cause further production of photoelectrons, which are later observed after
they have been amplified by the PMT.

It is possible to estimate the delay between an afterpulse and the main
trigger pulse by making an assumption for the field between the photo-
cathode and the first dynode. A simple assumption is a quadratic field
dependence, where the voltage at a distance x from the first dynode can be
expressed as

V(x) = V0

(
1− x

L

)2
, (B.5)

where V0 is the voltage at the first dynode and L is the distance between
the photocathode and first dynode.

The total delay time between the triggering event and the secondary af-
terpulse peak is given by the sum of the drift time of the ion to the pho-
tocathode, and the drift time of the stimulated electrons back to the first
dynode. Since the ions are much heavier than the electrons, the drift time
of the electrons is negligible. Therefore the delay between the main pulse
and the afterpulse is given by

∆t =
∫ L

s0

1
v

ds (B.6)

=

√
m
2q

∫ L

s0

[V(s0)−V(s)]−1/2 ds (B.7)

=

√
m

2qV0

∫ L

s0

L√
(L− s0)2 − (L− s)2

ds (B.8)

=
Lπ

2

√
m

2qV0
, (B.9)

where s0 is the distance between the ionisation position and the first dyn-
ode, and m and q are the mass and charge respectively of the ion. The time
delay scales with mass, and is independent of the ionisation position s0.

The dependence of the afterpulse delay on the mass-to-charge ratio of the
ion, m/q, allows for ion identification in the resulting afterpulse spectrum.
The average time delay of a particular peak in the afterpulse spectrum can
be converted into a mass-to-charge ratio. Let M be the mass of the ion
in units of proton mass, and Q the charge of the ion in units of electron
charge:

M
Q

=
8V0

(πL)2

qp

mp
(∆t)2 = C0 · (∆t)2 , (B.10)
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C0 can be calculated theoretically using:

C0 =
8V0

(πL)2

qp

mp
, (B.11)

but it can also be calculated empirically by looking in an afterpulse spec-
trum for ions that are expected in the chamber, for example hydrogen.

Hamamatsu has indicated that during the production of these PMTs, the
MgF2 does not always tightly form to the vacuum tube, and therefore the
vacuum may become contaminated. This increase in gas molecules would
be observed as an increase in the ion-induced afterpulse rate, and thus
repeated afterpulse measurements were taken in 2015 and 2016. In 2015,
a CAEN v1720 ADC (12 bit, 100 MHz) directly collected the PMT signal,
whereas in 2016, a CAEN v1730 ADC (14 bit, 500 MHz) collected the PMT
signal which had been amplified ×10.

In 2015, the afterpulses following dark count signals were studied, with
waveform collection triggered by the LED signal exceeding a certain thresh-
old. For the 2016 data, the PMT was flashed with an LED light source
(λ = 470 nm), and the ADC triggered on the pulse generator used to power
the LED. The waveforms were processed with WARP.
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Figure B.15: Area in units of photoelectrons and time delay with respect to
initial peak of afterpulse peaks. Left: 2015 data, Right: 2016 data.

Figure B.15 shows the area in units of photoelectrons and the time de-
lay with respect to the initial peak of afterpulse peaks. Areas of high
density are associated with afterpulses due to ions of particular mass-to-
charge ratios. A time-uniform pedestal is observed for afterpulses with
area corresponding to less than about 3 photoelectrons, which are not due
to molecule ionisation, but other processes, such as electrons scattering off
dynodes.

Figure B.16 shows the result of selecting those afterpulses with area
greater than 3 photoelectrons, and projecting them onto the time delay axis.
The afterpulse rates are calculated for each shaded region in Figure B.16.
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Figure B.16: Normalised distribution of afterpulse time delays. Left: 2015

data, Right: 2016 data.

The rates are normalised to the number of photoelectrons in the initial peak
that triggers the electrons, i.e.,

Rate =
Number of afterpulse peaks

Average number of photoelectrons per trigger pulse
. (B.12)

This normalisation accounts for the difference in the average number of
photoelectrons per trigger pulse for the two datasets: 1.03 in 2015, and 1.31
in 2016, and makes the assumption that an event where two photoelectrons
are emitted from the photocathode is twice as likely to produce afterpulses
and an event where only one photoelectron is emitted from the photocath-
ode. The individual afterpulse rates for the various ion peaks are shown
in Table B.1. The ranges for each peak are the same in both datasets. The
estimated mass-to-charge ratios are calculated by assuming the first peak
to be due to hydrogen, and assuming a quadratic electric field between the
photocathode and the first dynode.

Average time
delay [µs]

M/Q Identified ion Events per trigger PE
[10−4]
2015 2016

0.30 1.00 (by def.) H+
0.91 0.80

0.59 4.00 He+ 1.25 0.39

1.02 11.96 CH+
4 7.28 8.83

1.32 20.02 Ar++
1.68 1.68

1.62 30.16 N+
2 2.46 2.72

Table B.1: Afterpulse rates due to different ion peaks for waveforms from
2015 and 2016

The total afterpulse rates were measured to be 0.35 % in 2015, and 0.34 %
in 2016. The comparable results between the two datasets, and the lack of
increase in nitrogen or argon afterpulses, suggests that there has been no
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considerable degradation of the vacuum and therefore that no significant
leak has developed.

b.4 conclusions

The PMT produced with a MgF2 window by Hamamatsu is directly sen-
sitive to liquid argon scintillation light with a wavelength of 128 nm. This
was confirmed by the increase in dark count rate when the PMT was cooled
in a liquid argon environment, which was not observed in a nitrogen envi-
ronment. Furthermore, the mean waveform observed when an α emitting
241Am source was placed with the PMT in liquid argon exhibited the two
characteristic exponentially decaying components.

The gain of the MgF2 PMT was measured and is comparable to other
R11065-20 PMTs [166], with a gain of 6.5 · 106electrons/photoelectron at an
operating voltage of 1500 V.

Since Hamamatsu had indicated that this PMT may be susceptible to
leaks into the vacuum tube, the afterpulse rate was measured twice, a year
apart. No increase in afterpulse rate was observed, including for nitrogen
and argon.
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