First data release GERDA Phase II: Search for 0vββ of ⁷⁶Ge

Bernhard Schwingenheuer Max-Planck-Institut für Kernphysik, Heidelberg for the collaboration

The collaboration

Neutrino mass: non-SM effect?

possible neutrino mass terms (v has no electric charge): not only Dirac

 $L_{Yuk} = m_D \,\overline{\mathbf{v}}_L \,\mathbf{v}_R + m_L \,\overline{\mathbf{v}}_L \,(\mathbf{v}_L)^C + m_R \,(\overline{\mathbf{v}}_R)^C \,\mathbf{v}_R + h.c.$

 v_L couples to Standard Model W,Z bosons, $v_R^{}\,$ does not (SM singlet) $m_D^{} \sim \,$ normal Dirac mass term

m_L, m_R new physics

eigen vector $N \sim v_R + (v_R)^C$ $v \sim v_L + (v_L)^C$ Majorana particles mass (m_L ~0) m_R m_D² / m_R

in general: expect Lepton number violation & neutrino = Majorana

How to observe $\Delta L=2:0\nu\beta\beta$

Look for a process which can (only) occur if neutrino is Majorana particle

coupling strength ~ $m_{\beta\beta} = \sum_{i=1}^{3} U_{ei}^{2} m_{i}$ function of - neutrino mixing parameters - lightest neutrino mass - 2 Majorana phases

also possible: heavy N exchange \rightarrow coupling strength $\sim \sum_{i=1}^{3} V_{ei}^2 / M_i$

LHC vs $0v\beta\beta$: other mechanisms

extensions of SM \rightarrow other contributions to $0\nu\beta\beta$ possible, example LRSM LHC might find W_R and/or Δ L=2 process

Neutrinoless double beta decay

"single" beta decay not allowed \rightarrow only "double beta decay" (A,Z) \rightarrow (A,Z+2) + 2 e⁻ + 2 \overline{v} $\Delta L=0$ (A,Z) \rightarrow (A,Z+2) + 2 e⁻ $\Delta L=2$

experimental signature for $\beta\beta$

Note: similar process in principle also observable at accelerator or reactor or ... For light Majorana neutrino:

- background too high
- flux too low compared to Avogadro N_A

 $0\nu\beta\beta$: search for a line at Q value of decay

GERDA: Ge in LAr @ Gran Sasso

EPJ C73 (2013) 2330based on idea of G. Heusser (1995)LNGS, 29 June 2016first data release GERDA Phase II

GERDA Phase I result for $0\nu\beta\beta$

events ±20 keV blinded

after calibration+selection finished → unblinding at meeting in Dubna in June 2013

exposure 21.6 kg yr backgr. 0.01 cnt/(keV kg yr) after pulse shape cut

$$T_{1/2}^{0\nu}$$
 > 2.1 · 10²⁵ yr (90% C.L.)

(sensitivity = 2.4 10²⁵ yr) PRL 111 (2013) 122503.

claimed signal: GERDA should see $5.9\pm1.4 \ 0\nu\beta\beta$ events in $\pm 2\sigma$ interval above background of 2.0 ± 0.3 probability p(N⁰v=0 | H₁=signal+bkg) = 1%, claim ruled out @ 99% (GERDA best fit signal count N⁰v = 0)

Transition to Phase II

goals: 2x detector mass & factor 10 lower background

→ factor ~7 higher sensitivity of ~1.5 10^{26} yr (90% C.L.) limit

all hardware modified except for cryostat, water tank and clean room

8 (semi-)coaxial detectors Heidelberg-Moscow + IGEX 17 kg total mass

30 Broad Energy Ge det. (BEGe) new detectors made by Canberra 20 kg total mass

Phase I background: ²⁰⁸TI, ²¹⁴Bi, ⁴²K, surface alpha → measure all energy depositions (LAr veto) & better detector pulse shape discrimination (BEGe)

LAr veto of Phase II

Nylon mini shroud: ⁴²Ar background

LArGe test stand result

1 ton LAr doped with ⁴²Ar, ~200x abundance of nat. Ar BEGe det. in nylon cylinder covered with TPB, LAr veto with PMTs

- → background suppression factor SF = 15 from nylon, limit volume from which ⁴²K can be collected
- \rightarrow LAr veto + Ge det. pulse shape SF ~ 70

nylon from Borexino: thanks!!!

LNGS, 29 June 2016

Argon veto commissioning performance

5 keV > 10° counts/ 5 keV GERDA preliminary May 2015 228 Th calibration run 2 keV 226 Ra calibration run GERDA preliminary June 2015 anti-coincidence cut (AC) $\ge 10^3$ anti-coincidence cut (AC) counts/ 10^{\prime} noc AC + PSD+ PSD10 10 AC + LAr veto + LAr veto 10 detectors: + LAr veto + PSD detectors: + LAr veto + PSD 4/C, 1/D, 79C, 02B, 35B 4/C, 1/D, 79C, 02B, 35B 10^{5} 10^{5} 2000 2100 energy [keV] energy [keV] 10° 10^{4} 10^{3} 10^{3} 11 10^{2} 10^{2} 10 10 800 2200 2400 00 2600 energy [keV] 600 1200 1600 1800 2000 1000 1400 1400 1600 1800 2000 2200 2400 energy [keV]

veto suppression factor5.1±0.2combined with pulse shape25±2.2

²²⁶Ra calibration source

veto suppression factor 85±3 combined with pulse shape & anti-coincidence 390±28

²²⁸Th calibration source

factors depend on isotope, location & detector configuration

Detector holder & electronics

goal: pure materials like mono-crystalline Si 80 g Cu/detector $\rightarrow \sim 15$ g Cu/detector 11 g PTFE/detector $\rightarrow \sim 3$ g PTFE/det 1 g Si/detector $\rightarrow 40$ g Si/detector reliable electrical contact \rightarrow bonding

original goal: JFET at detector problems with feedback R and JFET, ...

 → went back to 'Phase I' like readout: entire charge sensitive amplifier
 ~ 35 cm above string

amplifier radioactivity reduced by x3 to P I 38 μ Bq/ch 226 Ra, 13 μ Bq/ch 228 Th

Phase II start December 2015

LAr veto pulse height spectrum

read out all channel if Ge triggers \rightarrow offline veto

- all channels working
- gain stable with time

low noise \rightarrow veto cut ~0.5 p.e.

reject ~ 2.3% of pulser events

15

LAr veto

LNGS, 29 June 2016

Muon veto (EPJC 76 (2016) 298)

correlation CNGS beam & muon veto rate (arXiv:1601.06007) **GERDA 16-04** l_{cNGS} [10¹⁶pot/d] 40 40 30 mean 30 18.2×10^{16} pot/d 20 20 10 10 0 #_{coin} [1/d] 200 200 CPUI GPS 150 150 mean (71.5 ± 2.5) /d 100 100 50 50 0 #_{coin} [1/(10¹⁶pot)] mean 12 (4.41 ± 0.16) / (10¹⁶pot) 10 8 2 Jul/2011 Jan/2012 Jul/2013 Dec/2010 Jul/2012 Dec/2012

since 2010: 5 PMTs in water tank dead (no effect on eff.), >99% μ identification, ~0.1% dead time very reliable and stable

LNGS, 29 June 2016

Data quality

~50% of triggered events 'unphysical'

Easily identified by

- wrong polarity
- position of the rising edge
- rise time of edge

Applying to pulser events & γ lines \rightarrow no loss of physical events

~100 % events remain in ⁴⁰K, ⁴²K peaks of physics data

Ge energy calibration: ZAC filter

EPJC 75 (2015) 255: ZAC improves E resolution in case of low frequency noise (microphonics), Phase I: average FWHM coax detectors 4.8 keV (gaussian) \rightarrow 4.25 keV (ZAC) at Q_{BB}

procedure: weekly ²²⁸Th calibrations \rightarrow calibration curves combined calibrations \rightarrow expected peak position and FWHM compare to ⁴²K and ⁴⁰K peaks in physics data \rightarrow systematic between calibrations: every 20 sec pulser injected into front-end

Ge energy calibration: stability

shifts of reconstructed ⁴²K peak position during Phase II all detectors combined

shifts within $\pm 1 \text{ keV} \rightarrow \text{'small' compared to energy resolution of 3-4 keV FWHM}$

Ge energy: combined data

LNGS, 29 June 2016

Ge energy calibration

FWHM @ $Q_{\beta\beta}$ 3.0±0.2 keV

FWHM @ $Q_{\beta\beta}$ 4.0±0.2 keV

(add correction due to difference calib-physics)

comparison peak positions from literature value \rightarrow peak position uncertainty at Q_{BB} ~ 0.2 keV

Pulse shape discr. (EPJC 73 (2013) 2583)

PSD for BEGe

single parameter: max of current A / energy E

normalize to A/E of DEP evt comparison to physics $2\nu\beta\beta$

calibration

and the second se

1400 1600

1200

1000

2000

1800

2200

2600

energy [keV]

2400

2800

A/E_{cal} [a.u.]

1.4

1.2

0.8

0.6

0.4

0.2

600

800

1.05 1 A/E... [a.u.]

0.95

0.9

PSD for BEGe

²²⁸Th calibration: A/E versus energy for one detector

A/E lower cut (1-a) at 90% DEP efficiency, A/E high cut at 1+2a single Compton scattered $\gamma \rightarrow$ energy dependence of cut

PSD for BEGe

PSD for BEGe: physics events

efficiency DEP (87.3±0.2±0.8) % 2νββ (85.4±0.8±1.7) %

in $Q_{\beta\beta} \pm 200$ keV (blinded) after PSD: 8/45 events after LAr & PSD 3/45 events

in fit energy window: 1 evt

PSD for coax detectors

50 time stamps when charge reaches 1%, 3%, ... 99% of maximum

training with DEP (1593 keV) = signal and 1621 keV line from ²¹²Bi = bkg (all calibrations combined) cut at 90% survival of DEP peak different shapes → no simple parameter
→ neural network:
2 methods using different inputs
& training samples

PSD for coax detectors

in Phase I: exact same method $2\nu\beta\beta$ efficiency of (85±2)% for data, (83±3)% for MC \rightarrow for now take preliminary $0\nu\beta\beta$ efficiency of 80±9 % (enlarged uncertainty)

performing more cross checks and simulations $\rightarrow T_{1/2}$ limit might change a little

PSD for coax detectors: stability

ch08 - ANG5

ch09 - RG1

ch10 - ANG3

LNGS, 29 June 2016

PSD for coax detectors: alpha

expect sizable α background not rejected by MSE/SSE PSD \rightarrow 2nd method

color = calibration, black dots = physics

training: signal = 1-1.3 MeV physics $(\sim75\% 2\nu\beta\beta \text{ events})$ background = 3.5-4.5 MeV physics $(100\% \alpha)$ cut at 10% survival for α

→ keep 90-98 % DEP in calibration 91-98 % $2\nu\beta\beta$ (ANG1 87%) clear separation α versus signal avg $2\nu\beta\beta$ efficiency (95.8±0.5)%

event count 1930-2190 keV physics data (blinded)

w/o	LAr	MSE	α	LAr + MSE	$^+_{\alpha}$
16	10	13	10	8	3

PSD for coax: comparison methods

Background spectrum: coax

fit [570:5300] keV with 30 keV binning before LAr veto and PSD

preliminary results:

 $2\nu\beta\beta T_{1/2} = (1.84\pm0.05) \ 10^{21} \text{ yr}$ only statistical error

 $2\nu\beta\beta$ half-life consistent with our published value of (1.93±0.09) 10^{21} yr EPJC 75 (2015) 416.

same components like Phase I

Background spectrum: BEGe

Counts/(50 keV) 210Po on p+ 10 data 226Ra & 222Rn on p+ 226Ra & 222Rn in LAr - model 10 data/model ratio 68% 95% 99.9% data/model 3500 4000 4500 5000 energy [keV]

preliminary result: $2\nu\beta\beta T_{1/2} = (2.00\pm0.05) \ 10^{21} \text{ yr}$ statistical error only fewer ²¹⁰Po events than on coax detectors, flat energy component extends to $Q_{\beta\beta}$ effectively removed by A/E high side cut

Background spectrum at $Q_{\beta\beta}$

flat background spectrum before LAr veto and PSD selection suppression for ²²⁸Th and ²²⁶Ra calibration data flat → final background flat fit range 1930 – 2160 keV minus 2x10 keV intervals around 2004 keV and 2119 keV

²²⁶Ra and ²²⁸Th contamination levels consistent with screening results

~0.015 cnt/(keV kg yr) for BEGe and coax, Phase I coax/BEGe ~0.018/0.04 cnt/(keV kg yr)

LNGS, 29 June 2016

Unblinding at Ringberg castle

GERDA collaboration meeting at Ringberg 17 June: unblinding of \pm 25 keV around $Q_{\beta\beta}$

Load PhaseII data Time stamp of first ever Time stamp of last ever Non-Blinded da <u>ta</u> : 99033	nt: UTC Fri t: UTC Wea 6 events	. Dec 25 0 1 Jun 1 0	1:45:09 2015 7:43:10 2016			
Blinded data: 98997 ****** -> 337 events were blind Search	9 events ed.				th ≘t	
Searching for blinded ev	ents					
blindo.	EnrBEGe	EnrCoax	Runs47-49			
blinded events:	337	337	2			
in any in analysis dataset:	13	10	0			
in energy range:	8	5	ø			
CUEVAL surviving Mu veto:	6	4	0			
Surviv surviving LAr veto:	4	3	0			
SUPVI surviving PSD:						
survi) PhaseII data - 990300 d	f 990316					
Timestamp: Wed Jun 1 07	:40:22 2010					part of the second
Phase T						
Timest Creating output						
(class TEventList *) 0x5	fe09f0					
FOOE [2]						
ST (***	2006		O V2 X CO			
	and the second					
				100	20	
-				S. M.	19	
		11		En 2	R	
- Landa (*		11		843-	X	
						4
						4
						4
						4
	F				2	4

Data sets

	exposure [kg*yr]	FWHM [keV]	efficiency	final background 0.001cnt/(keV kg yr)
PI golden	17.9	4.27±0.13	0.57±0.03	11±2
PI silver	1.3	4.27±0.13	0.57±0.03	30±10
PI BEGe	2.4	2.74±0.20	0.66±0.02	5^{+4}_{-3}
PI extra	1.9	4.17±0.19	0.58±0.04	4^{+5}_{-2}
PII BEGe	5.8	3.0±0.2	0.60±0.02	$0.7^{+1.2}_{-0.5}$
PII coax	5.0	4.0±0.2	0.51±0.07	3^{+3}_{-1}

Notes:

PI golden/silver: Phase I PSD efficiency reduced from (90±9) % (for PRL in 2013) to (83±3) % at same time bug in ROOFIT caused reduction limit → 90% CL of 2013 still valid, use ZAC energy reconstruction now → energy shift with σ~1 keV PI extra: 2 runs taken after the PRL data set in 2013 P2 coax: PSD efficiency is preliminary exposure: calculated using total mass efficiency: includes active volume fraction, enrichment, reconstruction of 0vββ, PSD efficiency, LAr veto loss background: evaluated in energy range used for the fit (240 keV), normalized to total mass

Event list Phase II

event list (time stamp & energy) from Phase II

14551094481995.1585ph2_coax14578441531967.97775ph2_coax14578476591958.61056ph2_bege14591808182063.55544ph2_coax14639174802060.51564ph2_coax

1 event in blinded energy window ±25 keV, closest event 21 keV from $Q_{\beta\beta}$ expect about 0.2 events within ±5 keV of $Q_{\beta\beta}$, see 0 events

Spectrum at $Q_{\beta\beta}$

Result Bayesian fit

flat prior in 1/T from 0 to 10^{-24} 1/yr:

 $N_{signal} < 3.1 \rightarrow T_{1/2} > 3.5 \ 10^{25} \text{ yr} (90\% \text{ credible interval})$ median sensitivity 3.1 10²⁵ yr, systematic error included

Frequentist: profile likelihood fit

 $T_{1/2}^{0\nu}$ > 5.3 · 10²⁵ yr (90% C.L.) sensitivity 4.0 10²⁵ yr

Summary

strong prejudice: $0\nu\beta\beta$ exists, Δ L=2 process, possibly only observable Δ L, (reminder: from cosmology we know B is violated – at least in early univ.)

GERDA Phase II started in December 2015

- all Ge detectors and LAr channels are working (2 BEGe not used for $T_{1/2}$)
- reached goal of background level $0.7^{+1.2}_{-0.5} \cdot 10^{-3}$ cnt/(keV kg yr) for BEGe (0.003 cnt/(keV kg yr for coax, factor 3 lower than in Phase I)
- lowest bkg (~10x) in ROI compared to exp. using other isotopes

 $T_{1/2}$ limits 5.3 10²⁵ yr (90% CL, frequentist) and 3.5 10²⁵ yr (90% credible, Bayesian), will improve with time

This result suggests future Ge experiments with 200 kg and beyond