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Summary

In rare event searches, such as the search for Neutrinoless Double-Beta Decay
(0νββ), the experimental sensitivity critically depends on the remaining background
after all data cuts in the region of interest, where signal events are expected. Back-
ground reduction is essential to obtain the necessary experimental sensitivity. The
Germanium Detector Array (Gerda) experiment is searching for 0νββ decay in
76Ge. Recently, 30 newly produced germanium detectors of Broad Energy Ger-
manium (BEGe) type have been implemented in Gerda. Analyzing the shape of
detector pulses, background can be distinguished from signal events and discarded.
The major advantage of the new BEGe detectors are their excellent properties for
this kind of analysis.

The main focus of this thesis is the preparation of pure 0νββ-like event samples
from confined interaction regions in a BEGe in order to study the response of the
detector with respect to the interaction position. This is useful to validate and im-
prove pulse shape simulations of germanium detectors and can help creating new
algorithms which effectively reduce the background in Gerda. An experimental
setup was assembled and used to collect events due to single Compton interactions
of photons with a BEGe detector. Because of their localized energy deposition single
Compton events can be used as prototypes for 0νββ event pulse shapes. The assem-
bly is capable of a full three-dimensional scan of the BEGe detector. An extensive
characterization of all detectors used was realized to assure stable conditions of the
experimental setup. Furthermore, detailed fine grain surface scans were performed
which can give valuable input for simulation. A comprehensive Monte Carlo (MC)
description of the assembly was implemented in a Geant4 based framework. The
simulations provided means to conduct detailed studies of the spatial and energy
distribution of single and multiple Compton events. Based on these studies the se-
lection of pure samples of single Compton events from localized regions in the BEGe
was optimized. In a data taking campaign event samples were collected for differ-
ent experimental configurations. Differences in the pulse shape are observed when
changing the scanned detector location or the High Voltage (HV) on the BEGe. In
particular it was found that the first part of the average pulse is most sensitive.

Another aspect of rare event searches is the detailed analysis and decomposition of
background events. A major background component in Gerda Phase I is intro-
duced by the isotope 42Ar. In this work, the specific activity of 42Ar in the Gerda
liquid Argon (LAr) was analyzed using a Bayesian approach. The detection efficien-
cies were calculated by means of MC simulations of part of the Gerda experimental
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Summary

setup. This permitted to study systematic effects introduced by inhomogeneities of
the distribution of the studied background component in the LAr. The final value
of the specific activity was obtained with a binned maximum likelihood fit of two
fit models. Correcting the result for the time the LAr was kept under ground the
specific activity can be compared to other experimental results, and furthermore, to
theoretical calculations regarding production mechanisms of 42Ar in the atmosphere.
A corrected specific activity of A0(42Ar) = 101.0+2.5

−3.0(stat)± 7.4(syst)µBq/kg was
found in this analysis; it is compatible with a theoretical calculation based on a ma-
jor production mechanisms of 42Ar in the atmosphere. However, it results incompat-
ible with the upper limit, 43 Bq/kg at 90 % CL, reported in a previous measurement.
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Riassunto

Nelle ricerche di eventi rari, come, per esempio, il decadimento doppio beta senza
neutrini (0νββ), la sensibilità sperimentale dipende dal numero di eventi di fondo
che rimangono nella regione di interesse dopo tutti i tagli di analisi. Per raggiun-
gere una elevata sensibilità sperimentale è pertanto essenziale ridurre gli eventi di
fondo. L’esperimento Gerda sta cercando il decadimento 0νββ mediante l’impiego
dell’isotopo 76Ge. Recentemente l’esperimento si è dotato di 30 nuovi rivelatori al
germanio del tipo BEGe. Il maggiore vantaggio di tali rivelatori è di permettere
una efficace separazione degli eventi di segnale da quelli di fondo mediante lo studio
della forma del segnale elettrico.

Lo scopo primario di questa tesi è la ricerca di un metodo di raccolta di eventi
che possano simulare quelli del decadimento 0νββ. Si vuole inoltre che tali eventi
siano distribuiti su tutto il volume del rivelatore. Questo risulta molto utile per
creare algoritmi che permettano di ridurre gli eventi di fondo in Gerda. Inoltre,
lo studio della risposta del rivelatore a seconda del punto di interazione del fotone
incidente permette di controllare e migliorare la descrizione della forma d’impulso
ottenuta dalle simulazioni. È stato allestito un apparato sperimentale che permette
di selezionare eventi caratterizzati da una singola interazione Compton provenienti
da regioni ben definite del rivelatore sotto esame (nel nostro caso un rivelatore di
tipo BEGe). Gli eventi provenienti da una singola interazione Compton giacché
rilasciano l’energia in una regione ben circoscritta del rivelatore simulano gli even-
ti doppio beta. L’apparato ha la capacità di analizzare l’intero volume del BEGe
nelle sue tre dimensioni. Come passo propedeutico è stato eseguito uno studio delle
caratteristiche fondamentali dei rivelatori usati. Questo è servito per assicurare un
funzionamento stabile e affidabile all’apparato sperimentale. Lo studio ha compor-
tato anche l’esecuzione di dettagliate scansioni superficiali dei rivelatori utili queste
come informazioni in ingresso ai programmi di simulazione. Le simulazioni hanno
permesso un’analisi della distribuzione spaziale ed energetica degli eventi caratte-
rizzati da una singola interazione Compton come di quelli da molteplici interazioni
Compton. Basandosi su tale studio e’ stata ottimizzata la selezione degli eventi
provenienti da un solo scattering Compton e da una posizione nota del rivelatore.
Durante la campagna di raccolta dati sono stati acquisiti dei campioni di dati sotto
diverse configurazioni dell’apparato sperimentale. Sono stati osservati delle differen-
ze nella forma degli impulsi cambiando sia la posizione da cui proviene l’interazione
che il valore di alta tensione applicata sul BEGe. In particolare, si è notato che la
regione più sensibile è la parte iniziale dell’impulso.
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Riassunto

Per poter rigettare gli eventi di fondo è importante anche conoscerli e classificarli.
L’analisi dei dati di Gerda nella sua prima fase sperimentale ha mostrato che una
delle componenti principali degli eventi di fondo è dovuta all’isotopo 42Ar presente
nel LAr. L’attività dell’42Ar è stata studiata con un approccio bayesiano usando
dati di Gerda fase I. Il risultato finale è stato ottenuto tramite un ottimizzazione
di una binned likelihood. Una cura particolare è stata rivolta all’analisi di possi-
bili effetti sistematici dovuti ad una possibile distribuzione spaziale non omogenea
dell’42Ar nel criostato di Gerda. Il risultato finale dell’attività specifica dell’42Ar è
A0(42Ar) = 101.0+2.5

−3.0(stat)± 7.4(syst)µBq/kg. Tale valore risulta compatibile con
una stima derivata da un particolare modello di produzione di tale isotopo raro nel-
l’atmosfera. Risulta invece incompatibile con il limite superiore, 43 Bq/kg al 90 %
CL, riportato in una precedente misura sperimentale.
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Introduction

I have done a terrible thing, I have postu-
lated a particle that cannot be detected.

— W. Pauli

Pauli could not have been more wrong with this statement after postulating the
existence of the neutrino in 1930, which ever since has been challenging the physics
world. It has been 60 years since its first experimental confirmation. Although a
lot has been learned about neutrinos, the picture unrevealed still has obvious and
profound flaws: the absolute neutrino masses are unmeasured and their smallness is
unexplained, it is unknown which of the three generations of neutrinos is the lightest
and experimental data is not sufficient to decide whether the neutrino is of Dirac or
Majorana nature.

To complete the picture, neutrinos are and will be a main focus of fundamental
research for many years to come. They offer an exciting field of study as Neutri-
nos are very different from other constituents of the Standard Model of Particle
Physics (SM) [1], and findings in the neutrino sector have far reaching implications
also in other fields, for instance in cosmology [2]. Neutrinos have opened a window
to new physics beyond the SM when solar neutrino oscillation experiments found
compelling evidence for a nonzero neutrino mass [3–5]. Moreover, neutrino mix-
ing could be a source of Charge Parity (CP) violation in the leptonic sector of the
SM [6,7]. The utmost importance is given to determining whether the neutrino is of
Dirac or Majorana nature [8]. It is fundamental for the understanding of the origin
of neutrino masses, mixing and symmetries in the leptonic sector.

The only realistic probe of the existence of a Majorana neutrino mass term in the
next 20−30 years is the search for Neutrinoless Double-Beta Decay (0νββ) [9]. This
decay would be Lepton number violating by two units and require physics beyond
the SM. A very brief introduction to 0νββ decay will be given in Chapter 1; a fully
comprehensive review is beyond the scope of this work and excellent, recent reviews
about neutrinos in general and 0νββ decay in particular can be found in [9–11].

Several experiments are looking for 0νββ decay in different isotopes and with very
different detection techniques [12–17]. They have one thing in common: they are
looking for a very rare — if existing — decay, which makes them low background
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Introduction

experiments. Reduction of background which can mimic signal events and under-
standing of the background components present is vital for all of them, and becomes
more important with higher active mass. This is explained in a little more detail in
Chapter 2.

Background can be reduced in three ways: 1) passively, by building experiments
deeper underground, selecting radiopure construction materials and shielding with
lead, water or similar; 2) actively vetoing background which enters from the outside
leaving traces inside a veto system; 3) discriminating background from signal events
by studying the shape of pulses from the detector(s). This work focuses on the latter.

This thesis has been conducted in the framework of the Gerda experiment, which is
searching for 0νββ decay in 76Ge [14]. In Gerda, High Purity Germanium (HPGe)
detectors enriched in 76Ge are used as source and detector simultaneously. An in-
troduction to germanium detectors and interaction of photons with the detector
material can be found in Chapter 3. A comprehensive characterization of the detec-
tors used in this work is described in the following Chapter 4.

The properties of signal-like events are studied in order to improve background rejec-
tion by Pulse Shape Discrimination (PSD) in germanium detectors for application
in 0νββ experiments. An existing experimental setup for the purpose of collect-
ing single site event (SSE) (interactions with localized energy deposition) samples
of confined regions inside a Broad Energy Germanium (BEGe) detector [18] has
been rebuilt and significantly improved. It is based on measurement of energy de-
posited inside a BEGe detector by photon interacting via Compton scattering and
coincident tagging of the scattered photons. The setup has the potential of a full
three-dimensional scan of any HPGe detector. The collected event samples can
be used to improve background rejection, for Pulse Shape Analysis (PSA) and for
comparison with pulse shape simulations. Chapter 5ff contain a description of the
experimental purpose and functionality, a full Monte Carlo (MC) description of the
setup, and finally, results of Compton coincidence measurements taken with the ap-
paratus.

Another aspect of low background experiments is the study of different background
components present in the experimental setup, which can mimic signal events. The
unique setup of the Gerda experiment, operating bare HPGe detectors in liquid
Argon (LAr), gives the possibility to study the content of 42Ar in LAr which is a
major background source for Gerda. The last Chapter 8 contains a study of the
specific activity of 42Ar in the Gerda LAr with a Bayesian approach using Phase I
data .
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Chapter 1

Neutrinoless Double-Beta Decay

Double-Beta Decay (ββ) is a second order weak decay transforming two neutrons
bound in a nucleus simultaneously into two protons via virtual levels. In addition
to the ordinary decay mode (2νββ) with two neutrinos in the final state, a second
mode (0νββ) without neutrinos is theoretically possible:

2νββ : A(Z,N) → A(Z + 2, N − 2) + 2 e− + 2 ν̄e (1.1)
0νββ : A(Z,N) → A(Z + 2, N − 2) + 2 e− (1.2)

Two Neutrino Double-Beta Decay (2νββ) can be observed in even-even nuclei for
which ordinary beta decay is energetically forbidden but an energetically prefer-
able energy level exists. It has been measured in a handful of isotopes with lifetimes
of (1018 − 1024) yr [19,20]. The latest value for 76Ge is T 2ν

1/2 =
(
1.84+0.14

−0.10

)
·1021 yr [21].

Neutrinoless Double-Beta Decay (0νββ) is a by two units Lepton Number Violat-
ing (LNV) decay; thus forbidden in the Standard Model of Particle Physics (SM).
Lepton number conservation however is just an accidental symmetry in the SM as
no operator can be found which violates Lepton number. LNV is introduced taking
higher dimension operators into account giving rise to physics beyond the SM.

The possible Majorana nature of neutral spin-1/2 particles was pointed out already
in 1937 by Ettore Majorana [8]. Being the only neutral fermion, the neutrino is the
sole candidates for a Majorana particle in the SM. Moreover, compelling evidence
for a nonzero neutrino mass was found by neutrino oscillation experiments [3–5].
The standard interpretation of 0νββ decay is the mediation by light massive neu-
trinos which fulfill the Majorana condition ν = ν̄ as dominant process. 0νββ decay
— mediated by light Majorana neutrinos — is visualized in contrast to the known
decay mode, 2νββ, in Figure 1.1, by the corresponding Feynman diagrams.

The expected signature of such a decay — in the standard interpretation — would
be a peak at the end-point of the continuous 2νββ spectrum (see Figure 1.2).

It shall be noted that quite some non-standard interpretations of 0νββ decay exist
but are not considered in the following. See e.g. [9] for a compilation of non-standard
interpretations and further reference. They become interesting if experiments look-
ing for 0νββ decay see a signal, while experiments which are sensitive to other

1



1. Neutrinoless Double-Beta Decay

combinations of neutrino masses e.g. measurements of the endpoint of the tritium
decay [22, 23] or cosmological observations of Baryon Acoustic Oscillations (BAO)
and the Cosmic Microwave Background (CMB) [24] do not confirm the measure-
ments; i.e. a signal is found outside the allowed parameter space of 0νββ being
mediated by light massive neutrinos. That parameter space will be discussed in a
moment.

Neutrinos of Majorana nature are interesting also in other theoretical aspects. An
elegant solution for the smallness of neutrino masses is provided via the see-saw type
I mechanism [25] adding only three right-handed components of the neutrino fields
to the SM. This mechanism is possible if neutrinos are of Majorana nature.

The only practical way to prove that neutrinos are Majorana particles [26] for the
next 20− 30 years is to search for 0νββ decay [9].

Figure 1.1: Feynman diagrams of 2νββ (left) and the standard interpreta-
tion of 0νββ (right).

Figure 1.2: Expected spectral signature of 0νββ decay.

2



1. Neutrinoless Double-Beta Decay

The inverse half-life of 0νββ is given by

Γ0ν =
1

T 0ν
1/2

= G0ν(Q,Z) g4
A

〈mββ〉2

m2
e

|M0ν|2 (1.3)

The phase space factor G0ν scales with the end-point energy of 2νββ decay to the
fifth power Q5

ββ and is calculated numerically. For recent calculations of G0ν see [27]
and [28]. The so called Q-value or end-point energy, Qββ = Mi−Mf −2me, is given
by the difference of initial, Mi, and final mass, Mf , of the decaying nucleus and the
mass of the two electrons, 2me. It defines the maximal kinetic energy of the two
electrons in the final state of 2νββ. The 0νββ signal is expected at this energy.
In general, values of Qββ are measured experimentally. In Table 1.1 numerical val-
ues of G0ν, the Q-value and the natural abundance of selected isotopes can be found.

The axial vector coupling constant gA and the Nuclear Matrix Element (NME)M0ν

are problematic parameters which will be discussed shortly at the end of this chapter
and mββ is called the effective Majorana mass.

As mββ is a combination of neutrino mass Eigenstates mi

mββ =
∣∣ eiα1|U2

e1|m1 + eiα2|U2
e2|m2 + |U2

e3|m3

∣∣ (1.4)

0νββ gives a handle on the neutrino mass scale and is sensitive to the two Majorana
phases α1 and α2 which only show in LNV decays as is 0νββ decay. The unitary
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [31–33] matrix U describes neutrino
mixing. In the standard parametrization, PMNS is given by

U =

 1 0 0

0 c23 s23

0 −s23 c23

×
 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13

×
 c12 s12 0

−s12 c12 0

0 0 1

 (1.5)

with sab ≡ sinϑab and cab ≡ cosϑab and the mixing angles ϑab. The Dirac phase δ
could be responsible for Charge Parity (CP) violation in the leptonic sector of the
SM.

The effective Majorana mass mββ can be constrained from parameters obtained
in neutrino oscillation experiments, as mββ = f(ϑ12, ϑ13, α1, α2, m1, m2, m3). The
parameters and their uncertainties are listed in Table 1.2. Three general parameter
spaces for mββ are obtained. They are

• normal hierarchy (NH): m1 < m2 < m3; ∆m2
� � ∆m2

a ≡ ∆m2
23

• inverted hierarchy (IH): m3 < m1 < m2; ∆m2
� � ∆m2

a ≡ |∆m2
13|

• quasi-degeneracy (QD): m1 ' m2 ' m3; 0� ∆m2
a � ∆m2

�

With the solar and atmospheric squared mass differences ∆m2
� ≡ ∆m2

12 = m2
2−m2

1

and ∆m2
a ≡ ∆m2

23 = m2
3 −m2

2 (|∆m2
13| = m2

3 −m2
1) for the NH (IH).
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1. Neutrinoless Double-Beta Decay

Table 1.1: Phase space factor G0ν, Q-value and natural abun-
dance for 0νββ candidate isotopes with Qββ ≥ 2MeV. Using
r0 = 1.2 fm for the nuclear size corrections. Isotopic abun-
dance from Table 1 in [9] all other values taken from Table
III in [27].

Isotope G0ν [10−15 y−1] Qββ [keV] nat. Abundance
48Ca 24.81 4272.26(404) 0.187
76Ge 2.363 2039.04(16)† 7.8
82Se 10.16 2995.12(201) 9.2
96Zr 20.58 3350.37(289) 2.8

100Mo 15.92 3034.40(17) 9.6
110Pd 4.815 2017.85(64) 11.8
116Cd 16.70 2813.50(13) 7.6
124Sn 9.040 2286.97(153) 5.6
130Te 14.22 2526.97(23) 34.5
136Xe 14.58 2457.83(37) 8.9
150Nd 63.03 3371.38(20) 5.6
† A more precise Q-value Qββ(76Ge) = 2039.061(7) keV can
be found in [29].

Table 1.2: Parameters from a global analysis of oscillation experiments
which constrain mββ; values are taken from [30]. ∆m2

12 = m2
2 − m2

1 and
∆m2

3l = m2
3 − (m2

1 +m2
2)/2 where ∆m2

3l > 0 (< 0) for the NH (IH).

hierarchy parameter value 1σ 3σ

NH or IH
∆m2

12 [10−5eV2] 7.54 7.32− 7.80 6.99− 8.18

sin(2ϑ12) [10−1] 3.08 2.91− 3.25 2.59− 3.59

NH

∆m2
3l [10−3eV2] 2.43 2.37− 2.49 2.23− 2.61

sin(2ϑ13) [10−2] 2.34 2.15− 2.54 1.76− 2.95

sin(2ϑ23) [10−1] 4.37 4.14− 4.70 3.74− 6.26

δ/π 1.39 1.12− 1.77 0− 2

IH

∆m2
3l [10−3eV2] 2.38 2.32− 2.44 2.19− 2.56

sin(2ϑ13) [10−2] 2.40 2.18− 2.59 1.78− 2.98

sin(2ϑ23) [10−1] 4.55 4.24− 5.94 3.80− 6.41

δ/π 1.31 0.98− 1.60 0− 2
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1. Neutrinoless Double-Beta Decay

The allowed parameter space for mββ using Table 1.2 can be represented depending
on mβ =

√∑
i |Uei|2m2

i (from tritium decay end-point) or Σ =
∑

imi (from cos-
mology). Both representations can be seen in Figure 1.3 for the NH as well as the IH.

A large uncertainty on T 0ν
1/2 is introduced by M0ν, and lately also gA quenching is

discussed [34, 35]. In Figure 1.4 a compilation of NME values obtained in various
models can be found. The models predict NME values with up to one order of
magnitude difference, which has to be taken into account when making predictions
about experimental sensitivities and when comparing 0νββ searches with different
isotopes.

Figure 1.3: Dependence of allowed parameter space of mββ on mβ (top)
and Σ (bottom) from [36] obtained using values from [37]. The values for
relative signs of the mass Eigenvalues mi, and the areas which can only be
realized for non-trivial CP phases δ, are indicated.
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1. Neutrinoless Double-Beta Decay

Figure 1.4: Predictions of NME values calculated in various models taken
from [34]. Note that the maximal value of M0ν for 76Ge is more than
2.5 times larger than the minimally predicted one. This introduces a large
uncertainty to T1/2

0ν and has to be taken into account when making predic-
tions about experimental sensitivities and when comparing 0νββ searches
with different isotopes.
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Chapter 2

Experimental view on Neutrinoless
Double-Beta Decay

Background reduction is one of the main issues low background experiments have to
face. In this chapter we derive an expression for the sensitivity of 0νββ experiments
[38] which shows how important it is to keep the background as low as possible.
Finally, the Gerda experiment is introduced.

2.1 Experimental sensitivity
The sensitivity of a 0νββ experiment depends strongly on the experimental con-
ditions. Every experiment conducted with presently known techniques will have
background. If assumed flat, the number of background events can be written as

NB = Bi M ∆t∆E (2.1)

with the source mass M1 and the measurement time ∆t in the energy window ∆E
which depends on the energy resolution. The background index (BI) Bi is usually
given in counts kg−1 keV−1 yr−1.

A criterion for the discovery potential of a 0νββ decay experiment can be expressed
as Nββ = C1

√
Nββ +NB with the confidence level C1 in units of the σ of a Poisson

distribution and the number of signal counts from 0νββ decay Nββ. If we require
a certain signal to background ratio Nββ/NB ≡ rSB the number of signal events is
given as

Nββ = C1

√
(1 + rSB)NB = C1γ

√
NB (2.2)

We can further express the number of signal events using the decay rate λββ

Nββ = λββ
NA

W
aεM ∆t (2.3)

where Avogadro’s number NA and the atomic weight W are physical constants and
the isotopic abundance 0 < a ≤ 1 is defined by the natural abundance or the en-
richment fraction.

1In the Gerda experiment, as detector and source are equivalent, M is the total detector mass.
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2.2. Germanium as a 0νββ candidate

Combining equations 2.1-2.3 and writing the decay rate in terms of the half-life
T 0ν

1/2 = ln(2)/λββ we get an expression for the sensitivity

T 0ν
1/2 = α1 a ε

√
M∆t

Bi ∆E
(2.4)

where
α1 =

ln(2)NA

W

(
C1

√
1 + rSB

)−1 (2.5)

When comparing different experiments rSB is chosen and is then fixed.

If we assume that the isotopic abundance, the detection efficiency and the energy
resolution are naturally given, a higher sensitivity can be reached increasing the
source mass M , the measurement time ∆t and reducing the background Bi as much
as possible. In general, the source material is expensive and sometimes hard to get,
and each experimental setup has a limit on how much material can be hosted. Also,
the measurement time has to stay in reasonable boundaries, let’s say < 10 yr. In
conclusion, the only real handle to get a better sensitivity is to reduce the back-
ground.

For a certain time no background counts are expected in the Region of Interest
(ROI)2. Optimal experimental conditions are reached if this limit of zero-background
is maintained for the major part of the experimental runtime. Without background
the sensitivity takes the form

T 0ν
1/2 = α2 a εM ∆t (2.6)

with α2 = α1

√
1 + rSB.

Note that the dependence on source mass and measurement time in Equation 2.6
is linear, in contrast to Equation 2.4 where T 0ν

1/2 ∝
√
M∆t. Thus, in the limit of

zero-background the experimental resources of source mass and time are used in the
most efficient way. In general, the design goal for the background index of every low
background experiment is based on the objective to reach this limit. From Equa-
tion 2.1 it is evident that the higher the source mass and measurement time the
lower Bi has to be, in order to stay in the limit of zero-background.

2.2 Germanium as a 0νββ candidate
Experiments in 0νββ decay searches make use of very different 0νββ candidate
isotopes. In some sense germanium is not a preferable 0νββ candidate isotope:
the decay rate (Equation 1.3) depends upon the phase space factor (see Table 1.1),
hence, the expected half-life is lower for many other 0νββ candidates as can be seen
in Figure 2.1.

2The region around Qββ
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2.3. The Gerda experiment

In the case of nonzero-background the sensitivity of a 0νββ experiment depends
upon the energy resolution (see Equation 2.4). Hence, the relatively long expected
half-life is partly compensated by the exceptional energy resolution achievable with
germanium detectors (see Section 3.3). Moreover, 2νββ decay is an irreducible
background source for 0νββ decay searches. Thus, for longer half-lives a good en-
ergy resolution is necessary to distinguish the peak expected from 0νββ decay from
the tail of the distribution of 2νββ decay.

2.3 The Gerda experiment
The Germanium Detector Array (Gerda) experiment is located at Laboratori
Nazionali del Gran Sasso (LNGS) of Istituto Nazionale di Fisica Nucleare (INFN)
in Italy with an overburden of about 3600m.w.e.. Gerda is operating High Purity
Germanium (HPGe) detectors bare in liquid Argon (LAr) [14], which are enriched
in the 0νββ candidate isotope 76Ge. The setup, which is shown in Figure 2.3, in-
corporates a copper lined stainless steel cryostat, 4m in diameter, containing 63 m3

of LAr. It is surrounded by a 3-m-thick active Muon Cerenkov Water Veto, which
serves also as a passive γ and neutron shield. The Muon Veto is instrumented with
66 photomultipliers in order to identify muon induced events. The detectors are
submerged into the cryostat through a lock-system from a glove box in the clean
room above the neck of the cryostat. An additional muon veto made of plastic scin-
tillator panels is installed on the roof of the clean room. It is meant to cover the
weak spot of the water veto: the neck of the cryostat. Special care was devoted to
the selection of radiopure materials for construction, and to a sparse design of all
components near the detectors (holders, electronics, cables, etc.) to reduce thereby
introduced background.

2.3.1 The Gerda detectors

The Gerda detectors are p -type HPGe detectors (for details see the next Chapter 3)
enriched in the isotope 76Ge. In the experimental Phase I mainly semi-coaxial (Coax)
detectors were used while new detectors were produced for the second experimental
stage. The Phase II detectors are of Broad Energy Germanium (BEGe) type. In
Figure 2.2 the Coax and BEGe detector geometry can be seen alongside the P-type
Point Contact (PPC) detector geometry which is similar to the BEGe but has an
even smaller read-out contact.

2.3.2 Phase I result

Gerda has concluded the first experimental phase publishing a lower limit on the
half-life of 0νββ of T 0ν

1/2 > 2.1 · 1025 yr (90%C.L.), with a median sensitivity of
T 0ν

1/2 > 2.4 ·1025 yr [39]. The achieved background index of 10−2 cts/(keV−1kg−1yr−1)
at Qββ was unpreceded. By combining results with prior 0νββ searches by the
Heidelberg-Moscow experiment (HDM) [40] and the International Germanium Ex-
periment (IGEX) [41] the limit was strengthened to T 0ν

1/2 > 3.0 · 1025 yr (90%C.L.).

9



2.3. The Gerda experiment

Figure 2.1: Expected 0νββ half-lives for different candidate isotopes.
mββ = 1 eV and gA = 1.269. Figure adapted from [34].

Figure 2.2: HPGe detector geometries. For p-type detectors the HV elec-
trode is the n+ contact which is lithium diffused and the signal readout
contact is the boron implanted p+ contact. This is inverted for n-type ma-
terial.
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2.3. The Gerda experiment

This strongly disfavors a claim that was pending since a subgroup of the HDM
experiment in 2004 reported the observation of 0νββ decay in 76Ge [42]. A com-
parison of the found limits by Gerda with the half-life reported in 2004 and limits
published by 0νββ searches in 136Xe can be seen in Figure 2.4.

2.3.3 Phase II upgrade

The transition to the second experimental phase is almost complete [43]. A new
lock-system has been installed, and a new detector assembly incorporating seven
detector strings has been custom produced and is currently being tested. The LAr
has been instrumented with a hybrid of 8" photomultipliers tubes (PMTs) and
silicon photomultipliers (SiPMs) coupled to wavelength shifting fibers which uses
the scintillation light of the LAr to identify background from components close to
the detectors. Additional 30 HPGe detectors of BEGe type were produced and
tested; they add 20 kg of enriched material to the total detector mass. A new holder
design replaces the Phase I spring-loaded contacts to the detectors by wire bonds.
The challenging goal for Phase II is to achieve a new BI of 10−3 cts/(keV kg yr) and
to reach a sensitivity in the range of 1026 yr.

Figure 2.3: The Gerda experimental setup. Through a lock system HPGe
detectors are lowered into the copper-lined stainless steel cryostat which is
filled with LAr. The cryostat is surrounded by a Muon Cerenkov Water
Veto.
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2.3. The Gerda experiment

Figure 2.4: Comparison of half-life limits of 0νββ in 76Ge and 136Xe with
the signal claim reported in 2004. The lines in the shaded gray band are
predictions for the correlation of the half-lives in 136Xe and in 76Ge according
to different NME calculations. Figure adapted from [39].
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Chapter 3

High Purity Germanium detectors

In the next section a short overview of interactions of photons with matter is given.
Hereafter, germanium is introduced as a semiconductor material and the properties
of semiconductor diode detector are discussed. The following information can easily
be found in every text book about radiation and detection measurements and semi-
conductor devices. Still one of the best and easiest to understand introductions is
given in [44].

3.1 Interaction of photons with matter

Photons are neutral and massless, thus being able to travel deeper in material than
charged particles. In their interactions with matter the incident photon can be
absorbed and disappear, or be scattered and change energy and/or direction. When
detecting γ radiation, i.e. high-energetic photon radiation originating from nuclear
decays, only inelastic processes play a role where energy is absorbed in the detector
material or transferred to it. Nevertheless, a very brief description of elastic processes
is given.

3.1.1 Elastic scattering

An interactions in which the photon energy in the initial and final state of the re-
action is conserved is called elastic scattering.

Thomson scattering is the low energy limit (visible part of the electromagnetic spec-
trum) of Compton scattering, where a photon gets elastically scattered on free un-
polarizable charged particles e.g. free electrons. The electromagnetic component
of the photon field accelerates a free electron which in turn radiates at the same
frequency. Depending on the observation angle the observed radiation is more or
less polarized.

Rayleigh scattering is the elastic scattering of photons on harmonically bound elec-
trons e.g. shell electrons in an atom. The differential cross section of Rayleigh
scattering depends on the wavelength of the photon to the fourth power, in contrast
to Thomson scattering, which does not depend on the photon wavelength.

13



3.1. Interaction of photons with matter

3.1.2 Photoelectric effect

The absorption of a photon by a shell electron of an atom is called Photoelectric
effect. The photon has to have at least the binding energy of the electron Eb in
the respective shell. After the reaction, the electron is free and can be detected.
Electrons emitted in this way are called photoelectrons and their kinetic energy is
given by

Ekin = hν − Eb (3.1)

where h is the Planck constant and ν is the frequency of the photon field. hν is the
initial energy of the photon.

A free place in the electronic shell can be filled by an electron from an energetically
higher shell emitting characteristic photon radiation with an energy equal to the
difference of the two energy levels Eγ = ∆Eb. A sketch of these processes can be
found in Figure 3.1.

3.1.3 Compton scattering

Compton scattering describes the scattering of a photon on a loosely bound (virtually
free) electron with energy transfer. An electron which is gaining energy in this
manner is called recoil electron. The kinetics are completely characterized by energy
and momentum conservation if the scattering angle θ is given (see Figure 3.2). The
energy of the scattered photon E ′ν and electron Ee can be written as

E ′ν = Eν ·
(

1 +
Eν

mec2
· (1− cos θ)

)−1

= Eν · P (Eν, θ) (3.2)

Ee = Eν − E ′ν (3.3)

where Eν is the incident photon energy, me is the rest mass of the electron and c is
the speed of light.

Figure 3.3 shows the energy dependence of the scattered photon and electron on the
scattering angle θ, with an incident photon energy of 662 keV.

The differential cross section dσ/dΩ of photons on free electrons for Thomson as
well as for Compton scattering is given by the Klein-Nishina formula

dσ

dΩ
=
α2λ2

c

2
P (Eν, θ)

2
[
P (Eν, θ) + P (Eν, θ)

−1 − 1 + cos2 θ
]
, (3.4)

with the fine-structure constant α, the Compton wavelength λc = ~/mec and
P (Eν, θ) as defined in Equation 3.2. In Figure 3.4 the differential cross section
is plotted for various photon energies.

3.1.4 Pair production

For photons with at least twice the rest mass energy of the electron Eν ≥ 1022 keV
pair production becomes energetically possible. In the Coulomb field of a nucleus
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3.1. Interaction of photons with matter

Figure 3.1: Photoelectric effect. A photon with incident energy Eν = hν is
absorbed by a shell electron which gets emitted carrying the kinetic energy
Ee = Eν − Eb. Subsequently an electron from a higher shell can fall to the
free place left vacant by the photo electron emitting characteristic photon
radiation with an energy equal to the difference of the two shell levels.

Figure 3.2: Compton scattering. A photon is scattered on a free elec-
tron, dynamics are defined by the incident photon energy and the scattering
angle θ.
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3.1. Interaction of photons with matter

Figure 3.3: Energy of photon and electron after a Compton scattering for
an incident photon energy of 662 keV.

Figure 3.4: Differential cross section in Thomson and Compton scattering
normalized to dσ/dΩ at 0◦ scattering angle.
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3.2. Semiconductors

the photon can be transformed into an electron-positron pair, as can be seen in
Figure 3.5. All energy which exceeds 2me gets converted into kinetic energy which is
shared between the electron and the positron. The positron subsequently thermalizes
and finally annihilates with an e− creating two back-to-back photons with an energy
of 511 keV each.

3.1.5 Gamma ray attenuation

When passing through a medium, photons experience all processes described in
Section 3.1. The surviving fraction of photons at incident energy in dependence of
the material thickness d is given by an exponential law

N(d)

N0

= exp(−µρ · d) (3.5)

Where N0 is the incident number of photons, ρ is the material density and µ is the
total mass attenuation coefficient. µ depends on the material and on the photon
energy and is composed of the coefficients for the respective inelastic processes

µ = µphoto + µCompton + µpair (3.6)

For photons with an energy of 662 keV µpair = 0, as the energy is below the threshold
for pair production.

3.2 Semiconductors
Every material can be characterized with respect to its electrical properties. The
allowed and forbidden energy states of electrons inside a material are described by
band theory. They are derived by studying the wave functions of electrons in a
periodic lattice of condensed matter. A simplified model of the band structure of
insulators, semiconductors and conductors is given in Figure 3.6. The lower band
represents the valence band in which outer shell electrons are contained that are part
of covalent bonds between atoms. The next higher band is called the conduction
band. The structure of valence and conduction band define the conductive/resistive
properties of a material.

In insulators a large gap, typically > 5 eV, separates the two bands, whereas conduc-
tors have either overlapping or only partially filled valence and conduction bands.
In conductors electrons can easily be excited and migrate freely through the crystal.
Semiconductors have a band gap which is small compared to insulators, of about
1 eV. Electrons in a semiconductor can only be excited into the conduction band if
they are provided with enough energy to pass the band gap.

At absolute zero temperature the energy states in the valence band of insulators
and semiconductors would be completely filled and the conduction band would be
completely empty. In a semiconductor at non zero temperature a valence electron
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3.2. Semiconductors

Figure 3.5: Pair production. In the Coulomb field of a nucleus a photon can
be converted to an electron-positron pair if its energy is Eγ ≥ 1022 keV. The
positron slows down and annihilates with an electron emitting two photons
back-to-back with the characteristic energy of 511 keV each.

Figure 3.6: Simplified band structure model of isolators, semiconductors
and conductors.

18



3.2. Semiconductors

can gain enough thermal energy to be excited into the conduction band. It leaves a
vacancy behind forming an electron-hole pair. The probability for an electron to gain
enough energy to form an electron-hole pair by thermal excitation is temperature
dependent

p(T ) = C T 3/2 exp

(
− Eg

2kBT

)
(3.7)

Where T denotes the absolute temperature, C is a material constant, Eg is the gap
energy which an electron has to gain in order to pass the band gap and kB is the
Boltzmann constant.

The probability of thermal excitation is critically dependent on the gap energy Eg

and decreases fast if the material is cooled.

In reality, band structures are much more complex and depend on the material
temperature and on the crystal axis. Figure 3.7 shows a realistic model of the band
structure of germanium. Germanium is an indirect semiconductor as the minimal
state in the conduction band and the maximal state in the valence band are not
at the same k-vector. When going from the valence band to the conduction band
the electron has to change its momentum. Some useful properties of germanium are
given in Table 3.1.

3.2.1 Doping of semiconductors

The electric properties of semiconductors can be altered by doping. Impurities are
introduced in a pure semiconductor material which donate or accept electrons and
alter thus the conductivity. It is possible to create an excess or a deficiency of elec-
trons and hence obtain n or p doped material.

There are different methods of doping a semiconductor. Depending on the donor/
acceptor atoms, they can either replace an atom and become part of the crystal, or
stay in the intermediate spaces of the lattice. Germanium for example is usually
doped with boron as acceptor and lithium as donor atoms. The boron atoms replace
a germanium atom in the crystal lattice; as germanium has four outer shell electrons
and boron has only three a vacancy is created, which can be easily filled by other
electrons. Lithium on the other hand has only one outer shell electron it can share
with other atoms. Lithium is very small and can thus stay in between the crystal
lattice acting as a donor impurity.

3.2.2 P-n junctions as diode detectors

A p -n junction is formed, by bringing n and p doped material in contact. The excess
of electrons in the n doped region diffuses to the p doped side and the holes from
the p doped region vice versa. Diffusion of charge carriers will, however, upset the
local electric neutrality inside the crystal. A small portion of charge carriers diffuses,
resulting in a built-in electric field directed from n to p. P -n junctions reveal an
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3.2. Semiconductors

Figure 3.7: Realistic band structure model of germanium. Adapted from
[45].

Table 3.1: Properties of germanium adapted
from Table 11.1 in [44].

atomic number 32
density 5.323 g/cm3

dielectric constant 16
energy gap 0.665
energy gap† 0.746

intrinsic carrier density† 2.4 · 1013 cm−3

electron mobility† 3.6 · 104 cm2/V·s
hole mobility† 4.2 · 104 cm2/V·s

energy per e-h pair† 2.96 eV
Fano Factor† 0.057 - 0.130

† values at 77K all other values given at at 300K

20



3.3. High Purity Germanium detectors

asymmetric conductance transmitting current only in one direction; they are diodes.

The contact zone in a p -n junction is depleted of free charge carriers. We call this
the depletion region. It can be enlarged applying an inverse bias voltage. If energy is
deposited inside the depletion region, e.g. by ionizing radiation, electron-hole pairs
are created. They drift along the internal electric field lines and can be collected
and read. Thus, semiconductor diodes can be used as detectors for ionizing radiation.

3.3 High Purity Germanium detectors
To further enlarge the depletion zone, diode detectors are built as p - I -n junctions
instead of simple p -n junctions. I stands for intrinsic semiconductor material as it
is undoped and has intrinsic impurities only. The outer surface is doped to form an
n+1 and a p+ contact and the interior region can be fully depleted.

Germanium detectors are produced with depletion layers of several centimeters in
height and areas of many square centimeters. They are operated at a reverse bias of a
few thousand volts. To achieve such thick depletion layers and collect all the charges
generated in the depletion region it is essential that the net-impurity concentration
does not exceed 2.5 · 10−13 impurities / Ge-atom [46]. Because of the ultra-purity
of the detector material these detectors are called High Purity Germanium (HPGe)
detectors.

All properties of HPGe detectors are defined by the intrinsic impurity concentration:
a surplus of negative (positive) intrinsic charges will create an n-type (p-type) germa-
nium detector. In the production process the intrinsic impurities can be influenced
within certain limits and the type of detector can be chosen.

3.3.1 Signal formation

If energy is deposited in a diode detector a charge cloud is formed. The charges
drift along the field lines of the interior electric field. An induced charge Q on the
read out electrode is formed by their movement along the trajectory2 rq(t). As
demonstrated independently by Shockley and Ramo [47] the charge signal on the
electrode is given by

Q(t) = −q φw(rq(t)) (3.8)

The current signal, which is given by the time derivative of Q(t), is then

I(t) =
dQ

dt
= q vd(rq(t)) · Ew(rq(t)) (3.9)

with the total charge q, the weighting potential φw(rq(t)) and the weighting field
Ew(rq(t)) = −∇φw(rq(t)); and the charge carrier drift velocity vd(rq(t)) = drq(t)/dt.

1Here: + stands for highly doped material
2position rq at time t
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3.3. High Purity Germanium detectors

The weighting potential is defined as the potential that can be calculated solving
the Laplace equation ∇2φw = 0 for the boundary conditions φw(b∗) = 1 on the read
out electrode b∗ and φw(b∗) = 0 on all other boundaries when removing all internal
charges.

3.3.2 Charge carrier mobilities

The determination of the charge carrier mobilities and thereby the drift velocities
vd inside the detector crystal is a rather non-trivial problem: e.g. it depends on the
field orientation with respect to the crystal lattice. Therefore, we will not discuss
this in detail. It shall be noted that both for electrons and for holes the mobility is
strongly anisotropic. Large differences for the longitudinal and tangential velocity
anisotropy of electrons and holes are observed [48]. They cause specific rise times and
pulse shapes as a function of the location of energy deposition inside the crystal [49].
Along the three crystallographic axis 〈100〉, 〈110〉 and 〈111〉 direct information on
the longitudinal anisotropy can be obtained experimentally; when simulating pulse
shapes of germanium detectors the anisotropy of the charge carrier mobilities has
to be taken into account.

3.3.3 Energy resolution and the Fano factor

Semiconductor detectors have a very good energy resolution. It is better than what
is expected for a purely Poissonian process, as the production of charge carriers is
not independent but restricted by the atomic shell structure of the semiconductor
material.

To quantify this effect, the Fano factor F is introduced. It is defined as the fraction
of the observed energy variance σ2

E and the quantum efficiency

F =
σ2

E

NQ

(3.10)

The quantum efficiency NQ is given by the total deposited energy divided by the
energy necessary to create an electron-hole pair; simply the number of charge car-
riers produced. The energy necessary to create an electron-hole pair in germanium
is w ≈ 2.96 eV (see Table 3.1).

Without electronic noise and charge collection inefficiency, the theoretical resolution
limit at some energy E is given by [50]

FWHM =
√

8 ln(2)FwE (3.11)

with the Full Width at Half Maximum (FWHM). For a Gaussian distribution
FWHM =

√
8 ln(2)σ, where σ is the standard deviation of the Gaussian.

Assuming that the electron-hole pair creation w is independent of the total en-
ergy deposition, the Fano factor is < 0.06 [51] for germanium and the theoretically
achievable energy resolution at Qββ(76Ge) is better than 1%�.
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3.3.4 Spatial resolution limit

The limitation on spatial resolution inside a semiconductor detector is given by the
random electron drift along their path to the read out electrode. The distribution
will have a spatial variance of

σ2
S =

2 kB T x

eEp

(3.12)

Where x is the drift length of the charges from their creation point to the read out
electrode and Ep is the electric potential. For Ep = 1 kV/cm and x < 7 cm resulting
in a maximal dispersion of σS = 100µm. This limits the precision to which position
measurements of energy deposition inside the crystal can be made.

3.3.5 Operational voltage and temperature

HPGe detectors are generally mounted inside a vacuum cryostat connected to a
liquid Nitrogen (LN2) dewar vessel, through a heat conducting cold finger. In order
to keep thermal excitation of electrons to the conduction band at a minimum ger-
manium detectors have to be cooled to cryogenic temperatures. The operational
High Voltage (HV) varies from detector to detector; the HV is increased until the
interior region is fully depleted. This happens typically at around 4 kV depending
on the detector geometry.

As the donor lithium atoms are not fixed in the lattice of the crystal they can move
due to thermal excitation of the lattice itself. Especially p -type germanium detectors
should be kept at cryogenic temperatures as much as possible also if no HV is applied
to prevent further lithium diffusion inside the crystal. In the lithium diffused region
electron-hole pairs partly recombine and consequently do not contribute to the signal
on the read out electrode. Therefore, a growth of the lithium diffused outer layer
results in a deterioration of detection efficiency, and also, the detection threshold
for external low energetic radiation becomes higher with a thicker lithium diffused
outer layer.
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Chapter 4

Detector characterization

In order to perform the measurement campaign described in the following chapters
in a reliable manner, it was necessary to conduct an extensive characterization of the
various detectors used. This is the argument of the following chapter. First of all,
the data acquisition system (DAQ) including signal amplification is described; next,
the energy reconstruction and calibration are explained and the determination of the
operational voltage with an HV scan is illustrated. Finally, an automatized system
is presented which serves to perform fine grain surface scans of HPGe detectors.
Surface scans of two detectors taken with this system are compared.

4.1 Detectors and voltage supply

The HPGe detectors at hand are three Coax n -type detectors, one BEGe detector
and one detector of PPC geometry. The last two are made of p -type material. All
of them, except for the BEGe, contain a natural mixture of germanium isotopes. A
sketch of the detector geometries can be found in Figure 2.2 and a summary of their
basic properties is listed in Table 4.1.

The germanium of the Gerda detectors is enriched in the 0νββ candidate isotope
76Ge. The residual material remaining after the enrichment process is commonly
referred to as depleted material. It behaves chemically identical to natural and en-

Table 4.1: Available detectors. The BEGe and the PPC detector are of
p -type material with holes as dominant charge carriers, the Coax detectors
are n -type detectors with electrons as main charge carrier type.

operational dewar
detector material voltage [kV] volume [l] height [mm] diameter [mm]
BEGe depleted +4.0 7 40.7 74.1
PPC natural +4.4 7 50.5 66.7

Coax1-3 natural −4.0 3 74.0 72.0

25



4.2. Data acquisition

riched germanium.

For the second experimental Phase of the Gerda experiment 30 enriched BEGe de-
tectors were produced. The remaining depleted germanium was processed, in order
to test the detector production chain [52], and the BEGe used here is one of the
detectors that were produced. It cannot used be for 0νββ search but serves as an
optimal test detector.

The three Coax detectors are cylindrical with a borehole on the lower surface which
measures 10.0mm in diameter and 30.0mm in depth. The read-out electrode is
placed on the inner surface of the borehole and the HV contact is located on the
outer surface. The BEGe detector has a boron implanted read-out contact on the
lower surface, 15.0mm in diameter, which serves as read out electrode. The HV
and the read-out electrode are separated by a groove which is 3.0mm in width and
2.0mm in depth. The PPC detector is similar to the BEGe but has an even smaller
read-out contact inside a small ditch on the lower surface 3.1mm in diameter and
1.3mm in depth. For the BEGe as well as the PPC detector the HV contact is
formed by the lithium diffused outer surface.

All detector preamplifiers (PreAmp) are supplied with Low Voltage (LV) which is
implemented in the Spectroscopy Amplifiers (SpecAmp)12. The HV is supplied by
two programmable HV modules3 which can deliver positive as well as negative HV.

4.2 Data acquisition
Two data acquisition systems are used depending on the information needed:

• MCA Energy spectra can be recorded using a Multichannel Analyzer (MCA)4.
They provide information about energy resolution and operational voltage.
The usage is limited, since only the energy information is available. On the
other hand, the storage needed on disk is minimal and is independent of the
measurement time and number of signals analyzed.

• FADC A Flash Analog to Digital Converter (FADC)5 is available, which con-
tinuously records the detector electrical signal (trace). In case a trigger is gen-
erated the event is recorded on disk. The information that can be extracted
from the full event traces is rich and serves for Pulse Shape Analysis (PSA)
and to obtain timing information. However, the disk space needed is quite
high in comparison to the MCA system. It scales with the trace length and
number of events recorded.

1 Coax: Silena Model 7611/L spectroscopy amplifier
2 BEGe/PPC: ORTEC Model 672 spectroscopy amplifier.
3CAEN: Model N1471H 4 channel programmable HV.
4ORTEC: Model 926 ADCAM Multichannel Buffer.
5CAEN: Model DT5724 Desktop Digitizer 4 channels, 14-bit, 100MHz.
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4.2.1 Signal amplification

Each system is implemented with its proper amplification method.

The MCA system is used in combination with a SpecAmp12 which amplifies the
signal and applies a semi-Gaussian shaping to the pulses. The SpecAmps feature
pole-zero adjustment, and the shaping constant and amplification gain can be cho-
sen manually. The gain is set such as to utilize the full range of the MCA if possible.

When taking data with the FADC, a signal amplification without shaping is prefer-
able to prevent loss of information. Some detectors can be used without amplification
because the pre-amplification is already high enough to utilize the FADC dynamic
range. For signal amplification without shaping a Genius Shaper, developed at the
Max-Planck-Institute for Nuclear Physics (MPIK) Heidelberg and used in Gerda,
was chosen.

Sketches of both the MCA and the FADC DAQ systems including signal amplifica-
tion can be seen in Figure 4.1.

4.2.2 Genius Shaper

The Genius Shaper, used for linear amplification without signal shaping, has 4 chan-
nels with two outputs each (see Figure 4.2). The gain is adjustable between roughly
2 x and 8 x for each channel and is common to both outputs, while an offset can be
adjusted for each of the two outputs separately.

A comparison of uncalibrated 60Co spectra taken with a Coax detector at maximal
amplification for each channel can be found in Figure 4.3. As the position of spec-
tral lines in uncalibrated spectra depends on the gain it is evident that the maximal
amplification of the Genius Shaper channels is comparable. All parameters and set-
tings are listed in Table 4.2.

Figure 4.1: Sketch of MCA and FADC DAQ systems. The external trigger
logic for the FADC is optional and is used further on.
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Figure 4.2: Genius Shaper module for amplification without shaping with
four input channels. Each input channel has adjustable gain and two output
channels. For each output channel an offset can be set separately.

Table 4.2: Genius Shaper parameters and settings.

ch out offset [V] gain max gain min note

1
A 0 8x 2x
B 0 8x 2x

2
A 0 7.6x 1.8x broken
B 0 8x 1.9x

3
A 0 7.8x 2x
B 0 7.8x 2x

4
A 0 7.9x 2x
B 0 7.9x 2x noisy
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Figure 4.3: Coax3 uncalibrated 60Co spectra recorded with Genius Shaper
maximal amplification. Top to bottom channels 1 to 4. In the measurement
using channel 4 a lower energy threshold was set of ca. 600 ch.
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4.3 Data processing
Pulses recorded with the FADC system can be fully analyzed off-line and contain
all information that can be extracted from the traces.

The data is processed as is usually done with Gerda data, using a multi-tier
approach. The raw data is transformed into a format based on Cern ROOT
classes [53] which is compressed by a factor of about two. We call the raw data
format tier0 and the rootified format tier1. Both formats contain the same infor-
mation but the tier1 format can be read by the Gerda analysis software [54, 55].
A new decoder for this conversion was written and integrated into the Gerda soft-
ware. It reads the tier0 data recorded with the FADC DAQ (see Section 4.2) and
transforms it into the tier1 format. For details about the multi-tier structure and
the implemented decoder see Appendix A.

4.4 Energy reconstruction and optimization
To extract the energy of an FADC trace we use a pseudo-Gaussian filter which
corresponds to a high-pass filter followed by n low-pass filters. First step is a de-
convolution of the original trace x0[t] by the transform

x′[t] = x0[t]− x0[t− δ]

x1[t] = x′[t] + f ·
t−1∑
t′=0

x′[t′],
(4.1)

where δ is called delay and f = 1 − exp(−1/τ). The decay parameter τ ∼ 50µs
is supposed to compensate the exponential decay of the trace which by design is
caused by a feedback circuit in the PreAmp [56]. As can be seen in the first step
of Figure 4.4, this parameter is chosen such that the tail of the traces becomes flat
after applying Equation 4.1.

Thereafter, n moving window averages (MWA) are applied:

xi+1[t] =
1

δ

t∑
t′=t−δ

xi[t
′] i = 2, ..., n (4.2)

The signal is transformed into a pseudo-Gaussian and its height is proportional to
the energy deposition in the detector. After each MWA, its maximum moves further
to the right side of the trace (see Figure 4.4) which has a limited size. The maximum
of the pseudo-Gaussian has to stay inside the trace: this is the limiting factor for n,
the number of MWAs applicable.

The standard energy reconstruction in Gerda is done with f = 0, δ = 5µs and
n = 25 [56] and a trace length of 160µs. Here, shorter FADC traces were chosen in
order to save disk space, and therefore the combination of δ and n was optimized
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to minimize the energy resolution σ (see Section 4.5). As can be seen in Figure 4.5
for the PPC detector a better energy resolution is achieved with larger n and δ.
With δ = 10µs a slightly better energy resolution is achieved with n = 0 than with
δ = 6µs and n = 15. For the PPC detector we chose δ = 10µs and n = 7 or lower
if the trace length is too short for seven iterations. In general, the higher δ and n,
the better the energy resolution. Also if the resolution worsens after some iterations
the effect is small with respect to the gain in resolution achieved beforehand. If an
optimization is too time consuming the parameters δ and n can be chosen in a quick
manner shifting the pseudo-Gaussian to the end of the trace.

Also the MCA shaping time τs, which can be set on the SpecAmp, has to be op-
timized in order to minimize the energy resolution (see Section 4.5). In Figure 4.6
the resolution of the BEGe detector at 60Co energies is plotted as a function of the
MCA shaping time. The best resolution is achieved for a shaping time of τs = 6µs.

The chosen shaping parameters for all detectors and for FADC as well as MCA
systems is summarized in Table 4.3.

Figure 4.4: Visualization of the pseudo-Gaussian energy reconstruction al-
gorithm. Sequence of applied steps from left to right top row then bottom
row. The sequence starts with the raw trace, first step is the application of
Equation 4.1 and subsequently six MWAs are applied Equation 4.2.

Table 4.3: Shaping parameters for energy reconstruction from FADC (off-
line signal processing) and MCA (on-line using a SpecAmp) data.

FADC MCA
detector τ [µs] δ [µs] n τs [µs]
BEGe 45.5 6 10 6
PPC 54.0 10 7 10
Coax1 39.0 4 8 -
Coax2 47.0 6 10 -
Coax3 44.0 5 7 -

31



4.4. Energy reconstruction and optimization

Figure 4.5: Energy reconstruction parameter optimization of the PPC de-
tector using 60Co FADC data. Top: energy resolution at 1332 keV for
δ = 6µs and 10µs in function of the MWA number n. Bottom: energy
resolution for n = 3 in function of the delay or the MWA width δ.

Figure 4.6: Shaping time optimization of the BEGe detector using 60Co
MCA data. The energy resolution reaches a minimum for a shaping time
of τs = 6µs.
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4.5 Energy calibration and resolution
Various γ sources were used for energy calibrations and dedicated measurements,
precisely:

• 22Na: energy calibration, external trigger gate calibration (Section 5.4.2)
• 60Co: energy calibration
• 137Cs: coincidence measurement (Chapter 5-7)
• 228Th: energy calibration, PSA calibration (Section 7.8)
• 241Am: fine grain surface scan (Section 4.8)

The decay schemes of these sources with their individual γ energies and branching
ratios can be found in Appendix B.

Energy calibration and resolution measurements are performed regularly using mostly
60Co with γ-lines at 1173 keV and 1332 keV. To calibrate the recorded spectra the
ROOT [53] TSpectrum class is used to find the γ-lines, and the spectrum is cali-
brated assuming a linear calibration function. The calibration curves obtained can
be used to calibrate other data; e.g. 137Cs spectra in which usually only one γ-line
is observed.

Finally all γ-lines are fitted using two different fit functions in order to determine
the energy resolution and Gaussianity of the lines.

The first fit is done using a Gaussian peak on a background modeled with an inverse
error function (erfc)

f(x) = bl +
bl − br

2
· erfc

(
µ− x√

2σ

)
+

a√
2π σ

· exp

(
−(x− µ)2

2σ2

)
(4.3)

With the background on the left bl and on the right br side of the peak, the centroid
µ and the standard deviation σ. The amplitude a is also the integral of the Gaussian
itself.

The second fit models the background with the same inverse error function but the
peak is allowed to have a low energy tail

g(x) = bl +
bl − br

2
· erfc

(
µ− x√

2σ

)

+
a√
2π σ

·

exp
(
− (x−µ)2

2σ2

)
, if x < (µ− C)

exp
(
C (2 (x−µ)+C)

2σ2

)
, if x ≥ (µ− C)

(4.4)

At the joining point C, to the left of the centroid µ, the fit function starts to deviate
from the Gaussian form and fits a low energy tail. An example of a γ-line fit of
the 60Co 1332 keV line recorded with Coax3 can be found in Figure 4.7; showing all
components of the two fit functions 4.3 and 4.4.
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The FWHM, Full Width at one Tenth Maximum (FWTM) and Full Width at one
Fiftieth Maximum (FWFM) of the peak maximum provide a measure of the energy
resolution and Gaussianity of the γ-lines. Purely Gaussian values can be calculated
analytically using

• FWHM = 2
√

2 · ln(2)σ

• FWTM/FWHM =
√

ln(10)/ ln(2) ≈ 1.82

• FWFM/FWHM =
√

ln(50)/ ln(2) ≈ 2.38

The FWHM and the Gaussianity parameters, FWTM/FWHM and FWFM/FWHM,
of all detectors are listed in Table 4.4. Considering that the measurements were taken
with some time difference, and the detector grounding was optimized after the MCA
measurements were recorded, the resolution obtained with the MCA is comparable
to the FADC measurement.

Figure 4.7: Peak fit of the 60Co 1332 keV γ-line recorded with Coax3. The
fit with a Gaussian plus erfc from Equation 4.3 is shown in blue and the
fit function from Equation 4.4 is shown in three parts: Gaussian (red), Tail
(green) and erfc (magenta).

Table 4.4: Resolution and Gaussianity parameters of for all detectors; ob-
tained by fitting the 60Co 1332 keV γ-line.

HV FWHM FADC
detector [kV] MCA FADC FWTM/FWHM FWFM/FWHM
BEGe 4.0 2.05± 0.02 2.16± 0.06 1.85 2.55

BEGe 4.5 - 2.06± 0.04 1.84 2.52

PPC 4.4 - 2.07± 0.04 1.85 2.58

Coax1 4.0 2.96± 0.03 2.39± 0.07 1.87 2.83

Coax2 4.0 2.24± 0.02 2.14± 0.05 1.85 2.64

Coax3 4.0 2.17± 0.03 1.99± 0.07 2.09 3.37
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4.6 High voltage scan
In order to determine the depletion and operational voltage of germanium detec-
tors, MCA measurements with 60Co (or a different γ source) are taken: the detector
HV is varied while the acquisition time is fixed. We call this a High Voltage Scan.
When the peak position and area of the γ-lines reach a plateau the detector is fully
depleted (depletion voltage). To obtain the operational voltage, the HV is increased
until the standard deviation σ of the Gaussian fit function is minimized.

In Figure 4.8 peak area, position and σ are plotted for both γ-lines of a 60Co HV
scan of the BEGe detector. The voltage was varied between 2000V and 4350V. The
depletion voltage is reached at 3700V and the operational voltage was determined
to be 4000V.

This BEGe detector shows an atypical behavior for such a kind of measurement.
This is clearly visible in the resolution σ versus HV plot in Figure 4.8. Usually σ
improves with increasing HV; in this case however, before reaching full depletion, σ
worsens drastically reaching a maximum at 3650V.

This effect is due to the geometry of the BEGe detector. The BEGe was produced
larger than usual and for certain values of the bias voltage the configuration of the
internal electric field is such that charges are accumulated in the detector center
and only slowly released. Consequently, for many events the energy is reconstructed
wrong and resolution deteriorates strongly as can be seen in Figure 4.9.

A high voltage scan for the PPC respectively is shown in Figure 4.10. The PPC
does not show atypical behavior like the BEGe, although it is even one centimeter
larger in height. This seems to be due to the smaller read out contact which creates
a more favorable field configuration for charge collection. The depletion and opera-
tional voltage are slightly higher than for the BEGe with 4.0 kV and 4.4 kV − 4.5 kV
respectively.
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Figure 4.8: BEGe 60Co HV scan. Top to bottom: area, peak position and
σ as function of the HV.

Figure 4.9: BEGe 60Co spectrum at 3600V, 3650V and 3700V. Electric
field configuration traps charges in the detector center and the resolution
deteriorates strongly below the depletion voltage of 3700V.
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Figure 4.10: PPC 60Co HV scan. Top to bottom: area, peak position, σ
and a zoom of σ, showing the last part of the HV scan, from 3850V up to
4500V as function of the HV.
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4.7 Baseline stability
For FADC measurements a fixed trigger threshold was used. Thus, baseline drifts
influence the trigger level. The stability of the baseline is analyzed for a measurement
with a lifetime of 130 h. All detectors reveal a smooth rise in baseline level. This
can be seen in Figure 4.11 for the BEGe and Coax1 detector. Over a period of
130 h the baseline of the BEGe increased slightly by about 20 channels. Through
determination of the baseline level and adjustment of the trigger threshold before
each measurement we ensured stable conditions for measurements not exceeding a
time period of a week. The periodic spikes, present in the plots, coincide with the
filling of the dewars with LN2.

Figure 4.11: Baseline of BEGe (top) and Coax1 (bottom) over a time period
of 130 h. The periodic spikes in the baseline coincide with the filling of the
dewars with LN2.
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4.8 Fine grain surface scans
Positioning of detectors inside their vacuum cryostats as well as the homogeneity of
their outer contacts can only be measured from the outside. A dedicated setup is
used which is able to perform automatized, fine grain, full surface scans [52].

4.8.1 Scanning table setup

The setup incorporates a collimated 241Am γ source with an activity of 5MBq.
241Am has a prominent γ-line at 60 keV. These photons penetrate only the outer
layer of the detector interacting almost exclusively through photoelectric effect and
are sensitive to changes of the outer contact of the order of a few tens of µm. All
numbers derived in the following are valid for 60 keV photons.

The source is hosted in a copper encapsulation with a collimation diameter of 1mm.
The collimator is attached to a movable arm whose motion is controlled by precision
motors. The arm position can be changed between vertical and horizontal orienta-
tion and the collimator can be moved along the arm. The vertical orientation serves
to scan lateral detector surfaces, the horizontal orientation is used for top surface
scans. Moreover, in vertical as well as horizontal position the arm can be rotated.
In this manner complete and fully automatized, fine grain scans of the detector
top and lateral surfaces can be performed. Thanks to the precision motors and a
standard positioning calibration the reproducible precision is better than 1mm [52].
The setup and possible movements along three axes can be seen in Figure 4.12.

Figure 4.12: Fine grain surface scanning table setup and motion axes. The
detector vacuum cryostat endcap is placed upright below the scanning arm
and its center is aligned with the rotation axis 1. Rotation around axis
3 permits to change between horizontal and vertical arm orientation, the
collimator can be moved along axis 2, and the whole arm can be rotated
around axis 1. Figure taken from [52].
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4.8.2 Analysis of surface scans

For each position an 241Am spectrum is taken and the count rate C of the 60 keV
γ-line is calculated by subtracting the background at the left Bleft and the right
Bright from the peak region P

C = P −Bleft −Bright

=
E+w∑
i=E−w

bi −
E−w∑

j=E−2w

bj −
E+2w∑
k=E+w

bk
(4.5)

Where E is the centroid of the γ-line and b denotes the respective bin content. The
window size w is large enough to contain all the peak and small enough so that the
background is flat on the left and on the right side of the γ-line.

4.8.3 Alignment

The detector has to be carefully aligned with the robotic arm; laser optics help to
center the detector and adjust inclination.

Slight inclination of the detector with respect to the scanning arm is almost un-
avoidable. When scanning the lateral detector surface structures which should be
on a fixed height are seen at different heights depending on the inclination. This is
visualized in Figure 4.13; a sketch of a sharp edge scan is shown for small and large
inclination. The count rate pattern observed depends on the inclination value.

4.8.4 Collimation

The initial source collimation is 1mm but the further the collimator is placed from
the scanned surface the more the photon beam diverges. The divergence of the
source beam can be measured by the change of rate on sharp edges. The sketch
shown in Figure 4.14 shows the movement of the source beam over the edge.

A count rate simulation of a sharp edge scan with a step size of 1mm can be seen
in Figure 4.15. Ten different start positions were simulated at random. The most

Figure 4.13: Sketch of the count rate pattern observed in a sharp edge scan
for a large (left) and for a small inclination value (right).
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probable number of intermediate points where the photon beam is partly on the left
and partly on the right side of the edge is given by p = wb/∆x; dividing the photon
beam divergence wb by the step size ∆x. This is used in the following to estimate
the photon beam divergence wb.

4.8.5 Linear surface scans

As linear surface scan we intend changing only the source position along motion
axis 2 in Figure 4.12. Linear scans on the detector top (lateral) surface can be
done with a horizontal (vertical) arm position. A fixed position for the rotation axis
1 is chosen and the collimator is only moved along the scanning arm (motion axis 2).

Results of linear top and lateral scanning measurements of the PPC and BEGe
detector are presented in the following. The position of the detector inside the end-
cap and the detector holder geometry can be measured.

Figure 4.14: Sketch of the movement of a source beam over a sharp edge.

Figure 4.15: Simulation of a sharp edge scan with a step size of
∆x = 1mm for 10 different start positions and a photon beam divergence
of wb = 1.5mm. The edge is drawn hatched while the collimation width is
indicated with a red horizontal line.
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4.8.6 PPC detector top and lateral linear surface scan

The PPC detector top and lateral surface were scanned with a step size of ∆x = 1mm;
each point with a measurement lifetime6 of TL = 120 s. The source position along
the scanning arm will be denoted by x in the following. In Figure 4.16 the count
rate of the 60 keV 241Am γ-line is plotted versus the scanning position for both mea-
surements.

In the lateral scan we see that from x = 266mm to x = 271mm the count rate
drops significantly; we infer that in this region the holder material is substantially
thicker than the rest of the holder cup and exhibits a sort of ring structure; this is
common for germanium detector holders.

With the difference in count rate and the knowledge that the holder cup is made of
copper we can estimate the thickness of the ring structure rearranging Equation 3.5.
Fitting the flat parts of the graph with a constant we can extract the different count
rates

dring = ln

(
N1

N2

)
· 1

µCuρCu

= ln

(
819± 7

284± 9

)
· 1

1.485 cm2/g · 8.9 g/cm3

= (0.80± 0.03) mm

The ring structure has a sharp edge hence we can analyze the divergence of the
source beam wb. It is at least 1mm from collimation and maximal 2mm consid-
ering that at x = 264mm the source beam is on the left side of the edge and at
x = 266mm it has already passed it; therefore we make the conservative estimate
of wb = (1.5± 0.5)mm.

The height of the ring is estimated making use of the photon beam divergence wb

as
hring = 271 mm− 266 mm + wb = (6.5± 1.5) mm

considering a position uncertainty of ∆x = ±1mm.

The edges of the PPC are rounded as can be seen in both the top and the lateral
scan possibly to ensure a good charge collection as the internal electric field is weak
in corners.

We estimate the active length of the PPC from the lateral scan as La = 48.5± 1.5mm
and the active diameter from the top scan as Da = 62.5± 1.5mm.

6 The lifetime of a measurement is given by the real measurement time minus the dead time.
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Figure 4.16: PPC top (top) and lateral (bottom) linear surface scans with
a step size of ∆x = 1mm and a lifetime of 120 s for each position.

43



4.8. Fine grain surface scans

4.8.7 BEGe detector top and lateral surface scan

Also for the BEGe detector a top and lateral linear surface scan were performed. For
the top scan TL = 60 s was chosen for each point and for the lateral scan TL = 120 s
respectively. The step size is ∆x = 1mm like before.

The count rate as function of the source position can be seen in Figure 4.17.

In the lateral surface scan which is shown on bottom of Figure 4.17 at x = 300mm
we see a part of the detector which is uncovered by the cup with a count rate of about
4000/120 s. Augmenting the source position, the count rate drops and, in compat-
ibility with a technical drawing, shows the detector holder with a two ring structure.

We analyze the thickness of the copper holder and rings, comparing the count rate
of the uncovered part with the count rate at the ring position, and the thinner part
of the detector holder

dring = ln

(
4076± 64

64± 7

)
· 1

1.485 cm2/g · 8.9 g/cm3
= (3.14± 0.08) mm

dcup = ln

(
4076± 64

566± 8

)
· 1

1.485 cm2/g · 8.9 g/cm3
= (1.49± 0.02) mm

dcup denotes the thickness of the holder cup and dring the thickness of the ring struc-
ture. Both are in accordance with a technical drawing where the holder thickness is
given with 1.5mm and the ring thickness with 3.0mm.

The BEGe is slightly cone shaped; this is seen in a picture taken of the BEGe crystal
before being contacted. Hence, the active diameter is not a meaningful figure; for
its active length we find La = 39.5± 1.5mm.
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4.8. Fine grain surface scans

Figure 4.17: BEGe top (top) and lateral (bottom) linear surface scan with a
step size of ∆x = 1mm and a lifetime of 60 s (top surface) and 120 s (lateral
surface) for each position.
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4.8.8 Circular surface scans

For a so called top (lateral) circular scan the scanning arm is placed horizontally
(vertically), as was done for the top (lateral) linear scan. To change the scanning
position the source is moved along axis 2 and the arm is rotated around axis 1 (see
Figure 4.12).

In the following, for all top surface scans the scanning points will be denoted in
polar coordinates [r, θ] where r is the source position along motion axis 2 in mm/10
and θ is the rotation angle around axis 1 in degrees. Note that all coordinates are
given in the system of reference of the scanning table, not to be confused with the
coordinate system of the detector. The largest radius scanned in the coordinate
system of the detector is the scan with the smallest r value.

For lateral surface scans the scanning points are denoted in cylindrical coordinates
[h, θ] with the scanning height h along motion axis 2 in mm/10 and the rotation
angle θ around axis 1 in degrees.

4.8.9 PPC detector top circular surface scan

The positions and the count rates of a top circular surface scan of the PPC detector
are shown in Figure 4.18. The step sizes are ∆r = 5mm and ∆θ = 10 ◦, and the mea-
surement lifetime for each point TL = 120 s. The detector is not perfectly centered
with rotation axis 1 and in the PPC center the count rate is systematically lower
than on the outer parts. Count rates for all scanned points are shown in Figure 4.19.

In positions [r = 480, θ = 310◦] and [r = 530, θ = 240◦] the count rate drops dras-
tically. The spectra in these two points reveal a double peak structure and are
therefore ignored in the following. Apart from these two points the detector is ro-
tationally symmetric.

The outermost ring which was scanned at r = 480 shows a change in count rate in
function of the rotation angle θ. This is due to a slight misalignment of the detector
center with the arm rotation axis 1: the source beam only partly hits the detector
and is moving with respect to the detector edge. This was explained in Section 4.8.3f.

The top contact thickness the PPC detector is not homogeneous. The largest differ-
ence in count rate is observed for r = 630 and r = 680. Averaging over all rotation
angles θ at these positions and using Equation 3.5 we find

∆ = ln

(
3317± 10

3060± 10

)
· 1

1.9 cm2 · 5.323 g/cm3
= (80± 4)µm (4.6)

This is about 11% of the design contact thickness which is about 0.7mm as given
in the detector data sheet.
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4.8. Fine grain surface scans

Figure 4.18: PPC circular top surface scan: scanned points (left) and three
dimensional surface (right). The count rate is indicated with a color scale.
In the left figure a couple of points are white because there are no data;
they can be neglected.

Figure 4.19: Count rate as function of the polar rotation angle θ measured
with the PPC in a circular top surface scan.
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4.8.10 PPC detector lateral circular surface scan

Also the PPC’s lateral surface has been analyzed for several scanning heights h,
with a rotation step size of ∆θ = 10◦ and TL = 120 s in each point. See Figure 4.20
for the scan points. Count rates as a function of the rotation angle θ are found in
Figure 4.21.

As in the top surface scan we observe one point [h = 2990, θ = 120◦] where the
count rate drops and which exhibits a double peak structure. This is peculiar as
the top and the lateral scan are about 180◦ rotated with respect to each other. This
means that the peculiarity occurs in almost the same region of the detector surface
as before. To further investigate this peculiar behavior, the effect would have to be
checked for reproducibility and the respective region would have to be scanned with
a higher resolution.

Fitting a constant function to all count rates at scanning heights h = 3170 and
h = 3080 in Figure 4.21 we can calculate again the thickness of the ring structure
and find dring = (0.88± 0.01)mm. This value is higher than the one found with the
linear scan. The reasons can be various. As we have seen in the top scan the contact
thickness is not homogeneous. Also, the production precision of the holder cup can
vary. This has to be taken into account as a systematic effect e.g. when making
predictions with simulations. The ring structure thickness averaged over the value
found in the linear and the circular scan is 〈dring〉 = (0.84± 0.02) mm.

4.8.11 BEGe detector top and lateral surface scan

The scan points and count rates are plotted for a circular top surface scan of the
BEGe detector in Figure 4.22 and Figure 4.23. The scan was performed with step
sizes of ∆r = 4 mm and ∆θ = 10◦ and a measurement lifetime of TL = 60 s.

At r = 540 the source beam is outside the detector radius and the count rate ob-
served in 0. Again, the outermost scanned detector radius at r = 580 shows a change
in count rate due to misalignment of the detector center and the rotation axis 1.

The top contact of the BEGe seems more homogeneous than the PPC one. However,
the largest difference found for radii r = 780 and r = 860 translates to 40 ± 5µm
which is 10% of the contact thickness (0.40 ± 0.05)mm. Hence, the same order of
inhomogeneity as for the PPC outer contact is found for the BEGe. The smaller
contact thickness of the BEGe explains the higher count rate observed in top scans
with respect to the PPC detector.

Scan points and a three dimensional plot of the lateral circular scan of the BEGe are
shown in Figure 4.24. Measurement step sizes are ∆h = 5 mm and ∆θ = 10◦ and the
measurement lifetime per point is TL = 120 s. Some points have not been scanned,
the points are missing in Figure 4.24 on the left. The positions were scanned but
the automatized system failed to save the data.
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4.8. Fine grain surface scans

Figure 4.20: PPC circular lateral surface scan: scanned points (left) and
three dimensional surface (right). The count rate is indicated with a color
scale. In the left figure a couple of points are white because there are no
data; they can be neglected.

Figure 4.21: Count rate as function of the polar rotation angle θ measured
with the PPC in a circular lateral surface scan.
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4.8. Fine grain surface scans

As can be seen in Figure 4.25 at three scanning heights h = 2920, h = 3020 and
h = 3070 a sinusoidal change in count rate is observed, which is expected for a slight
tilt of the scanning arm with respect to the lateral detector surface (see Figure 4.13).
If we assume that the change in scanning height for a 180◦ rotation is not more than
the photon beam divergence wb this translates to an inclination of less than 1◦.

At the uppermost scanning height the count rate is higher as the source beam hits
the part of the BEGe which is uncovered by the copper holder.

The three lower most scan positions h = 3220, h = 3270 and h = 3300 show a
structure from θ = 250◦ to θ = 280◦ which measures at least 8mm in height and
30◦ in circumference. This can be a screw in the holder structure or similar. These
small details are necessary to know and can be implemented in Monte Carlo (MC)
simulations. In case very precise simulations have to be performed, measurements
with a higher resolution or clarification by the manufacturer are necessary.

Figure 4.22: BEGe circular top surface scan: scanned points (left) and three
dimensional surface (right). The count rate is indicated with a color scale.
In the left figure a couple of points are white because there are no data;
they can be neglected.
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4.8. Fine grain surface scans

Figure 4.23: Count rate as function of the polar rotation angle θ measured
with the BEGe in a circular top surface scan.

Figure 4.24: BEGe circular lateral surface scan: scanned points (left) and
three dimensional surface (right). The count rate is indicated with a color
scale.
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4.8. Fine grain surface scans

Figure 4.25: Count rate as function of the polar rotation angle θ measured
with the BEGe in a circular lateral surface scan: all scanned positions (top),
zoom to scans with lower count rate (bottom).
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Chapter 5

Compton coincidences: Setup

In order to develop new algorithms for background rejection in Gerda Phase II,
detailed knowledge of signal-like event structure in BEGe detectors is of great im-
portance.

In this chapter an experimental setup is described which has been designed and con-
structed with the purpose of performing three-dimensional scans of BEGe detectors
in order to study signal-like pulse shapes in confined detector regions. We base the
selection of such events on single Compton interactions in coincidence measurements.

The method has been used with non-segmented and segmented HPGe detectors
[57, 58] and for detector characterization in the Greta and Agata experiment
[59–61]. It is adapted in this work for a BEGe detector in the context of the Gerda
experiment. The Compton coincidence measurements described in the following
have never been successfully performed before with a BEGe detector.

After an introduction in which we explain the principle of operation, the experimen-
tal setup is described in detail. Finally, the measurement campaign is displayed.

5.1 Motivation for single site event studies

In Figure 5.1 measured charge and respective current pulses for three different event
classes are plotted. The current pulse x′[t] was calculated based on the charge pulse
x[t] by a moving window differentiation with a width of wd = 80 ns

x′[t] = x[t]− x[t− wd] (5.1)

The three event types shown are a single site event (SSE) depositing energy in one
small region, a multiple site event (MSE) depositing energy in two well separated
regions and a slow pulse event which deposits energy in the outer n+ contact of the
detector. The latter type is called slow pulse because charge carriers have to diffuse
from the outer contact layer into the active volume of the detector, before drifting
along the electric field lines and being collected on the read-out electrode. The dif-
fusion process is rather slow, resulting in a distinct pulse shape. MSE events reveal
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5.1. Motivation for single site event studies

a multiple peak structure in their current pulse while SSE events show a single peak.

In 0νββ decay energy is released in form of two electrons (see Section 1). An
upper limit of the extension of the subsequent energy deposition dUL

ε is given by the
range of the two electrons at ∼ 1MeV in germanium in the continuous-slowing-down
approximation (CSDA) [62] divided by the density of germanium ρGe

dUL
ε < 2 · rCSDA

ρGe

= 2 · 6.56 · 10−1 g cm−2

5.323 g cm−3
≈ 2.5 mm (5.2)

An energy deposition in a volume smaller than the spatial resolution of the detector
is commonly referred to as SSE. In unsegmented HPGe detectors the 0νββ events
belong to the SSE event class. In order to gain knowledge about signal-like events
which deposit energy similar to 0νββ the properties of SSE events are studied.

Being able to discriminate MSE from SSE events helps identifying and reducing
background in the Gerda experiment and is a key feature of background reduction
in Gerda Phase II. One handle for such a discrimination using PSA is the A over
E parameter (A/E) [63]; the amplitude of the current pulse divided by the energy of
the event. On the left side of Figure 5.1 energy and current amplitude are indicated
for an SSE event. An MSE event is composed of multiple, spatially well separated
interactions. The energy, which is an integrated parameter, contains all interactions
whereas the maximum amplitude of the current pulse contains only the interaction
which deposits most energy. Therefore, the A/E parameter of an MSE is smaller
than for an SSE of the same energy.

To study the spatial homogeneity of the A/E parameter of signal-like events we need
samples of SSE events of well defined interaction regions. Furthermore, the compar-
ison of measured and simulated SSE pulse shapes, due to interactions in confined
detector regions, can be used to improve and verify pulse shape simulations. And
last but not least, confined SSE event samples can help in creating new strategies
and algorithms to reduce background in Gerda Phase II.

Figure 5.1: SSE (left), MSE (middle) and a slow pulse event (right) in a
BEGe detector. The charge pulse as recorded by the FADC is shown in
blue and the calculated current pulse (Equation 5.1) in red. The energy E
and the amplitude of the current pulse A are indicated.
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5.2. Single Compton events

In the next section the physical prerequisites of Compton coincidence measurements
are describe, which make it possible to select SSE event samples from confined re-
gions in a HPGe detector. The experiment presented in the following is based on
single Compton interactions of 137Cs photons with a scattering angle of 90◦.

5.2 Single Compton events
137Cs has only one prominent γ-line, with an energy of 661.657 keV (≈ 662 keV in
the following) and a branching ratio of RB = (84.99 ± 0.20) % (see Figure B.3).
The interaction cross section of photons in germanium, as a function of energy and
depending on the interaction mechanism, is shown in Figure 5.2. The 137Cs γ energy
is indicated with a black vertical line. At this energy, Compton scattering is the
dominant interaction process of photons with germanium.

5.2.1 Topology

In Compton scattering energy is transfered from a γ-photon to a shell electron of
an atom (see Section 3.1.3). The energy of the scattered photon and the energy
transferred to the electron, for an incident photon energy of 662 keV, are listed in
Table 5.1. Different scattering angles are tabulated. For a scattering angle of 90◦

an energy of 373 keV is transfered to the shell electron.

The stopping power of germanium for electrons at 373 keV is about 31MeVcm2/g
[62]. Thus, the scattered electron has a maximal range of about

rCSDA/ρGe = 0.2 g cm−2/5.323 g cm−3 ≈ 0.4 mm (5.3)

This limit is smaller region than was derived for 0νββ events (see Equation 5.2).
Thus, a single Compton event has SSE event topology and can be studied as a pro-
totype for 0νββ events.

Table 5.1: Energies of single Compton scattered photon E ′γ and transferred
energies to electron Ee for different scattering angles and an incident photon
energy of 662 keV.

scattering angle [deg] E ′γ [keV] Ee [keV]
90 288 373
60 402 260
45 480 182
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5.2. Single Compton events

Figure 5.2: Interaction cross section of photons in Germanium depending
on energy and interaction mechanism. The black vertical line indicates the
662 keV 137Cs γ-line [64].

Figure 5.3: The selection of a confined interaction region of single Compton
interactions inside a BEGe through tagging of the scattered photon and
collimation is shown.
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5.2.2 Selection

Photons can interact in various ways and multiple times inside a detector (see Chap-
ter 3.1). From all those possible interactions and combinations of interactions we
want to filter only single Compton events; and only from specifically selected inter-
action regions.

To select Compton events it is important to tag the scattered photons and measure
their energy using additional detectors; triggering only on coincidences eliminates
the major part of background events. The dynamics of the Compton effect provides
a simple tool to ensure that only one interaction took place: The energies for a
given scattering angle are fixed (see Section 3.1.3). Therefore, by choosing the right
energies for the respective scattering angle (see Table 5.1), we select single Compton
events.

The selection of scattered photons originating from a distinct interaction region is
ensured by collimation. The experimentally most practical scattering angle of 90◦

is chosen which has the advantage that the additional detectors are easy to mount,
and the scanned region is the same for all of them.

A simplified schematic of the experimental setup can be seen in Figure 5.3. A beam
collimated 137Cs source is installed below a BEGe detector. Slit collimated Coax
detectors are installed at a Compton scattering angle of β = 90◦ with respect to the
incident photon beam to detect the scattered photons.

5.3 Experimental setup
A detailed sketch of the experimental setup is shown in Figure 5.4. A top view on
the left and a side view on the right show a BEGe detector, mounted top-down in
the middle of the setup. Four Coax detectors are facing the BEGe under an angle
of 90◦. Lead collimators are placed between the BEGe and the Coax detectors;
their aperture is variable and selects photons scattered under 90◦ with respect to
the incident photon beam. A collimator is mounted below the BEGe which holds
the 137Cs source.

A close up of the setup can be found on the left side of Figure 5.5. The BEGe
is mounted top-down in the middle of the setup and three Coax detectors (out of
four possible) are mounted on a table platform tagging the scattered photons. The
source is held by a standard source collimator which is shown on the right side of
the same figure.

The whole experimental setup is shown in Figure 5.6. The various parts are ex-
plained in the following.
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5.3. Experimental setup

Figure 5.4: Sketch of top view (left) and side view (right) of the Compton
coincidence experimental setup. Germanium detectors are shown in blue,
vacuum cryostats as dotted volumes, lead collimators as wavy blocks and
the 137Cs source is drawn in red.

Figure 5.5: Close up of the coincidence measurement setup (left) with the
BEGe detector in the middle and three Coax detectors measuring the scat-
tered photons and the standard source collimator (right).
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5.3. Experimental setup

Figure 5.6: Picture of the full experimental setup for Compton coincidence
measurements with LN2 dewar on the left, table with detectors in the middle
and DAQ system in a crate on the right side.

Figure 5.7: Closed (left) and open (right) source collimator designed to
shield a 780MBq 137Cs source. The hole in the table has been covered for
source installation to prevent it from falling down.
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Figure 5.8: Technical drawing of the new source collimator. It can host a
strong 137Cs source with an activity of about 780MBq. Provided by Matteo
Turcato.
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5.3.1 Source collimation

Two different collimators were designed for different types of sources:

• Standard collimator
A simple collimator (see Figure 5.5) can hold a standard 137Cs source with
a point-like activity of about 350 kBq. The activity is sealed inside a small
plastic tile of dimensions 20 × 10 × 1.9mm3. The collimator has a length
of 8 cm which can be extended to 16 cm and a square collimation of 1.5mm
or 3mm. The collimator can be lifted in order to prevent divergence of the
photon beam. It is mounted on a movable slide controlled by precision motors
with a positioning reproducibility better than 1mm.

• Collimator for a strong 137Cs source
The source is collimated and the angular acceptance of the Coax detectors
is reduced with collimators, hence, the expected event rate is very low. We
use a strong 137Cs source which has an activity of about 780MBq, augment-
ing the rate, in order to be able to measure within an acceptable time frame.
To shield the strong 137Cs source the standard source collimator is not thick
enough and too difficult to handle. The absorption and scattering of photons
in lead was studied in order to choose an adequate thickness for a collimator
(see Table 5.2). A dedicated collimator with a side thickness of 57mm was
produced and installed. Pictures of the collimator can be found in Figure 5.7,
while Figure 5.8 shows a detailed technical drawing. It can be opened and
closed from a distance in order to minimize personal risk due to exposure to
radiation. An extension with a smaller diameter has been added on top of
the collimator which adds 35mm to a total length of 100mm. The incident
collimation measures 1mm in diameter.

Using Equation 3.5 with ρPb = 11.35 g/cm3, µphoto(Pb, 662 keV) = 6.017·10−2 cm2/g
and µCompton(Pb, 662 keV) = 4.347 · 10−2 cm2/g [64] the survival fraction of 662 keV
photons for different lead thicknesses can be calculated. Some values are listed in
Table 5.2.

Table 5.2: Photon survival fractions of photoelectric absorption (photo),
Compton scattering (Compton) and the total attenuation (total) of 662 keV
photons in lead. d denotes the lead thickness and As the equivalent surviving
activity for an incident activity of 780MBq.

d [cm] photo [%] Compton [%] total [%] As [MBq]
3 12.9 22.8 2.9 22.9
4 6.5 13.9 0.9 7.0
5 3.3 8.5 0.3 2.2
6 1.7 5.2 0.1 0.7
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5.3.2 Automatic filling system

Germanium detectors have to be operated at cryogenic temperatures. All detectors
are mounted in vacuum cryostats connected to dewar vessels, which contain LN2, by
a cold finger. The Coax detectors, mounted on the table platform, have very small
dewars with a volume of 3 l only. They have to be filled within a time interval of
∼ 16 h, which makes manual filling unfeasible.

Therefore, all dewar vessels have been connected to an automatic filling system con-
trolled by a Keysight1 Data Acquisition Unit2. The unit has been programmed to
read the values of temperature sensors inside the vacuum cryostats of each detector.
Moreover, it reads the temperature of all valves in the automatic filling system and
manages an opening and closing sequence in order to fill all dewars in a predefined
time interval.

Originally, the filling interval was set to 14 h; after a couple of months of stable op-
eration the interval was changed to 16 h. The system can also be managed remotely
via a Graphical User Interface (GUI) and detectors can be manually excluded from
refilling via the GUI.

The LN2 is provided by a storage tank with a total volume of about 180 l. This
vessel has to be filled manually in a five day interval if all detectors are connected.

5.3.3 Low and high voltage supply and safety shutdown

The PreAmps of all detectors are powered by SpecAmps34, with a LV of 6V.

The Coax detectors use negative HV and the BEGe positive HV (see Table 4.1).
This is provided by two programmable HV modules5.

Each detector has an HV inhibit signal output which changes its voltage level if
the crystal becomes too warm; this happens typically above 110K. All HV inhibit
signals are collected in a dedicated unit which further connects to the HV modules.
If one detector is sending the HV inhibit signal the unit sends a shut down signal to
the HV modules in order to ramp down all detector HVs; it is assumed that none
of the detectors has been refilled.

The Keysight unit can provide a shutdown trigger with a programmable temperature
trigger level. In this manner the shutdown can be triggered at a lower temperature
than with the HV inhibit signals.

1Former Agilent
234970A Data Acquisition / Data Logger Switch Unit
3Coax: Silena 7611/L Spectroscopy Amplifier
4BEGe: Ortec 762 Spectroscopy Amplifier
5CAEN N1471H: NIM HV Power Supply High Accuracy Module
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Moreover, the HV is also shut down in case of power failure or malfunction of the
Keysight unit, or if the power on the HV handling unit fails.

If a detector has to be warmed up the HV shutdown trigger can be suppressed for
the respective channel, by means of a physical switch on the HV handling unit.

5.3.4 Three dimensional accessibility

The Compton table has three degrees of freedom

y The source with its collimator can be moved along the y-axis to select a posi-
tion along the diameter of the BEGe detector.

θ The BEGe can be rotated along the z-axis.

By changing the y and θ parameter the full top surface of the BEGe can be scanned.
Last

z The height of the table platform on which the detector collimators and Coax
detectors are mounted can be raised and lowered.

By changing the height of the table a scanning height inside the BEGe detector is
chosen. A full three-dimensional scan can be performed using all three degrees of
freedom.

The z-movement has to be performed manually, all other movements can also be
controlled remotely. The precision of the table height is about ±0.5mm and is read
from a measure which is installed on the side of the table (see Figure 5.9). The
precision motors controlling the y- and θ-movements have a reproducibility better
than 1mm and 1◦.

5.3.5 Position calibration of source and table

Position calibrations were performed in order to align the source position and the
table height to the desired scanning region in the BEGe.

A 137Cs source was installed in the source collimator, and the rate of the 662 keV
photons was measured with the BEGe in dependence of the y-position of the source
collimator. The result of this top scan can be found in Figure 5.10. The center
of the BEGe along the y-movement of the source collimator was determined to be
(53± 1)mm.

For the table height calibration a 22Na source was placed inside one of the detector
collimators as can be seen in Figure 5.11. As 22Na decays via β+ it emits a promi-
nent 511 keV γ-line due to annihilation photons. The rate of the 511 keV γs from
the 22Na source was measured with the BEGe in dependence of the table height
z. In Figure 5.12 the result of this lateral scan can be seen. The table cannot be
lifted higher than 120mm, hence, this is the last point scanned. The middle of the
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Figure 5.9: Measure installed on the side of the scanning table platform to
read its height.

Figure 5.10: Top scan of the BEGe detector inside the Compton coincidence
setup using a 137Cs source. Plotted is the rate of 662 keV γs versus the
source position given by the precision motor which moves the collimator.
The BEGe center is indicated.
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Figure 5.11: 22Na source inside a detector collimator; with the collimator
open (left) and closed (right). This setup is used for detector position cali-
bration (Section 5.3.5) and external trigger gate calibration (Section 5.4.2).
The collimator aperture is equal to the thickness of the 22Na source which
measures ∼ 1.9mm.

Figure 5.12: Lateral scan of BEGe detector inside the Compton coincidence
setup using a 22Na source. Plotted is the rate of 511 keV γs versus the table
height given by the measure at the side of the table.
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detector with respect to table height z was determined to be (101± 1)mm. Thus,
subtracting half of the BEGe height 40.7/2 mm ≈ 20 mm from this value we find its
lower surface at a z-value of 101 mm− 20 mm) = 81 mm.

5.4 DAQ and trigger
We us an FADC, with four channels and a sampling frequency of 100MHz, to
digitize the detector signals. For a trigger generation we demand coincidence of the
BEGe and at least one of the Coax detectors BEGe ∧ (Coax1 ∨ Coax2 ∨ . . .. To
reduce the number of random coincidences an external trigger logic was designed
and implemented.

5.4.1 External trigger logic

The FADC can generate a trigger gate on its own. A fixed trigger threshold is set,
the gate is opened when the signal rises above threshold and closes when it falls
back below threshold. Consequently, the length of the internal trigger gate depends
on the trigger threshold and the signal height.

The first approach to trigger on coincidences was to set the internal trigger logic to a
multiplicity of two channels. However, in this manner a lot of random coincidences
are recorded. The real coincidences from single Compton events are expected at a
fixed and short trigger time delay between the BEGe and one Coax detector.

The solution is the installation of a dual timer unit (DTU) which generates a leading
edge trigger with adjustable gate size, using the trigger gate generated by the FADC
as input signal. The calibration of the DTU gate size is described in the following
Section 5.4.2. Ultimately, the external trigger gate is set to a length of 2µs.

A sketch of the full external trigger logic can be found in Figure 5.13. The FADC we
are using has only one internal trigger output. To trigger on coincidences we need
a trigger gate for the BEGe as well as for the Coax detectors. Hence, two FADCs
are used: The first one only generates a trigger gate for the BEGe detector; in Fig-
ure 5.13 it is called DIGI0. The second FADC (DIGI1) creates a trigger gate if one
of the Coax detector triggers. Both gates are shortened by the DTU and finally we
demand a coincidence by combining both with an AND logic. This external trigger
is lead back to DIGI1 which subsequently writes all traces on disk.

An example of a random coincidence which would be recorded using the internal
trigger logic only, but is excluded by the external DTU trigger logic, is shown in
Figure 5.14.
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Figure 5.13: External trigger logic. Digi0 creates trigger gate for BEGe,
Digi1 creates trigger gate for the coaxial detectors if either of them is above
threshold. The DTU adjusts the gate length to a chosen value using a
leading edge trigger. The DTU gates are combined in a logic AND to get
only coincident events. Coincidence logic: BEGe∧(Coax1∨Coax2∨Coax3).

Figure 5.14: Example of a random coincidence which would be recorded
using the internal trigger logic (Trigger int) but excluded by the external
Trigger logic (Trigger ext).
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Figure 5.15: Sketch of 22Na DTU gate calibration measurement setup. Not
up to scale. A 22Na source is installed inside a detector collimator. 22Na
decays via β+ and the subsequently emitted annihilation γs can be measured
in coincidence.

Figure 5.16: Trigger time difference for different DTU gate sizes divided by
measurement real-time. A Peak containing true coincidences on top of flat
background of random coincidences is observed. Any DTU gate size shorter
than ∼ 1.3µs cuts a part of true coincidences.
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5.4.2 Trigger gate calibration

To calibrate the trigger gate size on the DTU we use a Na22 source. Na22 is decay-
ing via β+ and the emitted positron annihilates with an electron. Two annihilation
photons of 511 keV each are emitted back-to-back. They can be measured in coinci-
dence using the external trigger logic described before. We measure coincidences of
one Coax detector and the BEGe with the source installed in a detector collimator
(Figure 5.11), as was done for the lateral position calibration. A sketch of the setup
can be seen in Figure 5.15.

The measurement is repeated for DTU gate sizes of 0.4µs, 0.6µs, 1µs and 2µs.
Histograms of the trigger time difference ∆Trigger = TriggerBEGe − TriggerCoax are
plotted in Figure 5.16. All bin contents are divided by the real-time of the respective
measurement for normalization.

An asymmetric peak with a mode of roughly 1µs on a flat background can be seen.
The background contains random uncorrelated coincidences while the peak contains
truly correlated events. The peak of true coincidences is asymmetric as ∆Trigger
depends mostly on the relation between the trigger threshold and the shapes of the
traces which are asymmetric by themselves and contain single as well as multiple
Compton events. If the DTU gate size is too short, < 1.2µs, real coincidences are
cut from the distribution.

The DTU gate size calibration is performed for all coincident detectors. They behave
all very similar and a DTU gate size of 2µs was determined to be sufficiently large
for all of them, leaving some freedom for baseline drifts, different trigger thresholds
and different measurement positions. Individual plots can be found in Appendix D.

5.5 Data taking campaign
137Cs coincidence measurements were taken with the standard collimator and a
standard 137Cs source. However, the measurement time for one scanning position
in order to see coincidences was about one week. After installation of the 780MBq
137Cs source and its collimator, measurement time went down to about one day per
position. Various locations were scanned with different detector collimation and
different BEGe HV.

A list of measurements taken with the 780MBq 137Cs source can be found in Ta-
ble 5.3 and the positions scanned are visualized in Figure 5.17. Run14 will be shown
in the following for illustration purpose.
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5.5. Data taking campaign

Table 5.3: List of 137Cs coincidence measurements taken with a 780MBq
source. For all measurements the rotation angle was fixed at θ = 0◦. The
measurements presented were performed in the second half of 2015.

start real detector table height source pos. BEGe
Run date time [h] coll. [mm] z [mm] y [mm] HV [kV] Coax

1a 0715 18.0 5 90 53 4.0 1
1b 0716 26.9 5 90 53 4.0 1
2a 0717 33.4 5 100 85 4.0 1
2b 0721 7.0 5 100 85 4.0 1
2c 0722 49.4 5 100 85 4.0 1
3 0724 3.6 5 115 53 4.0 1
4 0923 13.1 3 100 53 4.5 1,2,4
5 0924 13.9 3 100 53 5.0 1,2,4
6 0925 13.5 3 105 85 5.0 1,2,4
7 0928 10.4 3 115 85 5.0 1,2,4
8 1022 12.3 1 120 53 4.5 1,2,4
9 1026 12.3 1 118 53 4.5 1,2,4
10 1027 12.3 1 115 53 4.5 1,2,4
11 1028 12.4 1 102 53 4.5 1,2,4
12 1029 20.9 1 89 53 4.5 1,2,4
13 1031 21.0 1 86 53 4.5 1,2,4
14 1102 20.5 3 86 53 4.5 1,2,4
15 1103 21.4 3 117 53 4.5 1,2,4
16 1104 26.4 3 100 86 4.5 1,2,4
17 1107 25.4 3 82 85 4.5 1,2,4
18 1109 23.7 3 85 83 4.5 1,2,4
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5.6 Data processing and selection
All data, taken with the FADC DAQ system, are processed in the same manner as
described in Section 4.2, using a multi-tier approach (see Appendix A).

A number of quality cuts are applied in order to get rid of unphysical and pile-up
events, events with very noisy baseline (BL) and random coincidences. Only events
which satisfy the following requirements have been kept

• Over/Underflow-cut: The dynamic range of the FADC has not to be exceeded.

• IsGood: No error occurred during processing.

• σBL-cut: The distribution of standard deviation of the restored BL σBL is fit for
each run using a Gaussian fit function. All events with σBL > µGauss +3σGauss

6

are discarded.

• TriggerNumber-BEGe: The number of triggers found in the BEGe trace has
to be one, using a fixed trigger threshold.

• TriggerNumber-Coax: The number of triggers found in any Coax trace has to
be either smaller than two, or the second trigger has to have at least a distance
of 6µs from the first one.

• ∆Trigger-cut: 0µ < ∆Trigger = TriggerBEGe − TriggerCoax < 1.2µs.

The most stringent cut is the σBL-cut. This cut excludes noisy events and events
with a poorly restored BL which can be due to pile-up.

Figure 5.17: Scanned points using the 780MBq 137Cs source with different
detector collimation and BEGe HV.

6 µGauss and σGauss are the centroid and standard deviation of the Gaussian fit function.71



5.6. Data processing and selection

The effects of the quality cuts on uncalibrated energy spectra is exemplary shown in
Figure 5.18, for the BEGe and Coax1 data of Run14. The dark blue spectra contain
all events with no quality cuts applied, the light blue spectra include all cuts ex-
cept for the σBL-cut and in the spectra shown in magenta also the σBL-cuts is applied.

Note that the σBL-cut restores the resolution of γ-lines in the BEGe spectrum and
has little to no effect in the spectrum of Coax1. The reason is most probably the
high activity of the 137Cs source and, therefore, high amount of pile-up events in
the BEGe detector. The energy reconstruction for pile-up events is mostly poor and
worsens the energy resolution. The Coax detectors show much less pile-up as they
are not directly in the γ beam of the 137Cs source.

Finally, the energy is calibrated for each detector by means of calibration curves, cal-
culated using dedicated 60Co calibration spectra. This was explained in Section 4.5.

Figure 5.18: Run14 uncalibrated energy spectra of BEGe (top) and Coax1
(bottom). The σBL-cut restores the resolution of γ-lines in the BEGe spec-
trum and has little to no effect in the spectrum of Coax1.
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5.7 Compton coincidences
In the top Figure 5.19 the calibrated energy of Coax1 ECoax1 is plotted versus the
calibrated energy of the BEGe EBEGe. The 137Cs γ-line is visible as a vertical line
for EBEGe ≈ 662 keV. The Compton coincidences appear as a diagonal line at
EBEGe + ECoax1 ≈ 662 keV. The two lines mark the sum spectrum which is plotted
in the bottom Figure 5.19. To check the goodness of the energy calibration the sum
spectrum is fit using a Gaussian fit function for the Compton coincidences and an
erfc function to describe the background (see Equation 4.3). The centroid is found
at (662.1±0.1) keV which means the energy calibration is accurate within ≈ 0.5 keV.

Figure 5.19: Scatter plot (top) and sum energy histogram (bottom) of
calibrated BEGe and Coax1 energies, for 137Cs coincidence measurement
Run14. All quality cuts are applied. The sum energy of EBEGe + ECoax1 ≈
662 keV is indicated, in the top figure, by two diagonal lines. In the bottom
figure, the result of a fit with a Gaussian on an erfc background is shown.
The centroid of the Gaussian is shifted by ≈ 0.5 keV with respect to the
expected value of 661.657 keV.
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Chapter 6

Compton coincidences: Simulation

A full simulation of the experimental setup has been developed and implemented in
the Geant4 [65] based MC simulation framework MaGe [66]. It contains a detailed
description of the detector and source geometries, materials and shielding and has
been used to optimize the setup and evaluate the expected event rates. Moreover,
the energy and spatial distributions of Single Compton Events (singleCE) events
with respect to background events have been studied to optimize the analysis cuts.

6.1 Setup implementation
The geometry implemented in MaGe contains all important parts of the setup
(schematics in Figure 6.1): the detectors with their encapsulations, the detector and
source collimators, the table platform on which the Coax detectors are mounted, the
BEGe holder and the source geometry.

As the Coax detectors face the BEGe at a scattering angle of 90◦ their holders have
not been implemented in the setup. Detector contact layer effects have not been
taken into consideration, e.g. loss of charge carriers due to recombination in the
lithium diffused surface.

Some geometry details can be varied at run time. A short description of the MC
options can be found in Appendix E.

6.1.1 137Cs source implementation

The geometry of the strong 137Cs source used for the coincidence measurements is
not point-like. A realistic implementation of the source geometry in MaGe is shown
in Figure 6.2. The source itself is embedded in a cylindrical ceramic which measures
about 3mm in height and diameter. It is encapsulated in a stainless-steel container,
which is held by a nylon vessel for better handling.
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6.1. Setup implementation

Figure 6.1: MC geometry top view (left) and side view (right). For better
visibility, the vacuum cryostats of the Coax detectors and the table platform
are not shown. The BEGe aluminum cryostat is displayed in blue, the BEGe
detector is drawn in red and its holder in green. The black structures are
the lead source and detector collimators and the Coax detectors are shown
in gray. Below the source collimator the orange nylon vessel that holds the
source is shown. For details of the source implementation see Figure 6.2.

Figure 6.2: Realistic imple-
mentation of the strong 137Cs
source geometry. From inside
out: in magenta the activity
3mm in height and diameter,
a stainless steel sealing in blue
and the outer nylon vessel in
orange.
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6.1. Setup implementation

6.1.2 Setup optimization

In order to see if important details of the setup are missing in the MaGe representa-
tion an uncollimated 137Cs spectrum, taken with a standard point-like source with
an activity of about 380 kBq, was compared to simulation.

The spectra can be seen in Figure 6.3; two MC spectra are shown which are normal-
ized to the measurement by adjusting the height of the Compton edge at ≈ 478 keV
to the measurement. The MC spectrum shown in red takes the copper holder of the
BEGe detector in consideration, the spectrum shown in green does not.

As can be seen, the inclusion of the BEGe copper holder in the simulation changes
the shape of the spectrum between 100 keV and 250 keV. The shape of the simulated
spectrum including the holder is in much better agreement with the measurement.
In the energy region below 70 keV both MC spectra are still not in a very good
agreement with the measurement. This energy region is, however, not important in
the following: all FADC trigger thresholds are set to ≈ 150 keV.

energy [keV]
100 200 300 400 500 600 700

ct
s/

0.
1k

eV

500

1000

1500

2000

2500

3000

3500

4000

4500

measurement

sim wo Cu-Holder

sim w Cu-Holder

Figure 6.3: BEGe uncollimated 137Cs spectrum. Measurement in blue, MC
simulation without the BEGe copper holder in green and with the holder
shown in red.
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6.2 Energy distribution of single Compton events
The simulation provides a tool to study the energy distribution of singleCE events,
considered as signal events, and multiple Compton events, which will be labeled
background in the following. What we define here as signal events, namely singleCE
events, is only a part of signal-like events. In reality all events which deposit energy
in a volume smaller than the spatial resolution of the BEGe detector are to be con-
sidered signal-like, also if energy is deposited through multiple Compton scatterings.
This implies that the signal to background ratio in the data will differ from what
is estimated here with MC simulations. The signal to background ratio has to be
ultimately evaluated for real data.

In this section we will look at a simulation for a detector collimation of 10mm,
restricting the angular acceptance of the Coax detectors, a source collimation of
1.5mm and a scanning height of 1 cm. The scanning height is measured from the
lower edge of the BEGe detector. The collimators are placed as close as possible to
the BEGe vacuum cryostat and the observation angle is 90◦. Only events releasing
energy in the BEGe and at least one of the Coax detectors are saved on disc, equiv-
alent to the external trigger logic.

In Figure 6.4 a scatter plot of the energy released in the BEGe and in one of the
Coax detectors is shown. The distribution is split in singleCE events, drawn in red,
and background shown in blue. A diagonal line is clearly visible at a sum of energies
of 662 keV which corresponds to events in which the full γ energy is released in the
two detectors. A band of singleCE events at BEGe energy (373 ± 30) keV can be
noticed; it corresponds to events with a scattering angle of ∼ 90◦ with respect to
the incident photon beam, where the energy of the scattered photon is not fully
contained in the Coax detector.

Figure 6.4: BEGe energy versus Coax1 energy from MC simulation. Single
Compton (signal) events are shown in red and background events in blue.
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6.2. Energy distribution of single Compton events

The BEGe energy spectrum of all events, regardless of the Coax detector in coinci-
dence, is plotted in Figure 6.5. Both the distribution of singleCE and background
are shown; they differ from each other in their shape. In the singleCE spectrum a
peak is clearly seen at an energy of 373 keV as expected for a singleCE scattering at
an angle of ∼ 90◦. The distribution of background events is much broader.

Calculating the signal to background ratio from the two distributions (see Figure 6.6)
an energy cut for the BEGe detector can be defined as

352 keV < EBEGe < 388 keV (6.1)

corresponding to a signal to background ratio above one.

The respective signal and background energy spectra for one Coax detector, without
any energy cut applied, can be found in Figure 6.7. As for the BEGe detector the
spectral distribution of signal events displays a peak of Gaussian form whereas the
distribution of background events is broader. Events with zero energy are events
which deposit energy in a different Coax detector.

In the Coax background spectrum at ∼ 74 keV a line is observed which coincides
with lead x-Ray fluorescence energies. As all collimators are made of lead this is a
plausible explanation for its appearance in the spectrum. Also in the BEGe spec-
trum lead fluorescence lines are observed but their relative strength is much lower.

The same Coax energy spectra but with the BEGe energy cut (Equation 6.1) applied
can be seen in Figure 6.8.

Figure 6.5: BEGe energy spectrum of singleCE events and background; no
energy cut is applied.
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6.2. Energy distribution of single Compton events

In the signal distribution we find a peak on a flat background and define an energy
cut for the Coax detectors

ECoax > 272 keV (6.2)

as indicated in Figure 6.8 by a vertical line. We require that at least one of the Coax
detectors satisfies this condition. This energy cut will be called Coax energy cut in
the following.

The impact of the Coax energy cut on the BEGe signal to background ratio is
presented in Figure 6.9. The ratio improves at all energies selected with the BEGe
energy cut.

Figure 6.6: BEGe signal to background ratio as a function of energy. The
signal and background equality where S/B = 1 is marked with a black
horizontal line. This defines the BEGe energy cut, indicated by two red
vertical lines.

Figure 6.7: Coax energy spectrum for singleCE events and background; no
energy cut is applied.
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6.2. Energy distribution of single Compton events

Figure 6.8: Coax energy spectrum for singleCE events and background.
The BEGe energy cut is applied. A lower energy cut chosen for the Coax
detectors is indicated by a vertical line.

Figure 6.9: BEGe signal to background ratio comparison; in blue without
energy cuts and in red with the Coax energy cut applied.
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6.3 Interaction region and confinement
In this section we take a close look at the interaction region of signal and back-
ground events we have selected with the energy cuts introduced in Section 6.2. In
Figure 6.10 the hit distribution of all events, only signal and only background events
can be seen respectively; no energy cuts were applied. The position of the BEGe
and two Coax detectors is indicated in the uppermost figure. In the following figures
the position of the detectors is the same as illustrated here. We observe that only
by collimation the signal events are not well confined.

As already outlined the, BEGe energy cut is chosen according to the signal to back-
ground ratio as a function of energy. As the first interaction happens in the BEGe
detector this is the first energy cut implemented. In Figure 6.11 the hit distributions
are shown as before, but with the BEGe energy cut applied. As can be seen, the
confinement of all events is much better than before.

We add the Coax energy cut for the coincidence detectors in Figure 6.12. The cut
further improves the confinement of all events.

Figure 6.10: Hit distribution side view for all events (top), signal events
(middle) and background events (bottom); no energy cuts were applied.
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The hit distribution of signal and background in the BEGe detector after all en-
ergy cuts can be seen in Figure 6.13, projected on the z-axis, and in Figure 6.14,
projected on the x-axis. Each hit has been assigned a weight equal to its energy
deposition. The detector and source collimation windows are indicated in red.

In the z-projection, 69% of signal energies are deposited within the 10mm wide
detector collimation window, whereas almost 100% can be found within 20mm cor-
responding to twice the collimation window. In x, the energy distribution is a bit
more compact. 83% of signal energy is deposited within x = ±0.75mm which cor-
responds to the source collimation; 97% can be found within x = ±1.5mm which
corresponds to twice the source collimation diameter. In x-projection as well as in
z-projection, the spatial distribution of the background is found to be very similar
to the signal distribution.

Figure 6.11: Hit distribution side view for all events (top), signal events
(middle) and background events (bottom). The BEGe energy cut is applied
(see Equation 6.1).
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Figure 6.12: Hit distribution side view for all events (top), signal events
(middle) and background events (bottom). The BEGe energy cut (Equa-
tion 6.1) and the Coax energy cut (Equation 6.2) are applied.
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Figure 6.13: Z-projection of signal and background spatial distribution in
the BEGe. Each hit has been assigned a weight equal to its energy deposi-
tion. The detector collimation window is indicated by a red band and the
BEGe z dimension (height) by two vertical lines.

Figure 6.14: X-projection of signal and background spatial distribution
in the BEGe. Each hit has been assigned a weight equal to its energy
deposition. The source collimation diameter is indicated by a red band and
the BEGe x dimension (diameter) by two vertical lines.
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6.4 Energy cuts
Summarizing Section 6.2 and Section 6.3, we have defined energy cuts for the BEGe
detector and the Coax detectors in order to select signal events from a confined
interaction region.

In the MC simulation pile-up events and random coincidences are not considered.
Thus, above the sum energy of 662 keV no events are found in the MC spectra. As
was shown before (see Figure 5.19), this is different for real data. Therefore, we
introduce an additional cut on the BEGe and Coax sum energy for data analysis.
The sum energy spectra are fit with a Gaussian fit function modeling the background
by an erfc and the cut is defined as

662 keV − 3σ < EBEGe + ECoax ≡ ESum < 662 keV + 3σ (6.3)

where σ is the standard deviation of the Gaussian. An example of the fit was already
shown in Figure 5.19.

Summarizing, all energy cuts we apply are the following

• BEGe energy cut 352 keV < EBEGe < 388 keV

• Coax energy cut ECoax > 272 keV

• Sum energy cut 662 keV − 3σ < ESum < 662 keV + 3σ

Figure 6.15 shows a scatter plot of the BEGe and Coax1 energies for Run14; energy
cuts are indicated in red.

Applying all energy cuts to simulation, we expect a reduction in the BEGe energy
spectrum as is shown in Figure 6.16. The demonstrated energy spectra were ob-
tained applying all energy cuts to the usual simulation with detector collimation of
10mm, source collimation of 1.5mm etc..

6.5 Comparing Monte Carlo simulations with mea-
surements

To be able to compare MC simulations with measurements some general consider-
ations have to be made. The MC simulations do not contain pile-up or random
coincidences, and in order to save simulation time we do not simulate the full solid
angle of incident photons from the 137Cs source. In the next subsections we explain
how the number of expected events is calculated from MC simulation.

6.5.1 Solid angle calculation

In order to save simulation time, only a part of the solid angle of incident pho-
tons from the 137Cs source is simulated. The respective solid angle fraction can be
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Figure 6.15: Scatter plot of the BEGe and Coax1 energy for Run14; all
standard quality cuts are applied. The BEGe energy cut is indicated by
two vertical lines, the Coax energy cut by one horizontal line and the sum
energy cut by two diagonal lines.

Figure 6.16: BEGe simulated energy spectrum; after Coax and sum energy
cuts in dark blue and with the BEGe energy cut applied in light blue. The
expected background contribution is indicated in red.

87



6.5. Comparing Monte Carlo simulations with measurements

calculated, dividing the surface of the corresponding spherical sector

SC = 2πr2(1− cosα) (6.4)

by the surface of the whole sphere

SS = 4πr2 (6.5)

In this manner the solid angle fraction

Ωf(α) =
SC

SS

=
1− cosα

2
(6.6)

is obtained. The opening angle α is measured from the vertical position as is shown
in Figure 6.17.

We find Ωf(5
◦) ≈ 1.9 · 10−3 and Ωf(1

◦) ≈ 7.6 · 10−5.

6.5.2 Rate calculation

The expected singleCE rate depends upon the scanning position and collimation.
For a specific configuration it can be calculated from MC simulation as follows:

R =
Ncoinc · Ωf ·Rb

Rsim

(6.7)

with the solid angle fraction Ωf , the branching ratio Rb = 0.8499 ± 0.0020 [67] of
the 662 keV γ-line and the observed number of events, Ncoinc. The simulated rate
Rsim

∼= Asim ·∆tsim corresponds to a combination of source activity Asim and mea-
surement time ∆tsim and has the unit [Bq s].

For the simulation discussed before — with a source collimation of 1.5mm, a detector
collimation of 10mm, an observation angle of 90◦ and a scanning height of 1 cm —
we expect an event rate of

R =
9411 cts · 1.9 · 10−3 · 0.85

1010 Bq s
≈ (5.26± 0.05)

cts

MBq day

Figure 6.17: Opening angle in solid angle fraction calculation.
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using four coincident detectors and a simulation opening angle of 5◦. The expected
signal to background ratio is S/B = 7052/2359 ≈ 3.0± 0.1. See also Figure 6.16 for
the expected background contribution.

6.5.3 Expected number of events

The number of expected coincidences Nexp is given by

Nexp = R · A · TR · fD ·
ND

4
(6.8)

where R is the expected rate calculated using Equation 6.7, A is the source activity,
TR is the real time of the measurement and ND is the number of Coax detectors in
coincidence. fD denotes the fraction of data which is discarded by quality cuts and
is not accounted for in the simulation.

It shall be noted here that the cumulative fraction fD ·ND/4 only holds if the source
position is central; for all detectors the fraction of events discarded by the quality
cuts is different. In the case of a non central source position the expected number
of events should be calculated using

Nexp = A · TR ·
ND∑
i=1

RifD,i, (6.9)

where Ri = Ncoinc,i ·Ωf ·Rb/Nsim and fD,i is the part of events, Ncoinc,i, in coincidence
with detector i and discarded by the quality cuts listed above.

In general, fD,i is difficult to obtain and is not constant in energy. Therefore, we
take fD,i = 1 in the following and keep in mind that the obtained expected number
of events Nexp is only qualitative. The important information obtained from simu-
lation is the energy and spatial distribution of events.

A comparison of the measured and expected rate, R, and number of coincidences,
Nexp, for all central measurements of the data taking campaign presented in Sec-
tion 5.5 can be found in the next chapter in Table 7.1. In the next Section 6.5.4 a
comparison of simulation and measurement is demonstrated, using data of Run14.

6.5.4 Exemplary comparison of measurement and simulation

For each measurement of the data taking campaign a proper MC simulation was run.
Combining Equation 6.7 and Equation 6.8 a normalization factor can be calculated
in order to scale the MC spectra to match respective measured ones

Nexp

Ncoinc

=
Ωf ·Rb

Rsim

· A · TR ·
ND

4
(6.10)

For Run14 a simulation with an opening angle α = 1◦ and Rsim = 1010 Bq s —
primary γ particles with an energy of 662 keV — was performed. The measurement
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real time of Run14 is TR = 73833 s ≈ 20.5 h and the source activity is A ≈ 780MBq.
A normalization factor of Nexp/Ncoinc ≈ 0.28 for three Coax detectors in coincidence
is calculated.

The energy spectrum of the BEGe, after all quality cuts, and the respective spec-
trum, extracted from the normalized MC simulation, are shown in Figure 6.18. A
peak is observed which is due to singleCE.

The measured peak is a little broadened and between 420 keV and 520 keV the mea-
sured background is slightly elevated with respect to the simulation. Considering
that the energy resolution is not included in the MC, the simulation provides a good
description of the measurement. The BEGe energy cuts could be slightly loosened
to take the finite energy resolution into account. In the following, however, all en-
ergy cuts are kept as defined in Section 6.4. Thus, a small part of singleCE events
is most probably lost.

Figure 6.18: Measured and simulated BEGe energy spectra in the Run14
configuration. All quality cuts are applied to the measurement and the MC
spectrum is normalized using Equation 6.10. All events with a sum energy
of 662± 20 keV are plotted.
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Chapter 7

Compton coincidences: Analysis

The data taking is described in Section 5.5. Measurements were taken with different
detector collimation windows, at different scanning heights, with different source po-
sitions and with different HV applied on the BEGe detector. In the following chapter
the analysis flow of these measurements is briefly described. Important parameters,
which describe the shape of pulses, are introduced and for each measurement an av-
erage pulse is constructed and compared. Finally, a comparison to another method
of collecting SSE samples, using uncollimated 228Th measurements, is made.

7.1 Analysis flow
The aim is to purify the data collected in the measurement campaign as much as
possible to obtain clean SSE event samples from localized regions inside the BEGe
detector. The following procedure is applied for all runs separately

• The standard quality cuts are applied; see Section 5.6.

• The energy calibration is carried out; as was explained in Section 4.5.

• If possible, energy cuts are applied. In some measurements there are not
enough coincidence events to define an energy cut on the sum energy of the
BEGe and Coax detectors. In Run3 and Run7 to Run11, no peak in the
sum energies is observed. These measurements are not further processed and
excluded in the following.

• An A/E cut is applied, which is introduced in the next Section 7.2.

• An average pulse is built from the final event sample of BEGe traces. This
procedure will be explained in Section 7.5.

Figure 7.1 shows the remaining runs of the measurement campaign after having ex-
cluded Run3 and Run7 to Run11.
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Figure 7.1: Remaining runs of the measurement campaign after measure-
ments with too little statistics, Run3 and Run7 to Run11, were discarded.

Table 7.1: Summary table of data reduction by quality and energy cuts.
The run index is given in the same color as in Figure 7.1 and [y,z] are the
source position and table height in [mm,mm]. For each run the total number
of events collected Ntot, the fraction of events discarded by the quality cuts
fQ and events surviving the energy cut NEC are listed. The expected rate
R and expected number of events, Nexp, for central scanning positions are
calculated from simulations (see Section 6.5.2f).

Run [y,z] Ntot fQ NEC R [cts/(MBqd)] Nexp

1a [53,90] 135751 0.42 767 5.03± 0.05 734± 8

1b [53,90] 202978 0.43 1205 5.03± 0.05 1099± 12

2a [85,100] 222000 0.44 5013
2b [85,100] 40370 0.45 381
2c [85,100] 294039 0.46 2575
4 [53,100] 500000 0.22 508 1.41± 0.03 451± 9

5 [53,100] 500000 0.20 611 1.41± 0.03 477± 10

6 [85,105] 500000 0.22 1340
12 [53,89] 500000 0.28 156 0.19± 0.01 98± 5

13 [53,86] 500000 0.28 130 0.21± 0.01 108± 6

14 [53,86] 495033 0.26 889 1.84± 0.03 921± 16

15 [53,117] 500000 0.32 246 1.02± 0.02 531± 12

16 [86,100] 453801 0.25 1803
17 [85,82] 500000 0.24 1934
18 [83,85] 500000 0.26 2697
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7.2. Improvement of single site event selection with A/E - cut

A summary of the data reduction by quality and energy cuts is given in Table 7.1.
Furthermore, the expected event rate and expected number of singleCE events from
simulation for central source positions are listed. The MC simulation predicts a
number of events Nexp which is on the same order of magnitude as the measured
numbers. However, in some cases a difference in expected and measured number of
events larger than 50% is observed; e.g. for Run15 and Run12. This can have var-
ious reasons: The BEGe geometry was implemented without the slight cone shape
and loss of events due to surface layer effects has been neglected in the MC simula-
tions. The MC spectra do not include effects of broadening due to the finite energy
resolution of the detectors. Event loss due to noisy data and corrections for offsets
in the energy calibration were not considered.

7.2 Improvement of single site event selection with
A/E - cut

The event samples selected by quality and energy cuts can be purified further. To
discard remaining Multiple Compton Events (multiCE) and improve the selection
of SSE events we define an additional cut on the A/E parameter which is defined as

• A/E parameter: The amplitude of the current pulse divided by the energy of
an event. Spatially well separated hits are seen as separated peaks of current
pulses whereas the energy is reconstructed for the whole event. Hence, for a
multiple site event (MSE) the amplitude of the current pulse is lower than for
a single site event (SSE) at the same energy. A/E is expected to be constant
for SSE events in particular as we select a narrow window in energy. Hence,
we expect a well defined peak in the A/E distribution for SSE events.

The A/E distribution of each run, after having applied quality and energy cuts, is
fitted using the Gaussian plus erfc fit function (Equation 4.3). The fitted distribution
of Run14 can be seen in Figure 7.2. The cut is defined as

µ− 3σ < A/E < µ+ 3σ (7.1)

Only events inside the central peak region are kept.

7.2.1 Single site event to background ratio

The side bands in Figure 7.2 are marked in gray. We can estimate the number of
SSE events NSSE in the sample by subtracting the background (BKG) estimated
from these side bands

NBKG =
1

2
·

 bin(µ−3σ)∑
i= bin(µ−6σ)

bi +

bin(µ+6σ)∑
j= bin(µ+3σ)

bj

 (7.2)
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Figure 7.2: Fit of A/E distribution after quality and energy cuts. The
marked regions are the side bands we use to estimate the number of back-
ground events in the central SSE region.

Table 7.2: Summary table of SSE and BKG content after the A/E - cut is
applied. The scanning height HS is given with respect to the BEGe top
surface at z = 81mm. For each run "pos" indicates: c for central, and b for
source positions close to the BEGe border. For all measurements the SSE
to BKG ratio improves with the cuts: Ra

SSE > Rb
SSE.

after cuts before cuts
Run HS [mm] pos NSSE NBKG Ra

SSE Rb
SSE

1a 9 c 498 32 15.6± 3.0 2.10± 0.04

1b 9 c 785 48 16.4± 2.6 1.97± 0.03

2a 19 b 4465 78 57.2± 6.7 2.65± 0.03

2b 19 b 349.5 4.5 77.7± 37.3 2.95± 0.08

2c 19 b 2284.5 46.5 49.1± 7.4 2.45± 0.03

4 19 c 316 30 10.5± 2.2 3.52± 0.03

5 19 c 405.5 33.5 12.1± 2.3 3.10± 0.03

6 24 b 1146 27 42.4± 8.5 5.22± 0.04

12 8 c 94 5 18.8± 9.1 3.12± 0.03

13 5 c 102.5 2.5 41.0± 26.9 3.14± 0.03

14 5 c 766 20 38.3± 8.9 3.16± 0.03

15 36 c 52 10 5.2± 2.1 3.09± 0.03

16 19 b 1590 33 48.2± 8.6 4.31± 0.03

17 1 b 1821 15 121.4± 31.7 4.19± 0.03

18 4 b 2513.5 33.5 75.0± 13.2 3.88± 0.03
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from the counts inside the peak region

NSSE =

bin(µ+3σ)∑
i= bin(µ−3σ)

bi −NBKG (7.3)

with the bin number bin(x) at energy x and the bin content bi/j of bin i/j.

The SSE to BKG ratio

RSSE =
NSSE

NBKG

± (NSSE +NBKG)

NBKG

√
1

(NSSE +NBKG)
+

1

NBKG

(7.4)

gives an estimate of the purity of SSE event samples ultimately selected by all data
cuts including the A/E - cut.

A summary of RSSE estimated before, Rb
SSE, and after cuts, Ra

SSE, for all remaining
runs can be found in Table 7.2. The same side band regions were used for background
estimation before as well as after cuts. For all runs we find Ra

SSE > Rb
SSE which means

the applied cuts improve the purity of all event samples.

7.2.2 Systematic behavior

The ratio Ra
SSE after cuts is plotted in Figure 7.3 for two sets of measurements

taken with 3mm detector collimation. Runs with a central source position Set1 =
{4, 5, 14, 15} are shown in red whereas measurements close to the BEGe border
Set2 = {6, 16, 17, 18} are shown in blue. Ra

SSE decreases exponentially with increase
of scanning height for both data sets. Ra

SSE is systematically lower for central source
positions from Set1 than for those close to the BEGe border in Set2.

We find the same behavior in the simulations comparing the ratio of singleCE events
to multiCE events (see Figure 7.4).

Both the decrease of Ra
SSE with the increase of the scanning height as well as the

lower Ra
SSE for central source positions with respect to positions close to the border

of the BEGe can be explained by the behavior of singleCE with respect to multiCE.
With increasing scanning height more singleCE are attenuated whereas the number
of multiCE stays the same as can be seen in Figure 7.5. The figure shows the z-
projection of the energy deposited inside the BEGe detector. Both the distribution
of singleCE and multiCE are shown for the three MC simulations corresponding to
experimental settings of Run6, Run16 and Run18. Supposing that each event de-
posits roughly the same amount of energy in the BEGe — which is ensured by the
applied energy cuts — the energy deposition is directly proportional to the number
of events. In the same manner a decrease of singleCE can be observed for central
source positions whereas the number of multiCE events remains stable (see Fig-
ure 7.6).
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Figure 7.3: Ra
SSE for runs with a detector collimation of 3mm in two samples

as a function of the scanning height, measured from the BEGe top at z =
81mm. The red points show runs with a central source position (Run4, 5,
14, 15), whereas blue points show runs with a source position close to the
BEGe border (Run6, 16, 17, 18).

Figure 7.4: SingleCE to multiCE ratio from MC simulation as a function of
the scanning height measured from the BEGe top at z = 81mm. Central
source positions are shown in red and source positions close to the BEGe
border are drawn in blue.
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Figure 7.5: Z-projection of the energy deposited inside the BEGe detector.
Distributions of singleCE and multiCE are shown for the three MC simula-
tions corresponding to experimental settings of Run6, Run16 and Run18.

Figure 7.6: X-projection of the energy deposition inside the BEGe detector
of singleCE and multiCE for two MC simulations which correspond to the
experimental settings of Run14 and Run18.
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The exponential drop of the SSE to BKG ratio Ra
SSE implies an upper limit on the

scanning height for any scanned HPGe detector depending on the desired SSE to
BKG ratio. This limit depends also on the detector diameter.

The SSE to BKG ratio from measurement is about ten times higher than the
singleCE to multiCE ratio calculated from simulation. This ratio depends strongly
on the spatial resolution of the BEGe detector and on the spatial distance of the
multiCE.

7.3 Selection confinement

From Figure 7.5 and Figure 7.6 the localization of the selected events can be esti-
mated. For a source collimation of 1mm a localization of roughly 2mm in x (and
equally in y) is achieved. This coincides with the previously estimated factor of two
for source collimation and localization of events. The localization in z is roughly
10mm for a detector collimation of 3mm. This is slightly worse than the previously
estimated factor of two because the detector collimators are placed at about 8 cm
distance from the BEGe cryostat; this distance was previously set to zero.

7.4 Pulse shape discrimination parameters

To evaluate the goodness of selection of the quality and energy cuts and the A/E - cut
we compare two other parameters which depend on the pulse shape:

• Rise time: The time in which pulses rise from 10% to 90% of their full height.
We expect a peak for SSE events as their rise time should be constant within
one measurement.

• Asymmetry: Defining the integral on the left side of the global maximum in
the current pulse as AL and respectively on the right side AR. We define the
asymmetry as (AL−AR)/(AL +AR). Again, we expect a peak for SSE events
as their asymmetry should be very similar within one measurement.

Comparing the rise time and asymmetry distributions of Run14 before and after cuts
(Figure 7.7 and Figure 7.8) we note that the distribution after all cuts are applied
is very narrow. The cuts eliminate all events in the side bands where background
events are expected.

7.5 Average pulse construction

All BEGe events surviving the quality, the energy and finally also the A/E - cut
are used to create an average pulse. The baseline of each event is fitted with an
exponential to correct eventual pile-up and baseline offset. The properly corrected
baselines are flat and have an average value of 0 ch. Trigger time offsets are corrected
and all traces of one run are summed to build the average pulse. In this manner we
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create a representative trace for each measurement. To compare average pulses of
different measurements, the height of all average pulses is normalized and time shifts
are corrected. This ensures that all average pulses have the same height and that
all of them are aligned in time at half their full height. Pulse height corrections are
small, as the pulse height scales with energy and the BEGe energy cuts are narrow.
Time shifts depend on DAQ settings for pre-trigger fraction and trace length. All
average pulses presented in the following were corrected in this manner.

We define a slow rise and a fast rise part of traces as can be see in Figure 7.9.
This is useful when comparing the shape of average pulses for different experimental
settings.

Figure 7.7: Rise time distribution before and after quality and energy cuts,
and after the A/E - cut, of Run14. The distribution becomes narrower and
zero events are observed in the side bands.

Figure 7.8: Asymmetry distribution before and after quality and energy
cuts, and after the A/E - cut, of Run14. After the application of all cuts
a narrower asymmetry distribution is observed, and zero events in the side
bands remain.
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Figure 7.9: Comparison of average pulses from sub measurements in Run1
(top) and Run2 (bottom).

Figure 7.10: Comparison of average pulse residuals in Run1 and Run2. In
blue residuals of two sub measurements of Run1 in red of sub measurements
of Run1 and Run2. In the slow rise part of traces residuals are negligible
for equal measurement setups, whereas measurements with different config-
uration show significant differences in the slow rise.
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7.6 Reproducibility
To test the reproducibility of average pulses the sub measurements of Run1 and
Run2 are compared to each other (see Figure 7.9).

The differences in each bin (residuals) of the two sub measurements of Run1 are
shown in blue in Figure 7.10. In the fast rise residuals up to 30 ch are observed
whereas in the slow rise part the difference is 5 ch at maximum.
The same Figure 7.10 shows the residuals between the two sub measurements Run1a

and Run2b (histogram in red). Much higher residuals — up to 60 ch — can be ob-
served at the beginning of the slow rise. The residuals of the fast rise part are
comparable to the residuals of Run1.

We conclude: The average pulses remain stable for measurements with the same
experimental settings. The residuals in the fast rise are due to the finite sampling
frequency of the FADC, which results in slight misalignments of the traces. The
position information is contained in the slow rise. As events are chosen from within
a narrow energy window, the form of the average pulse depends only on the electric
field configuration which the charge carriers traverse, on their trajectory through
the detector (see Section 3.3.1). The fast rise is being measured when the charges
pass the region close to the read out electrode, where the weighting field is high.
Independently of the point of energy deposition, charges pass that region just before
being collected on the read out contact. The slow rise instead depends on the
detector location where energy was deposited.

7.7 Pulse shape comparison
The average pulse shape changes depending on the scanned interaction region and
the inverse bias HV on the BEGe detector. In Figure 7.11 differences of the average
pulse shape depending on the interaction region at 4.5 kV as well as at 5.0 kV BEGe
HV are clearly observed.

Changing the BEGe HV also affects the pulse shape as can be seen in Figure 7.12.

We observe a faster rise for pulses with higher bias HV on the BEGe detector. The
rise time for Run2a with HV = 4 kV is on average more than 200 ns longer than
for Run6 with HV = 5 kV as can be seen in Figure 7.13. A rise in drift velocity of
charge carriers with augmented HV is a well known phenomenon (see Chapter 11 in
Reference [44]), which is observed here by shorter pulse rise times.

In the central region of the BEGe we find a number of pulses which have higher
asymmetry with respect to other locations (see Figure 7.14). This is seen both at
HV = 4 kV as well as at HV = 5 kV.
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A possible explanation is a contribution induced by the electrons to the current signal
of the read out electrode. Moving charges induce mirror charges on the electrodes
and are therefore visible in the current signal; the induced charge is proportional
to the strength of the weighting field and their drift velocity (Equation 3.9). In the
BEGe center the weighting field is higher than in outer regions. The electrons are
not instantly collected on the n+ contact and can thus contribute to the current
signal.

Figure 7.11: Average pulse comparison for different detector regions and the
same HV = 4.5 kV (top), HV = 5 kV (bottom). The detector collimation
is 3mm for all measurements which are shown.
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Figure 7.12: Average pulse comparison for different BEGe HV in central
source positions (top) and source positions close to the BEGe border (bot-
tom).
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7.7. Pulse shape comparison

Figure 7.13: Rise time distribution for 4 kV and 5 kV BEGe detector HV.
The rise time for Run2a with HV = 4 kV is on average more than 200 ns
longer than for Run6 with HV = 5 kV.

Figure 7.14: Asymmetry distribution for different detector regions at 5 kV
(top) and 4 kV (bottom) BEGe HV. In the BEGe center a number of pulses
with higher asymmetry are observed in comparison to other detector regions.
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7.8 Signal to background ratio in 228Th measure-
ment

Samples of SSE events can be also collected using uncollimated 228Th measurements.
In the decay chain of 228Th we find 208Tl which emits the most energetic γ-line that
can be found in nature with 2614.5 keV. At this energy pair production is the dom-
inant process of photon interaction with matter. The positron which is created in
this process thermalizes and subsequently annihilates with an electron, emitting two
photons back-to-back with an energy of 511 keV each. Either photon can escape the
detector and the respective energy is missing. Three characteristic lines can be see in
228Th spectra. The Full Energy Peak (FEP) of the 208Tl line at 2614.5 keV, the Single
Escape Peak (SEP) at 2103.5 keV and the Double Escape Peak (DEP) at 1592.5 keV.

If both photons escape the detector the remaining energy is released in a very small
volume thus events in the DEP are SSE events. The probability of both photons
escaping the detector is highest on the detector surface and especially high in its
corners. Hence, the spatial distribution of DEP events is very inhomogeneous.

A 228Th measurement was conducted with the BEGe detector at HV = 5kV with a
measurement real time of about 3 h. The distribution of A/E versus the calibrated
energy can be seen in Figure 7.15. The SSE events emerge as a horizontal band. To
estimate the background contribution in the DEP line we fit the A/E distribution
of (1592 ± 5) keV (see Figure 7.16) with a Gaussian fit function and allow for a
low energy tail (Equation 4.4). As for the 137Cs coincidence measurements, the
contribution is estimated from the two side bands left and right of the Gaussian; we
find a SSE to background ratio of (11759− 747)/747 = 14.7± 0.6.

Figure 7.15: A/E versus calibrated energy of a 228Th measurement recorded
with the BEGe detector. The SSE events are visible as a horizontal band
and the DEP with the highest SSE contribution at an energy of 1592 keV.
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A low energy tail was not observed in the A/E distribution of the 137Cs measure-
ment, shown in Figure 7.2 and the SSE to background ratio achieved with the 137Cs
measurements is always higher except for Run4, Run5 and Run15 (see Table 7.2).
Note that these measurements were central scans and the contribution of SSE events
from the detector center in a 228Th measurement is negligible. The best SSE to back-
ground ratio estimated is 121.4± 31.7 in Run17.

Figure 7.16: 228Th A/E distribution of the DEP line. A Gaussian plus low
energy tail fit is shown in red. The two side bands used to estimate the SSE
to background ratio are shown as gray bands.
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Chapter 8

Analysis of the background
component 42Ar in Gerda

As already mentioned in Chapter 2 background control is essential for low back-
ground experiments. All contributions have to be understood in order to minimize
and estimate them. One important background component in Gerda is the β con-
tinuum of 42K, daughter of 42Ar which is naturally present in the cryo LAr of the
Gerda setup.

The specific activity of 42Ar in the Gerda LAr was estimated in a Bayesian binned
maximum likelihood approach. The analysis and result is presented in the following.

8.1 Production mechanism of 42Ar
The abundance of 42Ar in natural LAr depends on the production of 42Ar.

As pointed out in [68] 42Ar can be produced via double neutron capture by 40Ar
40Ar + n −→ 41Ar + n −→ 42Ar (8.1)

They estimate the natural 42Ar abundance from both naturally occurring neutrons
and neutrons which are produced in nuclear explosions and come to an estimate of
42Ar/40Ar = 7.4 · 10−22 corresponding to A(42Ar) ≈ 7.4µBq/kg (see Appendix F)
for the latter as dominant mechanism.

However, they do not consider the cosmic-ray production of 42Ar in the upper at-
mosphere via the reaction

40Ar + α −→ 42Ar + 2 p (8.2)

which could be about three orders of magnitude higher and therefore the main
production mechanism for 42Ar [69]. The authors estimate the ratio 42Ar/40Ar
to be roughly 10−20 in the atmosphere. This would correspond to an activity of
A(42Ar) ≈ 100µBq/kg. The assumptions made in both references are more of qual-
itative nature and the calculated values can only be rough estimates.
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8.2 Previous measurements
Before the 0νββ decay experiment Gerda was built, a proposal [70] was made.
It states an upper limit of the 42Ar specific activity in LAr of 43µBq/kg [71] (see
also Appendix F). This value would suggest a lower cross section for cosmic-ray
production of 42Ar as assumed by [69]. Now that Gerda has concluded Phase I data
taking, this value can be checked. In fact first tests revealed that the background
from 42Ar is a lot higher than expected [72] from the proposal.

8.3 Methodology
42Ar decays via β− decay to 42K which further decays to 42Ca via another β− decay
with an endpoint of 3525.45 keV (see Figure 8.1 and Figure 8.2).

As the energy spectrum of electrons from a beta decay is continuous, this decay
contributes also at lower energies to the background in Gerda, especially in the
region of interest around Q0ν

ββ ≈ 2039 keV. All other unstable isotopes of Argon
apart from 42Ar can be neglected as source of background around Q0ν

ββ because
either their lifetime is short and they have already decayed, e.g. 41Ar has a lifetime
of ca. 110min, or the endpoint energy of the decay, Qββ, is lower than Q0ν

ββ, e.g.
39Ar has an endpoint energy of Qββ = 565 keV [73].

Figure 8.1: Decay scheme of 42Ar taken from [74].

Figure 8.2: Decay scheme of 42K taken from [74].
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The Gerda LAr has been underground since November 2007. With the lifetime
of 42Ar being (32.9 ± 1.1) y (measured in 1965) [75] and the lifetime of 42K being
(12.360 ± 0.01) h, they are in secular equilibrium. This means the specific activity
of 42Ar and 42K are the same.

In the following, the specific activity of 42Ar is calculated by estimating the activity
of 42K using a selection of Gerda Phase I data. We use a γ-line of the 42K spec-
trum which has an energy of (1524.65± 0.03) keV and perform a binned maximum
likelihood fit using the Bayesian Analysis Toolkit (BAT) [76]. Finally the calculated
specific activity is corrected for the half-life of 42Ar in order to be comparable to
other measurements and theoretical values and limits.

8.4 Distribution of 42K
To estimate the specific activity of 42K in the Gerda LAr we have to make assump-
tions about its distribution inside the LAr and here it starts to become tricky: As
42K is born in a β− decay it is born as a positive ion namely as 42K+. The detectors
are operated at HV, typically with 4 kV inverse bias, which creates strong electric
fields and under the influence of electric fields ions are drifted. Without further
measures the distribution of 42K would surely be inhomogeneous.

A lot of effort was put in making most of the LAr volume as field-free as possible
by deploying small, electrically grounded copper cylinders around the detectors and
by shielding the HV cables. These so called Mini-Shroud (MS) additionally form a
physical barrier for 42K+ ions.

8.5 Efficiencies
The detection efficiency is a very crucial ingredient in the activity determination
as it is fully anti correlated to the specific activity itself. It is determined with a
MC Simulation assuming a specific distribution of 42Ar in LAr inside Gerda. The
simulation program we use is called MaGe; it is Geant4 based and is developed by
the Gerda and Majorana experiments in a collaborative effort [66, 77].

8.5.1 Simulation

The Gerda setup (see Section 2) is available as MaGe [66] geometry for MC simu-
lations. A cylinder of 42K decays was simulated centered on the respective detector
string. It is large enough in order not to miss important contributions to the effi-
ciency of the detectors. A height of 2.10m and a radius of 1m were chosen according
to a previous study [78]. In the following we call the incident simulated particles
primaries and their starting position the primary vertex.

In Figure 8.3 all primaries are plotted that deposit energy in at least one of the
detectors. The simulation contains only the one string arm in the configuration
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starting from Run34 (see Appendix G). Decays outside the simulated volume are
considered as a systematic uncertainty (see Section 8.11).

The simulated volume is split in four parts as can be seen in Figure 8.4. The volume
inside the MS, and the volume outside the MS which is split in top, bottom and
tube volumes. The distribution of 42K decays outside the MS is assumed to be
homogeneous and the distribution of decays inside the MS can be varied in order
to study systematic effects on the efficiency. Finally, the simulations from inside
the MS and those from outside the MS can be combined without re-simulating the
latter.

Figure 8.3: Vertex positions of primaries which deposit energy in at least
one of the BEGe detectors.

Figure 8.4: LAr cylinder in which 42K decays are simulated. The cylinder
is split in four separate volumes in order to be able to simulate different
distributions inside the Mini-Shroud (MS) and combine them later.
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In each of the above said volumes a total number of 109 decays were simulated using
Decay0 [79] to create the primary vertices in order to account for correlations in γ
cascade emissions. The spectrum of primary particles is plotted in Figure 8.5.

As a crosscheck of the Monte Carlo simulation a rough estimate of the branching
ratio RB(1525 keV) of the 1525 keV γ-line was performed. From 1500 keV to 1550 keV
the spectrum is binned in 51 bins. Dividing in three regions of equal size we estimate
the background using side bands and subtract it from the central region which
contains the γ-line.

RB(1525 keV) =

∑34
i=18 ni −

(∑17
i=1 ni +

∑51
i=35 ni

)
Ntot

= (18.071± 0.001) · 10−2

(8.3)

The number of entries in bin i is denoted as ni and Ntot is the total number of
simulated decays. The calculated value is in accordance with the literature value of
Rlit

B (1525 keV) = (18.08± 0.09) · 10−2 [74].

8.5.2 Efficiency calculation

We calculate the efficiency of the Gerda detectors, to detect 1525 keV γs from 42K
decays, by estimating the signal counts in the same manner as we estimated the
branching ration RB. The detection efficiency is then given as as the number of
signal counts divided by the total number of simulated decays. Last, the efficiencies
are normalized with the simulated LAr volume and expressed as the rate per day,
seen for a specific activity of 1µBq/kg.

Figure 8.5: Primary spectrum of the efficiency simulations containing 107

primary decays.
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To extract the signal counts, the energy window [1499 keV,1550 keV] of the simu-
lation output spectra is subdivided in three regions of same size. B1 and B2 are
the sidebands and M denotes the middle region which contains the 42K γ-line at
≈ 1525 keV which we use to estimate the specific activity of 42Ar. Using the two
side bands we estimate the background contribution in region M and calculate the
signal counts S as follows

S = M − B1 +B2

2
(8.4)

We calculate the efficiency ε by dividing S by the number of simulated decays Nsim

ε =
S

Nsim

(8.5)

Effectively we are not calculating the efficiency on the full decay but on the 1525 keV
line which we will denote as ε15

ε15 =
S

Nsim ·RB

(8.6)

To estimate the uncertainty on the efficiency we have to take the branching ratio
RB of the 1525 keV line into account. The uncertainty, which is calculated using
binomial statistics, is then

∆ε15 =

√
ε15 (1− ε15)

Nsim ·RB

(8.7)

The uncertainty on the total efficiency ε is therefore

∆ε =

√(
∂ε

∂ε15

·∆ε15

)2

+

(
∂ε

∂RB

·∆RB

)2

(8.8)

∆ε

ε
=

√(
∆ε15

ε15

)2

+

(
∆RB

RB

)2

(8.9)

If we neglect the uncertainty on the branching ratio ∆RB for Nsim →∞ this tends
to

∆ε

ε
≈ ∆ε15

ε15

=

√
ε15 (1− ε15)

Nsim ·RB · ε2
15

=

√
(1− ε15)

S

Nsim→∞−→ 1√
S

(8.10)

With RB = 0.1808 ± 0.009 [74] and ∆ε/ε ≈ 10−2 though, the uncertainty on the
branching ratio can not simply be neglected but contributes with approximately
10 % to the total uncertainty. In the following ∆ε contains this contribution. In the
final analysis the efficiency enters as the rate per day which is seen by the respective
detector for an 42Ar activity of 1µBq/kg. Therefore, we define the normalized
efficiency εn as

εn = ε ·mLAr · fn (8.11)

With the LAr mass mLAr, which is given by the density of LAr ρLAr = 1.39 g/cm3

multiplied by its volume VLAr

mLAr = ρLAr · VLAr (8.12)
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and the normalization factor

fn = 1
µBq

kg
· 8.64 · 104 s

d
= 8.64 · 10−2 decays

kg d
(8.13)

efficiencies of complementary simulations i can be combined by simply summing
them up

En = Σiεn,i (8.14)
provided there is no overlap of the simulated LAr volume and if the single values
are normalized. Supposing that complementary simulations are uncorrelated we add
up the uncertainties on the single efficiencies in quadrature to obtain the combined
uncertainty

Ξn =
√

Σi∆ε2
n,i (8.15)

All simulations with their normalization factors are listed in Table 8.1. In order
to ensure that the volume splitting, which was described in Section 8.5.1, leads
to a reasonable result for the efficiencies, for detector string 3 (S3) a simulation
without volume splitting as well as with volume splitting was done. S3 contains three
detectors; their efficiencies for the split simulation and the full volume simulation
are compared in Table 8.2.

Table 8.1: List of simulations and normalization factors. The normalization
factor for inhomogeneous distributions inside the MS is the same as for
the homogeneous distribution because a priori we do not know the real
distribution and assume a homogeneous one.

# string position V [cm3] m [kg] mfn

1 S1 top 2543330 3535 305.444
2 S1 bottom 2544630 3537 305.600
3 S1 tube 1500070 2085 180.152
4 S1 hom 3285.45 4.57 0.395
5 S1 near BEGe - - hom
6 S1 near MS - - hom
7 S2 all 6591250 9162 791.583
8 S3 all 6591360 9162 791.596
9 S3 top 2543320 3535 305.443
10 S3 bottom 2544630 3537 305.600
11 S3 tube 1500600 2086 180.216
12 S3 hom 2746.51 3.82 0.330
13 S3 near BEGe - - hom
14 S3 near MS - - hom
15 S4 all 6591280 9162 791.586
16 S1 AC 6591070 9162 791.561
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Table 8.2: Comparison of complete (all) and split efficiency simulations
(hom). The split simulation has four different volume parts which are
added like described in Equation 8.14. The difference ∆ = (εn(hom) −
εn(all))/εn(hom) is well within the uncertainty bounds.

hom all
name εn [10−3/d] εn [10−3/d] ∆[%]

RGI 3.75± 0.03 3.75± 0.06 -0.08
ANG4 4.27± 0.03 4.20± 0.06 1.64
RGII 3.90± 0.03 3.86± 0.06 1.01

Table 8.3: Efficiencies of all Phase I detectors with the list of simulations
which were combined to calculate them. The values indicated with hom
are used as central value and the nearDet and nearMS values are used to
estimate a systematic uncertainty due to the inhomogeneity of 42K decays
(see Section 8.11).

hom nearDet nearMS
name εn [10−3/d] εn [10−3/d] εn [10−3/d] sim list
GD32B 1.03± 0.01 1.01± 0.01 0.94± 0.01 1-6
GD32C 1.10± 0.01 1.22± 0.01 1.02± 0.01 1-6
GD32D 1.07± 0.01 1.19± 0.01 0.98± 0.01 1-6
GD35B 1.20± 0.01 1.32± 0.01 1.12± 0.01 1-6
GD35C 0.87± 0.01 0.87± 0.01 0.80± 0.01 1-6
ANG3 4.23± 0.06 - - 15
ANG5 5.24± 0.07 - - 15
RGIII 4.08± 0.06 - - 15
RGI 3.75± 0.03 3.57± 0.03 3.59± 0.03 9-14
ANG4 4.27± 0.03 4.81± 0.03 4.10± 0.03 9-14
RGII 3.90± 0.03 3.97± 0.03 3.77± 0.03 9-14

GTF112 6.15± 0.08 - - 7
ANG2 5.43± 0.07 - - 7
ANG1 1.44± 0.03 - - 7
GTF45 5.02± 0.07 - - 16
GTF32 4.83± 0.07 - - 16
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8.5.3 Systematic uncertainty of efficiencies

To account for the systematic uncertainty due to the unknown distribution of the
42K inside the MS, this distribution was varied as can be seen in Figure 8.4. Three
different configurations were simulated: A homogeneous distribution to calculate the
central value of the efficiencies, a distribution very close to the detectors (nearDet)
and one with decays only in a thin tube close to the walls of the MS (nearMS ). The
last two give an upper and a lower bound on the efficiencies. The values are listed
in Table 8.3.

8.6 Energy resolution
From calibration data between 2012-07-08 and 2013-03-20 the full width at half
maximum (FWHM) at 1525 keV was extracted for each calibration run and BEGe
detector. Similar for the two AC coupled detectors GTF45 and GTF32 the resolution
was determined from calibration data between 2011-11-09 and 2012-05-22. The
median and 68% interval are tabulated on the left side of Table 8.4. Detailed plots
can be found in Appendix H. The energy resolution of the ANG, RG and GTF112
detectors are given on the right side of Table 8.4. They were taken from an internal
Gerda publication [80].

Table 8.4: Left side: Median FWHM at 1525 keV from calibration data
plotted in Figure H.1 and Figure H.2. The uncertainty is given as the
smallest interval containing 68% of values around the median value and σ
is simply FWHM divided by 2.35. Right side: Previously evaluated energy
resolutions of ANG, RG and GTF112 detectors (see Table 9 in [80]). ANG1
and RG3 are not considered in this analysis.

detector FWHM [keV] σ [keV] detector FWHM [keV] σ [keV]
GD32B 2.42± 0.03 1.03± 0.01 GTF112 3.64 1.55
GD32C 2.41± 0.04 1.02± 0.02 ANG2 3.93± 0.03 1.67± 0.01

GD32D 2.51± 0.04 1.07± 0.02 ANG3 4.37± 0.14 1.86± 0.06

GD35B 3.24± 0.11 1.38± 0.05 ANG4 4.00± 0.08 1.70± 0.03

GD35C 2.64± 0.06 1.12± 0.03 ANG5 3.95± 0.12 1.68± 0.05

GTF45 7.17± 1.47 3.05± 0.62 RG1 4.23± 0.25 1.80± 0.11

GTF32 7.46± 1.20 3.18± 0.51 RG2 4.67± 0.24 1.99± 0.10
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8.7 Bayesian analysis

We use Bayes’ theory to perform a binned maximum likelihood fit to the spectral
shape of the 42K γ-line and to estimate the 42Ar specific activity in the Gerda LAr.

Poisson statistics expresses the probability of a discrete random variable k with an
average rate λ

P (k|λ) =
λke−λ

k!
(8.16)

The likelihood to observe ni events in the ith bin of a histogram for λi events expected
is given by

P (
→
n |λ) =

∏
i

λni
i e
−λi

ni!
(8.17)

In the case of multiple detectors with index j the combined likelihood has the fol-
lowing form

P (
→
n |λ) =

∏
j

∏
i

λ
nij

ij e
−λij

nij!
(8.18)

The global posterior probability density function (pdf)

P (λ| →n) =
P (
→
n |λ) · P (λ)

P (
→
n)

(8.19)

has to be marginalized over all nuisance parameters pm in order to obtain the pos-
terior pdf for the parameter of interest A

P (λ(A)| →n) =

∫
P (λ(A, pm)| →n) dpm (8.20)

where m = 1, 2 . . .M and M is the total number of nuisance parameters. Note that
here λ depends on the nuisance parameters pm and the parameter of interest A so
λ = λ(A, pm).

Using the law of total probability we can express

P (
→
n) =

∫
P (
→
n |λ)P (λ) dλ (8.21)

And as all parameters are assumed to be independent we can rewrite the prior
probability

P (λ) = P (λ(A, pm)) = P (A)
∏
m

P (pm) (8.22)

The prior probability P (λ) contains all our knowledge about the parameters. As
it factorizes completely we can choose the prior conditions of each parameter sepa-
rately. The last thing we have to do is define the model λ.
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8.7.1 Choice of prior distributions

The prior distribution should reflect our degree of belief in a free fit parameter. If
a fit tells us that we have a negative number of background counts we would not
believe this result because it is not physical. Thus, in the prior distribution of the
background index we exclude values below zero. A prior distribution should be
normalizable otherwise it is called an improper prior. A common distribution we
chose is a gaussian distribution of a parameter giving preference to the central value
with some uncertainty. Having no value of preference is reflected in a so called non
informative prior. A flat prior in a large enough closed range is quasi non informative
and is also normalizable. The range should be large enough to cover all the posterior
distribution without cutting it.

8.7.2 Building the likelihood

We want to approximate the 42K γ-line with a Gaussian on a flat background. In
this model the number of expected events in the ith bin are expressed by

λij = Aεj Tj

∫
∆Ei

1√
2π σj

exp

(
−(E − (µ+ ∆µj))

2

2σ2
j

)
dE ′ + Tj

∫
∆Ei

Bj dE ′ (8.23)

The specific activity A is common to all detectors and is the parameter of inter-
est. The fit parameters for each detector j are the efficiency εj, the resolution σj
at 1525 keV, the γ-line shift ∆µj and the background index Bj. They are all nui-
sance parameters, which means they are free parameters of the fit but we are not
interested in their posterior pdf. The lifetimes Tj and the common γ-line energy
µ = 1524.65 keV are fixed. All parameters and their type of prior pdf are listed in
Table 8.6. In the following we refer to this model as flat background model.

As each detector has four free fit parameters in this model, fitting the spectra of 13
detectors the number of nuisance parameters is M = 13 · 4 = 52. All input values
of Gaussian and fixed parameters are listed in Table 8.5. For the γ-line shift ∆µj
we use a Gaussian prior pdf with the same parameters for all detectors: As most
probable value we choose no shift ∆µj = 0 and a reasonable assumption for the
width of the prior pdf is the energy resolution of the detectors ∆∆µj = σj.

8.7.3 Building the refined likelihood

The statistics of the Phase I data is good enough to see a difference between the
background level at the right and the left side of the γ-line. A refined model accounts
for this difference modeling the background with an inverse error function. This adds
another parameter to the model and we have now a flat background and the step
size as additional parameter for the fit. In order to be more controllable we express
the step size by the difference between the left and the right background level. Like
this, it is easier to prohibit for example a negative background level.
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With µ′ = µ+ ∆µj we get

λij = Aεj Tj

∫
∆Ei

1√
2π σj

exp

(
−(E − µ′)2

2σ2
j

)
dE ′

+ Tj

∫
∆Ei

Bleft
j +

Bright
j −Bleft

j

2
· erfc

(
µ′ − E√

2 · σj

)
dE ′

(8.24)

An example of such a function can be seen in Figure 8.6. In the following we refer
to this model as erfc background model or refined background model. Also for this
model the fit parameters, their types and fit ranges can be found in Table 8.6.

Table 8.5: Input values used for the likelihood fit. Although ANG1, RG3
and GD35C are not considered in this analysis, the values are listed for
completeness.

channel Detector Tj [d] σj [keV] ∆σj [keV] εj [10−3/d] ∆εj [10−5/d]
0 ANG1 0 - - 1.4379 3.37
1 ANG2 458.495 1.90594 0.05 5.4314 6.56
2 ANG3 458.495 1.83291 0.05 4.2342 5.79
3 ANG4 458.495 1.79515 0.05 4.2688 2.60
4 ANG5 458.495 1.67741 0.05 5.2356 6.44
5 RG1 458.495 1.79385 0.05 3.7485 2.52
6 RG2 384.789 1.98221 0.05 3.8950 2.67
7 RG3 0 - - 4.0775 5.69
8 GTF112 458.495 1.55 0.05 6.1542 6.99
9 GD32B 260.923 1.03018 0.05 1.0272 1.33
10 GD32C 284.385 1.02454 0.05 1.1040 1.29
11 GD32D 264.900 1.06700 0.05 1.0669 1.26
12 GD35B 284.385 1.38013 0.05 1.2045 1.37
13 GD35C 0 1.12414 0.05 0.8689 1.27
9 GTF45 174.110 3.05259 0.05 5.0229 6.31
10 GTF32 174.110 3.17652 0.05 4.8317 6.19
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Figure 8.6: Gaussian function with inverse error function as background
model. The whole function is plotted in red while the background is plotted
again in blue dashed to illustrate the background below the γ-peak.

Table 8.6: List of priors and their types. If the symbol is indexed with a j
each detector has its own fit parameter, if not the parameter is common to
all detectors. A fixed parameter is in that sense not a fit parameter but has
a fixed value.

model parameter symbol prior pdf type range

flat/erfc

specific activity A flat [0 : 200]µBq/kg
efficiency εj Gaussian [0.09 : 1] 10−2 d−1

lifetime Tj fixed -
peak shift ∆µj Gaussian [−2 : 2] keV
resolution σj Gaussian [0 : 4] keV

flat background index Bj flat [0 : 0.01] keV−1d−1

erfc
background left Bleft

j flat [0 : 0.01] keV−1d−1

background right Bright
j flat [0 : 0.01] keV−1d−1
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8.7.4 The Bayesian Toolkit - BAT

The likelihood fits are done using the Bayesian Analysis Toolkit (BAT) version
0.9.4.1 [76]. It is based on a marginalization using the Metropolis Markov Chain
Monte Carlo (MCMC) algorithm. Four predefined levels of fit precision can be
chosen kLow (1 chain with 104 iterations), kMedium (5 chains with 105 iterations
each), kHigh (10 chains with 106 iterations each) and kVeryHigh (10 chains with 107

iterations each). The number of chains and iterations per chain can also be chosen
manually using MCMCSetNChains and MCMCSetNIterationsRun which are meth-
ods of the BCEngineMCMC class of BAT.

Both models, the flat and the erfc background model, are implemented inside one
C++ class which inherits from the BCModel class of BAT. Two methods have to
be implemented in a BCModel: LogAPrioriProbability which serves to calculate the
natural logarithm (ln) of the prior probability P (λ) and LogLikelihood to calculated
the ln of P (

→
n |λ). To estimate P (

→
n |λ) the respective model is integrated over each

bin. The integral of the Gaussian part can be done using the error function which
is defined as

erf(y) =
2√
π

∫ y

0

e−t
2

dt (8.25)

Here y = (E − µ)/(
√

2 · σ).

Integrating the flat background model is trivial but the integration of the erfc back-
ground model has to be done numerically. We use the following approach∫ E2

E1

erfc(z)dz ≈ E2 − E1

n

[
erfc(E1) + erfc(E2)

2
+

n−1∑
k=1

erfc

[
E1 +

k · (E2 − E1)

n

]]
(8.26)

Where z = (µ − E)/(
√

2 · σ) and n which reflects the precision of the numerical
integration was chosen as 1000.

8.7.5 P-value estimation

To calculated the p-value usually P (
→
n) =

∫
P (
→
n |λ)P (λ) dλ has to be calculated for

normalization. Apparently no algorithm is able to do this integration in our case
but there is an elegant and fast method to estimate p-values which is described in
the appendix of [81]. Here, the p-value is estimated using the Metropolis-Hastings
algorithm. This algorithm is based on MCMC and is a method to obtain random
samples of probability distributions for which direct sampling is difficult. As the
counts in the fitted histograms are ∈ N0, a proposal distribution is chosen by the
integer values just below λbest fit which is denoted by bλbest fitc. In each sampling
iteration each bin in each histogram is attempted to be randomly increased or de-
creased. The new value is randomly accepted or rejected and the probability is
updated; values closer to λbest fit are more probable to be accepted. The likelihood
of the new distribution, obtained with this methods, is compared to the likelihood of
λbest fit. Dividing the number of sampled distributions with a lower likelihood than
λbest fit by the number of iterations gives the approximate p-value.
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8.7.6 Global and marginalized mode

The global mode is the most probable fit parameter that is found by the MCMC
algorithm while marginalizing over the nuisance parameters. BAT is not optimized
to find the global mode and is "neither effective nor accurate" in doing so [76].
Nevertheless we mostly give that value to have a reference as it turns out to be
quite stable. The marginalized mode is the most probable value for a parameter
after marginalizing over all nuisance parameters. We use the root version of Minuit
TMinuit to find all modes and call the most probable of them themarginalized mode.
If the fit precision is high enough we obtain only one local mode in all posterior pdfs
in this analysis. Hence, this local mode and the marginalized mode coincide. The
uncertainty given is the smallest interval containing at least 68% of the posterior
pdf and the marginalized mode.

8.8 Data selection and run configurations
A sketch and a table of the Gerda Phase I runs and their setup can be found in
Appendix G. The Phase I Gerda setup consists of two so called arms. The first
arm contains one string of detectors and the second arm consists of three detector
strings. The configuration of the three string arm stays the same in all the Phase
I run period. Run33, Run34 and Run35 were not included in the fits. Run33 is
very unstable and in Run33 and Run34 the detector configuration was changed
which leads to a higher background index for about 20 days. Run34 plus Run35 are
about 32 days long which should be sufficient for the background index to decay to
a normal level. Some of the detectors were unstable and had to be switched off after
a while, which is why they were excluded in some later runs. The HV configurations
of each run can be found in detail in Table G.4. All exclusions from this analysis
are indicated.

8.8.1 Data cuts

Test pulser events and cosmic muon induced events are cut from the data; events
with a detector multiplicity larger than 1 on the other hand are kept. The cut
efficiency and therefore the detection efficiency would depend on which detector
was included in the analysis. As the configuration of detectors suitable for analysis
changes within the data sample, efficiencies would change for every run period. By
including events with a detector multiplicity lager than 1 we keep one efficiency per
detector. The respective data flags are listed in Table 8.7.

Table 8.7: Event flags which can be used for data cuts.

flag description kept/cut
isVetoed muon induced event cut
isTP test pulser event cut

multiplicity number of det fired kept
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8.9 Final fit result
The final fit is done for all 13 detectors and Run25 to Run46 with the exception of
Run33 to Run35. In Figure 8.7 the posterior pdf of the specific Activity A is plotted
in the flat background model with fit precision kHigh and the sum fit function can be
seen in Figure 8.8. Global and marginalized modes of fits with different precision for
both background models are listed in Table 8.8. The number of local modes found in
the posterior distribution gives a measure of how smooth the distribution is and how
meaningful the statistical uncertainty is. The uncertainty is only meaningful if just
one local mode is found. In general, the erfc background model has a higher p-value
and thus seems to describe the data better. However, within uncertainties all values
are very well compatible. Thus, as final fit value we take the value obtained with
the flat background model and with precision kHigh

A = 91.5+2.3
−2.7 µBq/kg (8.27)

Figure 8.7: Posterior pdf of the specific activity A in the flat background
model with fit precision kHigh.

Table 8.8: Final fit values of A [µBq/kg] in both background models and
different fit precisions. The marginalized mode A (marg) is the highest local
mode of all modes found. The uncertainties given are only meaningful if
the number of local modes found is one.

model fit precision A (marg) modes A (glob) p-value
flat kLow 89.9+0.3

−0.3 11 91.5± 2.4 0.39
flat kMedium 91.1+2.7

−2.3 1 91.5± 2.4 0.39
flat kHigh 91.5+2.3

−2.7 1 91.5± 2.4 0.39
erfc kLow 92.5+1.5

−4.5 1 91.5± 2.4 0.45
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Figure 8.8: Sum histogram and combined fit function of all 13 detectors in
the flat background model.

Figure 8.9: Comparison of background models for ANG2 with fit precision
kHigh. Left) Full range; Right) Zoom on the background region. The flat
background model is plotted in red dashed while the error function model
is drawn in blue.

Table 8.9: Comparison of marginalized and global modes of fit parame-
ter A [µBq/kg] in both background models with different fit precisions for
detector ANG2.

model precision A (marg) modes A (glob) p-value
flat kLow 93.5+3.7

−5.3 7 92.6± 6.4 0.50
flat kMedium 92.7+6.3

−6.3 3 92.6± 6.4 0.50
flat kHigh 93.5+5.7

−7.3 1 92.7± 6.4 0.50
flat kVeryHigh 92.5+7.5

−6.5 1 92.6± 6.4 0.50
erfc kLow 95.3+1.3

−0.1 13 92.7± 6.4 0.54
erfc kMedium 92.7+7.3

−5.5 2 92.7± 6.4 0.54
erfc kHigh 91.7+7.5

−5.5 1 92.7± 6.4 0.54
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8.10 Crosschecks
In this section we want to compare fit precisions and the two different background
models introduced in Section 8.7.2 and Section 8.7.3. In addition, we fit different
parts of the data to check for the stability of the final result.

8.10.1 Comparison of fit precisions

In Table 8.9 the fitted specific activities for different fit precisions in both background
models are listed for ANG2. All parameters are sampled with 1000 bins. Their
ranges (see Table 8.6) are chosen such that no posterior distribution is cut. Note
that the p-value is slightly higher for the refined background model and within
uncertainties all values are well compatible. Also, already fit precision kHigh is
sufficiently smooth in order to obtain just one local mode and the marginalized
mode is in very good agreement with the value for precision kVeryHigh.

8.10.2 Comparison of flat and erfc background model

In Table 8.10 we compare the specific activity for all detectors in the two background
models with fit precision kHigh. Both models are compatible and well within un-
certainties. Note that the p-value is systematically higher or equal for the erfc
background model.

Table 8.10: Comparison of fit parameter A [µBq/kg] of single detector fits
in both background models and fit precision kHigh.

flat background erfc background
detector A (marg) A (glob) p-value A (marg) A (glob) p-value
RG1 73.1+6.7

−7.1 72.9± 6.7 0.30 72.1+7.7
−6.1 72.9± 6.7 0.33

RG2 101.9+9.3
−8.1 102.3± 8.6 0.88 102.1+8.9

−8.5 102.3± 8.6 0.88
ANG2 93.5+5.7

−7.3 92.7± 6.4 0.50 91.7+7.5
−5.5 92.7± 6.4 0.54

ANG3 91.3+7.5
−6.9 91.4± 7.2 0.58 91.3+7.5

−7.1 91.4± 7.2 0.59
ANG4 74.3+7.7

−5.3 75.4± 6.4 0.39 74.5+7.5
−5.7 75.4± 6.4 0.40

ANG5 100.1+8.5
−5.3 101.6± 6.8 0.38 100.9+7.5

−6.3 101.6± 6.8 0.39
GTF112 94.1+6.9

−5.3 94.7± 6.0 0.52 94.3+6.5
−5.7 94.6± 6.0 0.58

GTF45 107.1+14.1
−10.3 109.0± 12.2 0.25 106.5+13.1

−11.1 108.4± 12.1 0.27
GTF32 98.1+12.5

−11.3 98.9± 11.8 0.69 96.5+13.1
−10.3 98.7± 11.8 0.70

GD32B 119.9+21.9
−20.9 120.1± 21.3 0.45 120.1+21.1

−21.3 120.1± 21.3 0.45
GD32C 51.9+13.9

−12.7 51.9± 13.1 0.50 52.3+13.3
−13.5 52.0± 13.1 0.50

GD32D 89.7+18.9
−18.1 89.8± 18.6 0.44 86.3+20.9

−15.7 89.9± 18.6 0.44
GD35B 86.3+21.1

−13.1 89.7± 17.1 0.58 88.5+17.5
−16.5 89.3± 17.0 0.59
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Another issue we have to consider is computing time. The flat model is much less
expensive than the refined model. It takes a full day fitting just one detector with
precision kMedium with the erfc model which takes just hours with precision kHigh
in the flat model. A combined fit with all 13 detectors has respectively 13 parame-
ters more in the erfc model than in the flat model and is accordingly more expensive
in computing time.

As fit parameters are compatible within uncertainties, the erfc model is preferable
only for cosmetic reasons. Statistics is already good enough to see the different
background levels on the right and on the left side of the γ-line by eye. Hence, the
erfc model seems to represent the data better (see Figure 8.9) although the difference
is marginal in the calculated specific activity.

8.10.3 Consistency checks

The fit result should be stable analyzing only parts of the data. We compare dif-
ferent run periods, detectors and detector strings. To save computing time, all
comparisons are made using the flat background model with fit precision kHigh.

To compare different run periods we split the data in parts which are large enough for
the fit to converge. In Figure 8.10 the following run periods are compared to each
other: Run25-32 (174 d), Run36-39 (90 d), Run40-42 (88 d) and Run43-46 (98 d).
They all agree very well within 1σ.

A comparison of the single detectors can be found inFigure 8.11. If we suppose that
all posterior pdfs are Gaussian six are compatible within 1σ with the final fit value,
ten are compatible within 2σ and all are compatible within 3σ.

The detector strings are all compatible well within 2σ (see Figure 8.12).

Figure 8.10: Stability of A fitting data from different run periods in the flat
background model.
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Figure 8.11: Stability of A fitting single detector data in the flat background
model.

Figure 8.12: Stability of A fitting data from single detector strings in
the flat background model. String 1 is plot in the GTF configuration
(S1_GTF; Run25−Run32) and in the BEGe configuration (S1_BEGe;
Run36−Run46)
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8.11 Systematic uncertainties
The systematic uncertainties considered are

• Active mass As all Germanium detectors in the Gerda experiment are p-
type they suffer non negligible efficiency loss due to the fact that the outer
layer, which is Lithium diffused, is partly in-active. The thickness of this layer
is only known with limited accuracy [82].

• Dimensions in MaGe Size of geometry details can influence the detection
efficiency.

• LAr density Also an uncertainty on the LAr density affects the detection
efficiency calculated using Monte Carlo simulation

• Geometry details Some details are only approximated and not implemented
in full detail e.g. rounded corners of the detectors.

• Decays outside sampling volume As only a part of the LAr volume is
simulated we consider a systematic error for decays out side the simulated
volume

• Non-uniformity Inside the Mini-Shroud the distribution of 42K decays is
unknown. We consider two extreme cases to get a lower and an upper bound
on the detection efficiency.

• Geant4 physics Deviations of cross-sections in the Monte Carlo simulation
lead to an overall systematic uncertainty [83] which has to be taken into con-
sideration for the detection efficiency.

The uncertainty on the non uniformity of 42K decays inside the Mini-Shrouds is
estimated by simulation of two extreme cases of the distribution. A sketch of these
cases can be found in Figure 8.4. Outside the MS we assume the decays to be
distributed homogeneously, inside the MS decays are simulated

1) Homogeneous to obtain a central value (hom)

2) Very close to the MS for a lower bound (nearMS )

3) Very close to the detectors for an upper bound (nearDet)

The detection efficiencies of all considered cases were evaluated and can be found in
Table 8.3.

An average variation of efficiencies was calculated and the BAT fit was repeated
using the lower and the upper bound of values assuming the uncertainty to be cor-
related. The variation in A from those fits was ±4.4 %. This value and all other
systematic uncertainties considered can be found in Table 8.11. To obtain the final
systematic uncertainty all values are summed in quadrature and the total uncer-
tainty is multiplied by the final fit value.
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8.12 Correction for 42Ar lifetime
The value for the specific activity calculated as described above is averaged over the
whole data taking phase. In reality A is exponentially decaying with the lifetime of
42Ar: T1/2 = (32.9± 1.1) y [74].

We suppose to be calculating an average value of Aa in the considered data taking
period

Aa =
A0

t2 − t1
·
∫ t2

t1

exp

(
− ln(2)

T1/2

· t
)

dt (8.28)

Where t1 is the start of Run25 and t2 the end of Run46 after the LAr was put under
ground. We want to know A0, the equilibrium specific activity of 42Ar in LAr above
ground.

A0 = Aa ·
t2 − t1∫ t2

t1
exp

(
− ln(2)

T1/2
· t
)

dt
(8.29)

The LAr was put under ground the 9th November 2007, exactly four years before
Run25 started the 9th November 2011. With t1 = 4 y, t2− t1 = 1.375 y and the final
fit value Aa from Equation 8.27 we obtain

A0 ≈ (1.104± 0.004) · Aa (8.30)

The uncertainty is due to the uncertainty in the 42Ar lifetime. The specific activity
calculated with the BAT fit is about 10 % lower than it was when the Gerda LAr
was brought underground. The uncertainty on this lifetime correction is with ≈
0.4 % much lower than all other systematic uncertainties we consider in Section 8.11
and is therefore neglected in the following.

Table 8.11: Considered systematic uncertainties of the specific activity. The
correlation is considered with respect to the other detectors.

systematic correlation value [%]
Active mass no 2.9

Dimensions in MaGe no 0.8
LAr density yes 0.9

Geometry details yes 2.8
Decays outside sampling volume yes 0.9

Non-uniformity yes 4.4
Geant4 physics yes 4.0

total 7.3
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8.13. LArGe measurement

8.12.1 Equilibrium specific activity of 42Ar above ground

The final fit value (see Equation 8.27) for the decay of 42Ar is corrected using
Equation 8.30. Finally, the systematic error is calculated with the values from
Table 8.11. The final result for the equilibrium specific activity of 42Ar in LAr is

A0(42Ar) = 101.0+2.5
−3.0(stat)± 7.4(syst)µBq/kg (8.31)

8.13 LArGe measurement
Data from the Gerda test facility Liquid Argon Germanium Experiment (LArGe)
has also been used to determine the 42Ar specific activity. A sample of LAr enriched
in the isotope 42Ar with known concentration was flushed into the LArGe cryostat.
One Germanium detector (GTF44) was used for the analysis, encapsulated in a
copper shroud. The count rates in the 1525 keV 42K line were compared before
and after flushing with the enriched LAr for different HV applied on the copper
encapsulation. The final result was obtained by combining all values with a weighted
average. The final result, uncorrected for the 42Ar decay time, is

ALArGe(
42Ar) = 65.6± 3.7(stat)± 13.5(syst)µBq/kg (8.32)

If we suppose that the LAr inside LArGe has been underground for about 3 years
and 8 months, which is roughly the middle of their data taking period, we have to
correct this value by about 8% to be comparable with the final result of this analysis
from Section 8.12.1. As corrected value we obtain

Acorr
LArGe(

42Ar) = 70.8± 4.0(stat)± 14.6(syst)µBq/kg (8.33)

8.14 Discussion
The 42Ar specific activity obtained in this analysis is in very good agreement with
the theoretical value quoted in [69]. However, the theoretical value is a qualitative
guess. It results incompatible with the result of a previous measurement introduced
in Section 8.2, which found an upper limit of 43µBq/kg.

The final result is only compatible within 1.8σ with the value obtained using LArGe
data. There is some tension between the two analysis. It could well be that the
HV cables which are connected to the detectors in the Gerda setup are not as well
shielded as is assumed and residual electrical fields attract 42K to the surface of the
Mini-Shroud. But, no evidence has been found for a higher count rate of detectors
closer to the top of the Mini-Shroud where the cables are located. By convection
42K could be transported to the vicinity of the Mini-Shrouds and stay there due to
an unknown mechanism.

Evaluating the count rate of the 42K line right after applying HV on the detectors
could give evidence for attraction of 42K ions. Run33 and Run34 are taken with
a new detector configuration and are the sole candidates for such a study in the
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8.14. Discussion

Gerda Phase I configuration. However, the count rate is so low that this study
remains inconclusive. In the LArGe setup with augmented 42Ar concentration a
measurement like that would be possible but has never been performed. A Gerda
like detector string should be deployed into LArGe and after a stabilization period
the detectors switched on. The number of counts in the 1525 keV line of 42K over
time should give information about whether 42K gets attracted towards the detec-
tors and about how well the MS actually works as barrier and in closing the field
lines of the electric field around the detectors in the Phase I setup.

In Gerda Phase II the analysis, presented in this chapter, can be refined with
more statistics. It will substantially differ from this work as the MS in Phase II is
transparent and a new veto system is installed using LAr scintillation light.
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Chapter 9

Conclusions and Outlook

Finding Neutrinoless Double-Beta Decay (0νββ) decay is one of the holy grails of
experimental neutrino physics. Its existence would clarify some of the problems
regarding neutrino particles that are still unsolved. All experiments searching for
0νββ decay are low background experiments looking for an extremely rare — if
existing — phenomenon. Their sensitivity depends strongly on the expected back-
ground: events which can mimic 0νββ decay. Hence, the reduction of background is
essential to all of them. Background can be suppressed in various ways: by selecting
radio-pure construction material, passive shielding against external γ and neutron
radiation, by tagging cosmic muons using instrumented veto systems and by ana-
lyzing the form of pulses generated by signal events with respect to the background.

In the Gerda experiment 0νββ decay is searched for in the 0νββ candidate isotope
76Ge. High Purity Germanium (HPGe) detectors, enriched in this isotope, serve as
source and detector simultaneously. Recently, new detectors, of Broad Energy Ger-
manium (BEGe) type, were produced to be hosted in the second experimental phase.
They have excellent properties for pulse shape analysis, which will be one of the key
features of the Gerda Phase II background reduction.

To create algorithms which effectively reduce background, based on the pulse shapes,
signal-like events are extensively studied. The main property of 0νββ events is given
by their localized energy deposition inside the detector crystals. An energy depo-
sition in a volume smaller than the spatial resolution of the detector is commonly
referred to as single site event (SSE). Hence, for studies of signal-like events pure
samples of SSEs are prepared and analyzed. Furthermore, the study of SSEs permits
to draw conclusions about the internal electric field properties of HPGe detectors.
Pulse shape simulations rely on a precise description of these electric fields and com-
parison to real data is necessary in order to validate and improve them.

The standard procedure in Gerda to obtain SSE samples is the selection of events
from a Double Escape Peak (DEP). They are observed in pair production processes
if both created annihilation photons escape the detector volume. In that case the
energy deposition is localized and in fact DEPs are dominated by SSEs. However,
a part of hereby collected events is still due to background and the distribution of
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the selected events in the detector volume is extremely inhomogeneous. The proba-
bility for both annihilation photons to escape is largest on the detector surface and
especially high in its corners.

For this work an experimental setup was built and optimized which is able to se-
lect pure samples of SSEs from distinct locations inside a HPGe detector: A test
detector of BEGe type was implemented in the setup. The event selection of this
system is based on Single Compton Events (singleCE) interactions, which meet the
signal-like event condition, depositing energy in localized positions in the detector.
In Compton scattering interactions, kinematics are defined by the scattering angle
and the incident photon energy. singleCE interactions can, thus, be selected by tag-
ging of the scattered photons and selection of the energies matching the scattering
angle. A collimated photon beam, emitted by a 137Cs source, is used to irradiate the
BEGe detector. Additional HPGe detectors, with a semi-coaxial (Coax) geometry,
are used to tag the photons which are Compton scattered inside the BEGe with a
scattering angle of 90◦ with respect to the incident photon beam. Their angular
acceptance is restricted by collimation in order to select a specific region inside the
BEGe detector. The source can be moved, the BEGe can be rotated and the height
at which the Coax detectors are placed with respect to the BEGe can be varied. In
this manner, three-dimensional scans of the full volume of the BEGe detector can
be made.

The dewar vessels of all detectors are connected to an automatized filling system
and a safety High Voltage (HV) shut down prevents detector damage, in case a
detector starts to warm up with its HV supply switched on. A data acquisition
system (DAQ) system was assembled and tested which records the full event traces
on disk. In order to record only true coincidences of the BEGe and one of the
Coax detectors, a dedicated external trigger logic was designed and implemented.
A calibration and optimization method for the external trigger was established and
was successfully carried out. In order to augment the event rate a new collimator
was designed and installed which can hold a 137Cs source with an activity of about
780MBq. The collimator is very easy to handle and effectively shields radiation in
order to reduce personal risk.

This work contains a detailed description of the experimental setup, its way of op-
eration and the results of the testing campaign undertaken.

An extensive characterization of the detectors used in the setup was carried out.
This was necessary in order to optimize the energy reconstruction algorithm, de-
termine the detector depletion and operational voltages and the energy resolutions.
Furthermore, it was important to test the stability of the detector baselines in order
to operate the system under stable conditions over a long time period. The inter-
nal geometry of the BEGe detector was studied in detail using a dedicated setup.
Automatized fine grain surface scans give insight on the detector crystal geometry,
the holder positioning and dimension, and on inhomogeneities of the outer contact
layer. A comparison to a similar HPGe detector of P-type Point Contact (PPC)
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type was carried out. The fine grain surface scan can give valuable input to study
the Compton coincidences in simulations.

A detailed description of the Compton coincidence setup was implemented in a
Monte Carlo (MC) simulation framework. The simulations conducted allowed for
an intense study of the energetic and spatial distribution of singleCE events with
respect to Multiple Compton Events (multiCE) interactions. The energy selection
of the BEGe as well as the Coax detectors were optimized in order to select confined
singleCE events.

In a measurement campaign several locations of the BEGe detector were scanned
at different HV values. The signal to background of the event samples was further
improved using a descriptive parameter of the pulse shape. The selection of SSE
samples with high purity was accomplished and the sample size of each location was
large enough to compute average pulses for each scanned location. These average
traces were found to be of high reproducibility. This enables a comparison of average
pulses of BEGe detector regions and different HV values. Differences in the shape
of the average pulse are observed when changing the scanned detector location or
the HV on the BEGe detector. In particular it was found that the first part of the
average pulse is most sensitive. The purity of the collected samples in function of the
scanned location was analyzed and compared to the MC simulations. Conclusions
can be drawn on the limitations of Compton coincidence measurements conducted
with this experimental setup.

Finally, the purity of SSE samples was compared to the standard method used in
the Gerda experiment. An uncollimated 228Th spectrum was recorded and the SSE
to background ratio of the DEP from the 2.6MeV 208Tl γ-line was analyzed. The
purity of SSE samples from the Compton coincidence measurements proved to be
superior in the surface regions of the BEGe detector where events from the DEP are
located. Moreover, the Compton setup permits to collect SSEs from interior regions
of the BEGe to which the DEP shows negligible sensitivity.

Future improvements of the Compton setup can be made by measuring at different
scanning angles. The differential cross section for Compton scattering is larger for
smaller scattering angles. This could augment the event rate and further improve
the SSE to background ratio of the collected event samples.

The results from a first comparison of average pulse shapes is promising. A prospec-
tive key point is a more detailed scanning measurement of a BEGe detector and
subsequent comparison to pulse shape simulations. The profile of the impurity con-
centration in a BEGe could be fine-tuned based on such measurements and improve
the reliability of pulse shape simulations. Other detector geometries can be studied
with the setup in order to compare their Pulse Shape Discrimination (PSD) power
to the Gerda Phase II BEGe detectors and possibly more adapt geometries could
be found.
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Returning to 0νββ experiments in general and the Gerda experiment in particu-
lar, another important aspect in rare event searches is the full decomposition and
analysis of background contributions. One major background component in Gerda
Phase I is the isotope 42Ar, which decays via β− decay in 42K. 42K further decays
via a β− decay with an endpoint energy above the endpoint of the Two Neutrino
Double-Beta Decay (2νββ) spectrum of 76Ge. Thus, the continuous energy spec-
trum of the electrons can deposit energy in the region of Qββ contributing to the
expected background of the Gerda experiment.

The specific activity of 42Ar in the Gerda liquid Argon (LAr) was analyzed using
a Bayesian approach. The unique, highly radiopure environment of Gerda per-
mits this type of study. Two fit models were implemented in a Bayesian Analysis
Framework to fit a γ-line of 42K which is in secular equilibrium with 42Ar. A binned
maximum likelihood fit with four (five for the second fit model) nuisance parameters
per detector and a common parameter for the activity was performed and the result
was analyzed for its stability. The detection efficiencies, which introduce a major
systematic uncertainty to the result, were calculated by means of MC simulations of
part of the Gerda experimental setup. This permitted to study systematic effects
introduced by inhomogeneities of the 42K distribution in the LAr and provided a
conservative estimate of the uncertainty on the efficiencies, which were then propa-
gated to the activity.

This analysis is not only providing an estimate of the specific activity of 42Ar in
the Gerda LAr. Correcting the found value for the time the LAr was kept under
ground it can be compared to other experimental results, and furthermore, to the-
oretical calculations regarding production mechanisms of 42Ar in the atmosphere.
This has been done as a last step of the analysis conducted in this work and the
value is found compatible within 1.8σ with result found by the Gerda test facility
LArGe and in very good agreement with a theoretical calculation based on a major
production mechanisms of 42Ar. However, the theoretical value is only an educated
guess. More precise calculations are needed to fully comprehend the implications of
the experimental value calculated in this thesis.
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Appendix A

Multi-tier data structure and
decoder implementation

The Gerda analysis program transforms data in a multi-tier structure approach.
Raw data is called the tier0 level data. A decoder step transforms tier0 level data
in a compressed and rootified structure containing exactly the same information
contained on tier0 level but compatible with all other Gerda analysis software. We
call this the tier1 level. In the next step transforms are applied to the traces and
parameters like energy, current pulse amplitude and rise time are extracted. This
information is contained on the tier2 level of data analysis. Every higher analysis
step is a higher level in the tier structure. E.g. the calibrated energy can be con-
tained on a tier3 level.

In order to transform tier0 data into the tier1 rootified format an FADC specific
decoder has to be implemented which reads the data from tier0 files and stores the
event traces in a root tree. Also for data taken with the FADCs in this setup a
dedicated decoder was implemented. The program Raw2MGDO has to be called
with the option -c LEGO for the 100MHz 4 channel FADC. A version for a 500MHz
8 channel FADC has also been implemented and can be called via -c LEGO_DIGI8.
The filename is handed with the option -f. FADC channels can be excluded from
the transform with the -e option and the pre-trigger fraction fpre of the trace can be
handed calling the -P option. Per default all channels are processed with fpre = 0.5.

100MHz digitizer $ Raw2MGDO -c LEGO -f filename

500MHz digitizer $ Raw2MGDO -c LEGO_DIGI8 -f filename

Optional -e FADC channel

-P fpre

Detectors with positive and negative voltage have to be analyzed separately as all
data analysis works on positive pulses and negative traces get simply inverted. The
polarity is expected to be the same in all channels for a tier0 → tier1 and tier1 →
tier2 transformation.
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Appendix B

Decay schemes of calibration sources

All decay schemes were taken from [73]. For some of them not all energy levels are
shown, this is however indicated in the individual plots.

Figure B.1: Decay scheme of 22Na.

Figure B.2: Decay scheme of 60Co.
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Figure B.3: Decay scheme of 137Cs.

Figure B.4: Decay scheme of 241Am for energy levels below 70 keV. Intensi-
ties of γ-lines indicated.
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Figure B.5: Decay scheme of 208Tl for energy levels below 3000 keV. Inten-
sities of γ-lines indicated.

Figure B.6: Decay chain of 228Th. Isotopes decaying via α in yellow, β
decaying isotopes in blue, stable isotopes in white. The half-life of the
decay is indicated below.
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Appendix C

Full Width at fw Maximum

To get the full width of a γ-line at some fraction fw of the peak maximum (FWfwM)
the γ-line is fit using a Gaussian plus tail fit function (Equation 4.4). The corre-
sponding x-value of the fit function is evaluated left and right of the peak centroid
to satisfy g(x) = fw ·mµ and the difference is taken as the respective FWfwM. mµ

is the maximum height of the Gaussian peak. The error is estimated as follows

∆FWfwM

FWfwM
=

∆σ

σ
(C.1)

Where σ and ∆σ are the standard deviation and its uncertainty from the Gaussian
plus tail fit function. When calculating a fraction FWfwM/FWHM the errors are
assumed to be fully correlated and therefore

∆(FWfwM/FWHM)

(FWfwM/FWHM)
=

√
∆FWfwM

FWfwM

2

+
∆FWHM

FWHM

2

− 2
∆FWfwM

FWfwM

∆FWHM

FWHM

= 0

(C.2)
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Appendix D

Dual Timer Unit gate calibration

In Figure D.1 individual dual timer unit (DTU) gate calibration plots can be found.
Without cuts and with standard quality and an energy cut on 22Na annihilation γs
of (511 ± 5) keV in red. With standard cuts we intend that all events satisfy the
following criteria: 1) No over- or under-flow from the dynamic range of the Flash
Analog to Digital Converter (FADC). 2) No error in event processing. 3) Number
of found triggers is one. All coincident detectors behave very similar and a DTU
gate size of 2µs is fine for all of them.

Figure D.1: DTU gate size calibration plot. Trigger time difference ∆T =
T (BEGe)−T (Coax) for BEGe and Coax1 of 22Na coincidence measurements
without data cuts and with standard quality and an energy cut (511±5 )keV.
The small bump at −2µs appears because all event triggers before the start
of trigger search are accumulated there.
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Figure D.1 continued for BEGe and Coax3 (top) BEGe and Coax3 (bottom).
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Coincidence Monte Carlo simulation
options

Some geometry details are implemented variable in size. The options that can be
chosen and a short description can be found here

BEGe cryostat dimensions

/MG/geometry/LEGOTable/CryostatWindowThickness
Sets cryostat window thickness, which is the front part [mm]

/MG/geometry/LEGOTable/CryostatWallThickness
Sets cryostat wall thickness, which is the side part [mm]

/MG/geometry/LEGOTable/CryostatDiameter
Sets cryostat diameter [mm]

/MG/geometry/LEGOTable/CryostatHeight
Sets cryostat height [mm]

BEGe Xtal dimensions

/MG/geometry/LEGOTable/XtalDiameter
Sets crystal diameter (incl. DL) [mm]

/MG/geometry/LEGOTable/XtalHeight
Sets crystal height (incl. DL) [mm]

/MG/geometry/LEGOTable/XtalDistanceToWindow
Sets distance of crystal top to cryostat window [mm]

/MG/geometry/LEGOTable/XtalDitchInnerRadius
Sets inner radius of groove [mm]
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/MG/geometry/LEGOTable/XtalDitchOuterRadius
Sets outer radius of groove [mm]

/MG/geometry/LEGOTable/XtalDitchDepth
Sets depth of groove [mm]

/MG/geometry/LEGOTable/XtalDitchOnBottom
Sets the ditch to a side of the detector (default: bottom side)

/MG/geometry/LEGOTable/XtalCornerDiameter
Sets diameter of top/bottom side with edge [mm]

/MG/geometry/LEGOTable/XtalCornerHeight
Sets height from top/bottom side to the end of the edge [mm]

/MG/geometry/LEGOTable/XtalCornerOnBottom
Sets the edge to a side of the detector (default: top side)

/MG/geometry/LEGOTable/XtalMaterial
Sets the detector material type. Available candidates are: (EnrichedGe DepletedGe
NaturalGe)

Source collimator properties

/MG/geometry/LEGOTable/SourceCollimated
Use collimator for source or no. Default is true.

/MG/geometry/LEGOTable/SourceCollimatorCryoDistance
Sets distance of the source collimator to the BEGe cryostat

/MG/geometry/LEGOTable/SetCollimatorPosition
Sets the position of the collimator and the source in x direction [mm] 0 position is
the middle of the detector

/MG/geometry/LEGOTable/SourceCollimatorLength
Sets the length of the collimator for the source. [mm]

/MG/geometry/LEGOTable/SourceBeamWidth
Sets the width of the beam in the source collimator [mm]

Source configuration

/MG/geometry/LEGOTable/SourceType
Sets the source type. Available candidates are: ("Cs137 Pointlike Tueb HS7 HS7like")
Cs137 is the realistic source geometry of the string source
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Scanning height and angle

/MG/geometry/LEGOTable/ScanningHeight
Sets distance of table and endcap of cryostat [mm]

/MG/geometry/LEGOTable/ScanningAngle
Set scanning angle starting from horizontal scanning and tilting the coaxial detec-
tors towards the vertical 0deg here are 90deg Compton angle, 30deg here are 60deg
Compton angle, 45deg here are 45deg Compton angle

BEGe holder configuration

/MG/geometry/LEGOTable/ActivateDepBEGeCryostatHolders
Activates the holder, cup and base for a depleted BEGe

Coincident Coax detectors

/MG/geometry/LEGOTable/CoincidentDetConfiguration
Sets the configuration of the coincident coaxial detectors. The numbering is clock-
wise starting with the x>0 and y>0 quadrant. Add 8 for the first 4 for the second 2
for the third and 1 for the fourth coax. Example: 8+4+2+1=15 all coax are active.
Values between 0 (no coax) and 15 (all coax).

Coincident Coax collimators

/MG/geometry/LEGOTable/CollimatorMaterial
Sets material of source and coaxial collimators for studies only. Options are: lead,
gold, copper and lcHybrid which is a hybrid of lead and half copper.

/MG/geometry/LEGOTable/CollimatorOpening
Sets the opening of the collimators. [mm]

/MG/geometry/LEGOTable/CollimatorLength
Sets the coaxial collimator length.[mm]
/MG/geometry/LEGOTable/CollimatorBEGeCryoDistance
Sets the distance from the BEGe cryo to the coaxial collimators. [mm]

/MG/geometry/LEGOTable/CollimatorCoaxCryoDistance
Sets distance from coaxial collimators to coaxial cryostat [mm]
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Appendix F

Specific activity of 42Ar from relative
abundance

The specific activity of 42Ar in LAr can be calculated from the relative abundance:

A(42Ar) =
NA

ma(40Ar)
·

42Ar
40Ar

·
(

1− exp

(
− ln(2)

T1/2

· 1 s

))
≈

42Ar
40Ar

µBq/kg

10−22
(F.1)

with

• Avogadro’s number NA ≈ 6 · 1023 mol−1,

• the molar mass of 40Ar ma(
40Ar) ≈ 4 · 10−2 kg/mol,

• and the half-life of 42Ar T1/2 = 32.9 y ≈ 1.038 · 109 s

Hence, for a relative abundance of 42Ar/40Ar = 7.4 ·10−22 we find the corresponding
specific activity A(42Ar) ≈ 7.4µBq/kg.
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Appendix G

Gerda run setup

Figure G.1: Positioning of Gerda Phase I strings.

Table G.1: String setup of the Phase I runs. The strings are numbered S1
- S4 where S1 is the string in the one-string arm and S2 - S4 belong to the
three-string arm as can be seen in figure G.1.

run S1 S2 S3 S4

25-32
GTF45 GTF112 RG1 ANG3
GTF32 ANG2 ANG4 ANG5

- ANG1 RG2 RG3

33
GTF112 RG1 ANG3

- ANG2 ANG4 ANG5
- ANG1 RG2 RG3

34-46

GD32B GTF112 RG1 ANG3
GD32C ANG2 ANG4 ANG5
GD32D ANG1 RG2 RG3
GD35B - -
GD35C - -
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Table G.2: Livetimes of the Phase I runs.

Run livetime [d] Run livetime [d] Run livetime [d]
Run25 20.5105 Run35 17.7713 Run44a 1.42237
Run26 39.2802 Run36 37.745 Run44 22.8399
Run27 5.18356 Run37 23.4621 Run45 33.1296
Run28 9.57194 Run38 13.8776 Run46a 12.1286
Run29 20.4123 Run39a 15.277 Run46b 5.6078
Run30 30.9436 Run39b 9.46787
Run31 21.6045 Run40 34.534
Run32 26.6037 Run41 21.4982
Run33 11.2161 Run42 32.0353
Run34 14.8195 Run43 22.7819

Table G.3: Detector total masses [82,84].

detector total mass [g] detector total mass [g]
ANG1 969 GTF112 2957
ANG2 2878 GTF45 2312
ANG3 2447 GTF32 2321
ANG4 2401 GD32B 716
ANG5 2782 GD32C 743
RG1 2152 GD32D 720
RG2 2194 GD35B 810
RG3 2121 GD35C 634
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Table G.4: Detector High Voltage settings in the Gerda Phase I runs.
Runs or detectors which are listed in red are completely excluded from 42Ar
analysis. If no voltage is given | means the detector is present in the setup
and hasn’t changed voltage. An empty space means the detector is not
present in the setup. If the voltage value is given in red, the detector in the
respective run is excluded from 42Ar analysis.

ANG GD RG GTF
run 1 2/3/4 5 32B 32C 32D 35B 35C 1 2 3 112 32/45
25 4.0 3.5 2.5 4.5 4.0 3.2 3.0 -3.0
26 | | | | | 2.5 | |
27 | | | | | | | |
28 | | | | | 2.3 | |
29 | | | | | 2.0 | |
30 2.0 | | | | 1.0 | |
31 | | | | | 0.0 | |
32 1.5 | | | | | | |
33 0.0 | | | | | |
34 | | | | | | |
35 | | | 3.5 3.5 3.5 3.5 3.5 | | | |
36 | | | | | | | | | | | |
37 | | | 3.5 | | | | | | | |
38 | | | | | 3.5 | | | | | |
39a | | | | | | | | | | | |
39b | | | | | | | | | | | |
40 | | | | | | | | | 3.5 | |
41 | | | | | | | | | | | |
42 | | | | | | | | | | | |
43 | | | | | | | | | | | |
44 | | | | | | | | | 2.0 | |
45 | | | | | | | | | 2.0 | |
46a | | | | | | | | | 2.0 | |
46b | | | | | 3.5 | | | 2.0 | |
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Appendix H

Energy resolution plots

Figure H.1: FWHM from calibration data between 2012-07-08 and 2013-
03-20 of GD32B. The black line indicates the median and the smallest 68%
interval is indicated with a dotted area.
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Figure H.1 (cont.): GD32C

Figure H.1 (cont.): GD32D
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Figure H.1 (cont.): GD35B

Figure H.1 (cont.): GD35C
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Figure H.2: FWHM from calibration data between 2011-11-09 and 2012-
05-22 of GTF45. The black line indicates the median and the smallest 68%
interval is indicated with a dotted area.

Figure H.2 (cont.): GTF32
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%%%%%%%%%%%%% LONG VERSION
% In rare event searches, as e.g. the search for \ac{0nbb}, the experimental sensitivity critically depends on the observed background level in the expected energy region of signal events. Background reduction is essential to fully exploit the experimental resources. \\
% 
% The \ac{GERDA} experiment is searching for \ac{0nbb} decay in $^{76}$Ge. A key feature of the second experimental phase of \gerda\ are 30 newly produced \ac{HPGe} detectors, which have excellent \ac{PSD} properties. Analyzing the shape of the detector pulses, background can be distinguished from signal events and discarded. \\
% 
% The main focus of this thesis is the preparation of pure signal-like event samples from confined detector regions, with the purpose of studying the response of the detector with respect to the interaction position. This is useful in the creation of new algorithms which effectively reduce the background in \gerda\ and can be used to validate and improve pulse shape simulations of \ac{HPGe} detectors. \\
% 
% An experimental setup was assembled and improved, and was used to collect events due to single Compton interactions of photons with a \ac{BEGe} detector. Because of their localized energy deposition single Compton events can be used as prototype for \ac{0nbb} event pulse shapes. \\
% 
% In the setup, a collimated photon beam, emitted by a $^{137}$Cs source, is used to irradiate the \ac{BEGe} detector. The assembly incorporates additional \ac{Coax} detectors which serve to tag Compton scattered photons with a scattering angle of $90^{\circ}$. In case of a coincident trigger of the \ac{BEGe} and one of the \ac{Coax} detectors the full event is recorded on disc and can be processed off-line. The angular acceptance of the \ac{Coax} detectors is restricted; this serves to select Compton events from a defined region inside the \ac{BEGe}. In Compton scattering interactions the dynamics are fully defined by the energy and momentum conservation if the scattering angle is given. Therefore, single Compton events can be selected by matching the energy selection in the \ac{BEGe} and the \ac{Coax} detectors to the scattering angle of $90^{\circ}$. \\
% 
% The assembly is capable of a full three-dimensional scan of the \ac{BEGe} detector. Moreover, it features automatized \ac{LN} refilling of the detector dewar vessels, a safety \ac{HV} shut down and remote control of the \ac{LN} refilling, \ac{HV} supply and \ac{DAQ}. The \ac{DAQ} and a dedicated external trigger system were designed and assembled, and a calibration procedure for the external trigger logic was established. \\
% 
% An extensive characterization of all detectors used was realized. This was necessary to determine the depletion and operational voltage of the \ac{BEGe}, to optimize the energy reconstruction algorithm and assure stable operation over a long time period. Furthermore, detailed fine grain surface scans were performed which can give valuable input for simulation. \\
% 
% A comprehensive \ac{MC} description of the assembly was implemented in a Geant4 based framework. The simulations provided means to conduct detailed studies of the spatial and energy distribution of single and multiple Compton events. Based on these studies energy cuts were optimized to select pure samples of single Compton events from localized regions in the \ac{BEGe}. \\
% 
% In a data taking campaign, using a $^{137}$Cs source with an activity of $780\,$MBq, coincidence event samples were collected from several regions in the \ac{BEGe} and with different \ac{BEGe} \ac{HV}. They were purified applying the energy cuts defined with the \ac{MC} simulations. The remaining sample sizes were large enough for the creation of average pulses. The stability of the average pulse was found to be very good which permits their comparison. Differences in the shape of the average pulse are observed when changing the scanned detector location or the \ac{HV} on the \ac{BEGe}. In particular it was found that the first part of the average pulse is most sensitive. \\
% 
% Another aspect of rare event searches is the detailed analysis and decomposition of background events. A major background component in \gerda\ Phase I is introduced by the isotope $^{42}$Ar. The specific activity of $^{42}$Ar in the \gerda\ \ac{LAr} was analyzed using a Bayesian approach. Two fit models were implemented in a Bayesian Analysis Framework to fit a $\gamma$-line of $^{42}$K which is in secular equilibrium with $^{42}$Ar, and a binned maximum likelihood fit was performed. The detection efficiencies were calculated by means of \ac{MC} simulations of part of the \gerda\ experimental setup. This permitted to study systematic effects introduced by inhomogeneities of the $^{42}$K distribution in the \ac{LAr}. \\
% 
% Correcting the result for the time the \ac{LAr} was kept under ground the specific activity can be compared to other experimental results, and furthermore, to theoretical calculations regarding production mechanisms of $^{42}$Ar in the atmosphere. A corrected specific activity of \mbox{$A_0 (^{42}\text{Ar}) = 101.0^{+2.5}_{-3.0} (\text{stat}) \pm 7.4 (\text{syst})\,\upmu \mathrm{Bq/kg}$} was found in this analysis. This result is compatible within $1.8\,\sigma$ with the value found in the \gerda\ test facility LArGe and in very good agreement with a theoretical calculation based on a major production mechanisms of $^{42}$Ar in the atmosphere. \\

%%%%%%%%%%%%%%%% SHORT VERSION

In rare event searches, such as the search for \ac{0nbb}, the experimental sensitivity critically depends on the remaining background after all data cuts in the region of interest, where signal events are expected. Background reduction is essential to obtain the necessary experimental sensitivity. The \ac{GERDA} experiment is searching for \ac{0nbb} decay in $^{76}$Ge. Recently, 30 newly produced germanium detectors of \ac{BEGe} type have been implemented in \gerda. Analyzing the shape of detector pulses, background can be distinguished from signal events and discarded. The major advantage of the new \ac{BEGe} detectors are their excellent properties for this kind of analysis. \\

The main focus of this thesis is the preparation of pure \ac{0nbb}-like event samples from confined interaction regions in a \ac{BEGe} in order to study the response of the detector with respect to the interaction position. This is useful to validate and improve pulse shape simulations of germanium detectors and can help creating new algorithms which effectively reduce the background in \gerda. An experimental setup was assembled and used to collect events due to single Compton interactions of photons with a \ac{BEGe} detector. Because of their localized energy deposition single Compton events can be used as prototypes for \ac{0nbb} event pulse shapes. The assembly is capable of a full three-dimensional scan of the \ac{BEGe} detector. An extensive characterization of all detectors used was realized to assure stable conditions of the experimental setup. Furthermore, detailed fine grain surface scans were performed which can give valuable input for simulation. A comprehensive \ac{MC} description of the assembly was implemented in a Geant4 based framework. The simulations provided means to conduct detailed studies of the spatial and energy distribution of single and multiple Compton events. Based on these studies the selection of pure samples of single Compton events from localized regions in the \ac{BEGe} was optimized. In a data taking campaign event samples were collected for different experimental configurations. Differences in the pulse shape are observed when changing the scanned detector location or the \ac{HV} on the \ac{BEGe}. In particular it was found that the first part of the average pulse is most sensitive. \\

Another aspect of rare event searches is the detailed analysis and decomposition of background events. A major background component in \gerda\ Phase I is introduced by the isotope $^{42}$Ar. In this work, the specific activity of $^{42}$Ar in the \gerda\ \ac{LAr} was analyzed using a Bayesian approach. The detection efficiencies were calculated by means of \ac{MC} simulations of part of the \gerda\ experimental setup. This permitted to study systematic effects introduced by inhomogeneities of the distribution of the studied background component in the \ac{LAr}. The final value of the specific activity was obtained with a binned maximum likelihood fit of two fit models. Correcting the result for the time the \ac{LAr} was kept under ground the specific activity can be compared to other experimental results, and furthermore, to theoretical calculations regarding production mechanisms of $^{42}$Ar in the atmosphere. A corrected specific activity of \mbox{$A_0 (^{42}\text{Ar}) = 101.0^{+2.5}_{-3.0} (\text{stat}) \pm 7.4 (\text{syst})\,\upmu \mathrm{Bq/kg}$} was found in this analysis; it is compatible with a theoretical calculation based on a major production mechanisms of $^{42}$Ar in the atmosphere. However, it results incompatible with the upper limit, $43\,\mathrm{Bq/kg}$ at $90\,\%$ CL, reported in a previous measurement. \\
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%%%%%%%%%%%%%% LONG VERSION
% Nelle ricerche di eventi rari, ad esempio il decadimento doppio beta senza neutrini (\ac{0nbb}), la sensibilit\`{a} sperimentale \`{e} estremamente dipendente dal numero di eventi di fondo che depositano un'energia simile a quella di segnale. \`{E} essenziale per poter usufruire le risorse sperimentali ridurre i segnali di fondo. \\
% 
% L'esperimento \gerda\ sta cercando il decadimento \ac{0nbb} del isotopo $^{76}$Ge. Nella seconda fase sperimentale saranno implementati 30 nuovi rivelatori contenenti del germanio ad elevata purezza del tipo \ac{BEGe}, la quale vantaggio maggiore \`{e} di avere delle ottime caratteristiche per poter analizzare la propria forma di segnale. Questa analisi permette separare in modo migliore il fondo da eventi di segnale ed eliminare gli eventi classificati fondo. \\
% 
% Lo scopo primario di questa tesi \`{e} la raccolta di eventi con impulsi rassomiglianti a quelli del decadimento \ac{0nbb}. Questo serve allo studio della risposta del rivelatore alla posizione dell'interazione. Successivamente questo risulta utile a creare algoritmi che permettono di ridurre i segnali di fondo in \gerda, \`{e} possibile in oltre validare e migliorare la descrizione della forma d'impulso emulata con delle simulazioni.
% 
% i risultati con simulazioni che emulano le forme degli impulsi. \\
% 
% \`{E} stato assemblato, aumentandone l'efficienza, un apparato sperimentale e usato su un rivelatore \ac{BEGe} per raccogliere campioni di singoli eventi Compton con una posizione d'interazione nota. Grazie alla caratteristica dei singoli eventi Compton di rilasciare energia in modo localizzato possono essere utilizzati come prototipi della forma d'impulso di eventi \ac{0nbb}. \\
% 
% Nella configurazione implementata un fascio di fotoni collimato, emesso da una sorgente di $^{137}$Cs, irradia il rivelatore \ac{BEGe}. L'esperimento integra dei rivelatori semi-coassiali (\ac{Coax}) aggiuntivi utilizzati per tracciare i fotoni Compton con un angolo di incidenza di $90^{\circ}$. Nel caso in cui sia il BEGe che uno dei rivelatori Coax registrino simultaneamente un interazione, tale evento viene salvato su disco. La tolleranza angolare dei rivelatori \ac{Coax}  \`{e} stata ridotta per permettere una più accurata selezione della posizione d'interazione nel rivelatore \ac{BEGe}. Le dinamiche nelle interazioni Compton sono definite dalla conservazione dell'energia e del momento se l'angolo di incidenza  \`{e} noto, quindi singole interazioni Compton possono essere selezionate scegliendo le energie compatibili con l'angolo di incidenza di $90^{\circ}$. \\
% 
% L'esperimento ha la capacita di scansionare l'intero volume del \ac{BEGe} nelle tre dimensioni. In oltre,  \`{e} stato implementato con un riempimento automatizzato di \ac{LN} dei serbatoi dei rivelatori, uno spegnimento di sicurezza dell'alta tensione e del controllo remoto di gestione dei sistemi di riempimento, della distribuzione dell'alta tensione e del salvataggio dati. E stato progettato e inserito un sistema di acquisizione dati avente una logica trigger avanzata, ed  \`{e} stata stabilita una procedura di calibrazione per tale trigger. \\
% 
% \`{E} stato fatto uno studio complessivo sui rivelatori usati. Questo  \`{e} servito a determinare il livello di alta tensione necessario per svuotare completamente il rivelatore dalle particelle di carica e il suo livello di operativit\`{a}. In oltre  \`{e} stata ottimizzata la determinazione dell'energia dagli impulsi e sono state assicurate delle condizioni stabili per un funzionamento settimanale. Lo studio comprende in oltre l'esecuzione di dettagliate scansioni superficiali utili alla realizzazione di simulazioni. \\
% 
% La geometria dell'apparato sperimentale  \`{e} stata realizzata in una simulazione \ac{MC} basata su Geant4. Le simulazioni svolte hanno permesso un'analisi dettagliata della distribuzione spaziale ed energetica dei singoli e multipli eventi Compton. Basandosi su tale studio sono state stabilite dei tagli in energia ottimizzati per selezionare singoli eventi Compton in regioni localizzate del \ac{BEGe}. \\
% 
% Durante una campagna di raccolta dati, usando una sorgente $^{137}$Cs avente attivit\`{a} di $780\,$MBq, sono stati acquisiti campioni di eventi coincidenti da diverse regioni del \ac{BEGe} con valori di voltaggio differenti. Tali campioni sono stati ottimizzati applicando i tagli energetici trovati mediante le simulazioni \ac{MC}. Il numero di eventi residui  \`{e} sufficiente per creare dei prototipi di impulsi medi. La stabilita di tale impulsi  \`{e} stata trovata eccellente permettendo un confronto tra di loro. Sono stati osservati delle differenzi nella forma degli impulsi cambiando sia la posizione d'interazione che il valore di alta tensione applicato sul \ac{BEGe}. In particolare, si \`{e} notato che la regione pi\`{u} sensibile \`{e} la parte iniziale dell'impulso. \\
% 
% Un altro aspetto della ricerca di eventi rari  \`{e} un'analisi e calssificazione dettagliata degli eventi di fondo. Una delle componenti principali degli eventi di fondo nella prima fase sperimentale di \gerda\ \`{e} dovuta al isotopo $^{42}$Ar costituente del \ac{LAr}. L'attivit\`{a} relativa dell'$^{42}$Ar in \gerda\ \`{e} stata studiata con un approccio bayesiano usando dati di \gerda\ fase I. Due modelli sono stati implementati con parametri variabili per ottenere la massima somiglianza alla forma di una riga $\gamma$ del $^{42}$K. Tale isotopo \`{e} in equilibrio secolare con il suo isotopo madre l'$^{42}$Ar. La somiglianza massimale \`{e} stata ottenuta tramite un ottimizzazione della ``binned likelihood''. Le efficienze dei rivelatori rispetto al $^{42}$K sono state calcolate usando delle simulazioni \ac{MC} di una parte della struttura sperimentale di \gerda. Questo permette anche lo studio degli effetti sistematici dovuti alla disomogeneit\`{a} della distribuzione del $^{42}$K nel \ac{LAr}. \\
% 
% Riportando il risultato finale dell'analisi bayesiana al momento in cui il \ac{LAr} \`{e} stato messo sotto terra, \`{e} permesso il confronto con altri risultati sperimentali e con calcoli teorici riguardo i meccanismi di produzione dell'$^{42}$Ar nell'atmosfera. Un'attivita relativa di \mbox{$A_0 (^{42}\text{Ar}) = 101.0^{+2.5}_{-3.0} (\text{stat}) \pm 7.4 (\text{syst})\,\upmu \mathrm{Bq/kg}$} \`{e} stata trovata. Tale valore contiene la correzzione necessaria dovuto all'decadiemnto di $^{42}$Ar sotto terra ed \`{e} compatibile entro $1.8\sigma$ con il valore ottenuto nell'esperimento di testaggio di \gerda\ LArGe ed in buon accordo con un valore teorico estratto dalla descrizione di del meccanismo di produzione principale di $^{42}$Ar. 

%%%%%%%%%%%%%%%%%%% Versione corretta

Nelle ricerche di eventi rari, come, per esempio, il decadimento doppio beta senza neutrini (\ac{0nbb}), la sensibilit\`{a} sperimentale dipende dal numero di eventi di fondo che rimangono nella regione di interesse dopo tutti i tagli di analisi. Per raggiungere una elevata sensibilit\`a sperimentale \`e pertanto
essenziale ridurre gli eventi di fondo. L'esperimento \gerda\ sta cercando il decadimento \ac{0nbb} mediante l'impiego dell'isotopo $^{76}$Ge. Recentemente l'esperimento si \`e dotato di 30 nuovi rivelatori al germanio del tipo \ac{BEGe}. Il maggiore vantaggio di tali rivelatori \`e di permettere una efficace separazione degli eventi di segnale da quelli di fondo mediante lo studio della forma del segnale elettrico. \\

Lo scopo primario di questa tesi \`{e} la ricerca di un metodo di raccolta di eventi che possano simulare quelli del decadimento \ac{0nbb}. Si vuole inoltre che tali eventi siano distribuiti su tutto il volume del rivelatore. Questo risulta molto utile per creare algoritmi che permettano di ridurre gli eventi di fondo in \gerda. Inoltre, lo studio della risposta del rivelatore a seconda del punto di interazione del fotone incidente permette di controllare e migliorare la descrizione della forma d'impulso ottenuta dalle simulazioni. \`{E} stato allestito un apparato sperimentale che permette di selezionare  eventi caratterizzati da una singola interazione Compton provenienti da regioni ben definite del rivelatore sotto esame (nel nostro caso un rivelatore di tipo \ac{BEGe}). Gli eventi provenienti da una singola interazione Compton giacch\'e rilasciano l'energia in una regione ben circoscritta del rivelatore simulano gli eventi doppio beta. L'apparato ha la capacit\`a di analizzare l'intero volume del \ac{BEGe} nelle sue tre dimensioni. Come passo propedeutico \`e stato eseguito uno studio delle caratteristiche fondamentali dei rivelatori usati. Questo \`{e} servito per assicurare un funzionamento stabile e affidabile all'apparato sperimentale. Lo studio ha comportato anche l'esecuzione di dettagliate scansioni superficiali dei rivelatori utili queste come informazioni in ingresso ai programmi di simulazione. Le simulazioni hanno permesso un'analisi della distribuzione spaziale ed energetica degli eventi caratterizzati da una singola interazione Compton come di quelli da molteplici interazioni Compton. Basandosi su tale studio e' stata ottimizzata la selezione degli eventi provenienti da un solo scattering Compton e da una posizione nota del rivelatore. Durante la campagna di raccolta dati sono stati acquisiti dei campioni di dati sotto diverse configurazioni dell'apparato sperimentale. Sono stati osservati delle differenze nella forma degli impulsi cambiando sia la posizione da cui proviene l'interazione che il valore di alta tensione applicata sul \ac{BEGe}. In particolare, si \`{e} notato che la regione pi\`{u} sensibile \`{e} la parte iniziale dell'impulso. \\

Per poter rigettare gli eventi di fondo \`{e} importante anche conoscerli e classificarli. L'analisi dei dati di \gerda\ nella sua prima fase sperimentale ha
mostrato che una delle componenti principali degli eventi di fondo \`{e} dovuta all'isotopo $^{42}$Ar presente nel \ac{LAr}. L'attivit\`{a} dell'$^{42}$Ar \`{e} stata studiata con un approccio bayesiano usando dati di \gerda\ fase I. Il risultato finale \`{e} stato ottenuto tramite un ottimizzazione di una "binned 
likelihood". Una cura particolare \`e stata rivolta all'analisi di possibili effetti sistematici dovuti ad una possibile distribuzione spaziale non omogenea dell'$^{42}$Ar nel criostato di \gerda. Il risultato finale dell'attivit\`{a} specifica dell'$^{42}$Ar \`e \mbox{$A_0 (^{42}\text{Ar}) = 101.0^{+2.5}_{-3.0}
(\text{stat}) \pm 7.4 (\text{syst})\,\upmu \mathrm{Bq/kg}$}. Tale valore risulta compatibile con una stima derivata da un particolare modello di produzione di tale isotopo raro nell'atmosfera. Risulta invece incompatibile con il limite superiore, $43\,\mathrm{Bq/kg}$ al $90\,\%$ CL, riportato in una precedente misura sperimentale.

%%%%%%%%%%%%%%%%%%%%% SHORT VERSION

% Nelle ricerche di eventi rari, come il decadimento doppio beta senza neutrini (\ac{0nbb}), la sensibilit\`{a} sperimentale dipende dal numero di eventi di fondo che rilasciano un'energia simile a quella di segnale. Per ragiungere la necessaria sensitivita sperimentale e' essenziale ridurre gli eventi di fondo. \\
% 
% L'esperimento \gerda\ sta cercando il decadimento \ac{0nbb} del isotopo $^{76}$Ge. Poco tempo fa sono stati implementati 30 nuovi rivelatori al germanio del tipo \ac{BEGe}. Il maggiore vantaggio di tale tipo di rivelatore al germanio \`{e} di avere ottime caratteristiche per poter analizzare la propria forma di segnale. Questa analisi permette separare in modo ottimale il fondo da eventi di segnale. \\
% 
% Lo scopo primario di questa tesi \`{e} la raccolta di eventi con impulsi simili a quelli del decadimento \ac{0nbb}. Questo serve per lo studio della risposta del rivelatore in funzione della posizione dell'interazione. Questo risulta utile a creare algoritmi che permettono di ridurre gli eventi di fondo in \gerda.
% Inoltre, lo studio della risposta del rivelatore permette di validare e migliorare la descrizione della forma d'impulso ottenuat dalle simulazioni. \\
% 
% \`{E} stato assemblato un apparato sperimentale e usato su un rivelatore \ac{BEGe} per raccogliere campioni di singoli eventi Compton con una posizione d'interazione nota. Grazie alla caratteristica dei singoli eventi Compton di rilasciare energia in modo localizzato, questi possono essere utilizzati come prototipi della forma d'impulso di eventi \ac{0nbb}. L'esperimento ha la capacita di scansionare l'intero volume del \ac{BEGe} nelle tre dimensioni. \\
% 
% \`{E} stato fatto uno studio complessivo sui rivelatori usati. Questo  \`{e} servito per assicurate un funzionamento stabile dell'apparato sperimentale. Lo studio comprende in oltre l'esecuzione di dettagliate scansioni superficiali utili alla realizzazione di simulazioni. \\
% 
% La geometria dell'apparato sperimentale \`{e} stata realizzata in una simulazione \ac{MC} basata su Geant4. Le simulazioni svolte hanno permesso un'analisi dettagliata della distribuzione spaziale ed energetica dei singoli e multipli eventi Compton. Basandosi su tale studio e' stata ottimizzata la selezione di singoli eventi Compton con una posizione d'intrazione nota. \\
% 
% Durante una campagna di raccolta dati sono stati acquisiti dei campioni di dati con diverse configurazioni dell'apparato sperimentale. Sono stati osservati delle differenzi nella forma degli impulsi cambiando sia la posizione d'interazione che il valore di alta tensione applicato sul \ac{BEGe}. In particolare, si \`{e} notato che la regione pi\`{u} sensibile \`{e} la parte iniziale dell'impulso. \\
% 
% Un altro aspetto della ricerca di eventi rari  \`{e} un'analisi e classificazione dettagliata degli eventi di fondo. Una delle componenti principali degli eventi di fondo nella prima fase sperimentale di \gerda\ \`{e} dovuta al isotopo $^{42}$Ar costituente del \ac{LAr}. L'attivit\`{a} relativa dell'$^{42}$Ar in \gerda\ \`{e} stata studiata con un approccio bayesiano usando dati di \gerda\ fase I. Il risultato finale e' stato ottenuto tramite un ottimizzazione della ``binned likelihood'' su due modelli. Le efficienze dei rivelatori sono state calcolate usando delle simulazioni \ac{MC} di una parte della struttura sperimentale di \gerda. Questo permette lo studio degli effetti sistematici dovuti alla disomogeneit\`{a} della distribuzione del fondo studiato nel \ac{LAr}. \\
% 
% Riportando il risultato finale dell'analisi bayesiana al momento in cui il \ac{LAr} \`{e} stato messo sotto terra, \`{e} permesso il confronto con altri risultati sperimentali e con calcoli teorici riguardo i meccanismi di produzione dell'$^{42}$Ar nell'atmosfera. Un'attivita relativa di \mbox{$A_0 (^{42}\text{Ar}) = 101.0^{+2.5}_{-3.0} (\text{stat}) \pm 7.4 (\text{syst})\,\upmu \mathrm{Bq/kg}$} \`{e} stata trovata. Tale valore contiene la correzzione necessaria dovuto all'decadiemnto di $^{42}$Ar sotto terra ed \`{e} compatibile entro $1.8\sigma$ con il valore ottenuto nell'esperimento di testaggio di \gerda\ LArGe ed in buon accordo con un valore teorico estratto dalla descrizione di del meccanismo di produzione principale di $^{42}$Ar. \\


% 
% 
% 
% 
% 
% 
% \newpage
% 
% La prima parte del lavoro di tesi consiste nella progettazione e realizzazione di un apparato sperimentale. Questo \`{e} stato usato per lo studio di eventi dovuti ad interazioni di fotoni che rilasciano energia all'interno di un rivelatore al germanio. Lo scopo dell'analisi \`{e} lo studio della risposta del rivelatore in funzione della posizione dell'interazione. Il rivelatore che \`{e} stato studiato \`{e} del tipo \ac{BEGe}. \\
% 
% Un fascio di fotoni emessi da una sorgente $^{137}$Cs colpisce il rivelatore. Il sistema include fino a quattro rivelatori semi-coassiali aggiuntivi che servono per rivelare i fotoni prodotti da interazioni Compton con un angolo di $90^{\circ}$. Nel caso di coincidenza tra il BEGe e uno dei rivelatori coassiali si registra l'intero evento. Gli eventi registrati in coincidenza sono trattati successivamente all'acquisizione. \\
% 
% Grazie alla collimazione della sorgente e alla ridotta accettanza angolare dei rivelatori coassiali, l'apparato \`{e} in grado di selezionare eventi da regioni specifiche del \ac{BEGe}. Il sistema può realizzare scansioni complessive e tridimensionali del volume del \ac{BEGe}. Cinque rivelatori sono stati caratterizzati e quattro di essi sono stati inclusi nel sistema. \\
% 
% L'intera geometria \`{e} stata implementata in una simulazione basata su Geant4. Grazie a questa simulazione, si \`{e} fatto uno studio dettagliato della distribuzione in energia e spaziale delle singole interazioni Compton che sono state confrontate con le distribuzioni degli eventi di fondo. Tagli in energia scelti secondo le simulazioni assicurano una selezione di singoli interazioni Compton con una posizione d'interazione nota. \\
% 
% Una campagna di presa dati \`{e} stata svolta usando una sorgente $^{137}$Cs con un attività di $780\,$MBq. Questo permette di esaminare una regione del \acs{BEGe} di circa $2\times2\times10\,$mm$^3$ in un tempo di misura dell'ordine di un giorno. Per ogni regione \`{e} stata ottenuta una forma d'impulso medio. Cambiando la regione scansionata o l'alta tensione applicata sul \acs{BEGe} si osservano differenze nella forma degli impulsi medi. In particolare, si \`{e} notato che la regione pi\`{u} sensibile \`{e} la parte iniziale dell'impulso. \\
% 
% Nella seconda parte della tesi \`{e} stata studiata l'attivit\`{a} relativa dell'isotopo $^{42}$Ar contenuto nell'argon liquido dell'esperimento \gerda. L'analisi \`{e} stata effettuata usando un approccio bayesiano. Le efficienze dei rivelatori sono state calcolate utilizzando delle simulazioni parziali dell'apparato sperimentale di \gerda\ Fase I. L'attivit\`{a} relativa trovata in quest'analisi \`{e} \mbox{$A_0 (^{42}\text{Ar}) = 101.0^{+2.5}_{-3.0} (\text{stat}) \pm 7.4 (\text{syst})\,\upmu \mathrm{Bq/kg}$}. Questo valore \`{e} stato corretto per il tempo in cui l'argon liquido \`{e} rimasto sotto terra. Quindi, \`{e} possibile confrontare questo risultato con valori ottenuti in altri esperimenti e con valori calcolati secondo i meccanismi di produzione del $^{42}$Ar nell'atmosfera. 
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\begin{flushright}
\begin{minipage}{0.5\textwidth}
 \textit{I have done a terrible thing, I have postulated a particle that cannot be detected.}
 \begin{flushright}
 \textit{--- W. Pauli}
 \end{flushright}
\end{minipage}
\end{flushright}

\vspace{1cm}

Pauli could not have been more wrong with this statement after postulating the existence of the neutrino in 1930, which ever since has been challenging the physics world. It has been 60 years since its first experimental confirmation. Although a lot has been learned about neutrinos, the picture unrevealed still has obvious and profound flaws: the absolute neutrino masses are unmeasured and their smallness is unexplained, it is unknown which of the three generations of neutrinos is the lightest and experimental data is not sufficient to decide whether the neutrino is of Dirac or Majorana nature. \\

To complete the picture, neutrinos are and will be a main focus of fundamental research for many years to come. They offer an exciting field of study as Neutrinos are very different from other constituents of the \ac{SM} \cite{RefWorks:190}, and findings in the neutrino sector have far reaching implications also in other fields, for instance in cosmology \cite{RefWorks:129}. Neutrinos have opened a window to new physics beyond the \ac{SM} when solar neutrino oscillation experiments found compelling evidence for a nonzero neutrino mass \cite{RefWorks:122, RefWorks:128, RefWorks:127}. Moreover, neutrino mixing could be a source of \ac{CP} violation in the leptonic sector of the \ac{SM} \cite{RefWorks:130, RefWorks:133}. The utmost importance is given to determining whether the neutrino is of Dirac or Majorana nature \cite{RefWorks:134}. It is fundamental for the understanding of the origin of neutrino masses, mixing and symmetries in the leptonic sector. \\

The only realistic probe of the existence of a Majorana neutrino mass term in the next $20-30$ years is the search for \ac{0nbb} \cite{RefWorks:135}. This decay would be Lepton number violating by two units and require physics beyond the \ac{SM}. A very brief introduction to \ac{0nbb} decay will be given in \chaptername~\ref{chapter:into_0nbb}; a fully comprehensive review is beyond the scope of this work and excellent, recent reviews about neutrinos in general and \ac{0nbb} decay in particular can be found in \cite{RefWorks:118, RefWorks:135, RefWorks:136}. \\

Several experiments are looking for \ac{0nbb} decay in different isotopes and with very different detection techniques \cite{RefWorks:171, RefWorks:175, RefWorks:64, RefWorks:172, RefWorks:177, RefWorks:173}. They have one thing in common: they are looking for a very rare --- if existing --- decay, which makes them \textit{low background experiments}. Reduction of background which can mimic signal events and understanding of the background components present is vital for all of them, and becomes more important with higher active mass. This is explained in a little more detail in \chaptername~\ref{chapter:intro_gerda}. \\

Background can be reduced in three ways: 1) \textit{passively}, by building experiments deeper underground, selecting radiopure construction materials and shielding with lead, water or similar; 2) \textit{actively vetoing background} which enters from the outside leaving traces inside a veto system; 3) \textit{discriminating background from signal events} by studying the shape of pulses from the detector(s). This work focuses on the latter. \\

This thesis has been conducted in the framework of the \gerda\ experiment, which is searching for \ac{0nbb} decay in $^{76}$Ge \cite{RefWorks:64}. In \gerda, \ac{HPGe} detectors enriched in $^{76}$Ge are used as source and detector simultaneously. An introduction to germanium detectors and interaction of photons with the detector material can be found in \chaptername~\ref{chap:intro_detectors}. A comprehensive characterization of the detectors used in this work is described in the following \chaptername~\ref{chap:detector_characterization}. \\

The properties of signal-like events are studied in order to improve background rejection by \ac{PSD} in germanium detectors for application in \ac{0nbb} experiments. An existing experimental setup for the purpose of collecting \ac{SSE} (interactions with localized energy deposition) samples of confined regions inside a \ac{BEGe} detector \cite{RefWorks:191} has been rebuilt and significantly improved. It is based on measurement of energy deposited inside a \ac{BEGe} detector by photon interacting via Compton scattering and coincident tagging of the scattered photons. The setup has the potential of a full three-dimensional scan of any \ac{HPGe} detector. The collected event samples can be used to improve background rejection, for \ac{PSA} and for comparison with pulse shape simulations. \chaptername~\ref{chap:compton_setup}ff contain a description of the experimental purpose and functionality, a full \ac{MC} description of the setup, and finally, results of \textit{Compton coincidence measurements} taken with the apparatus.\\

Another aspect of low background experiments is the study of different background components present in the experimental setup, which can mimic signal events. The unique setup of the \gerda\ experiment, operating bare \ac{HPGe} detectors in \ac{LAr}, gives the possibility to study the content of $^{42}$Ar in \ac{LAr} which is a major background source for \gerda. The last \chaptername~\ref{chap:Ar42} contains a study of the specific activity of $^{42}$Ar in the \gerda\ \ac{LAr} with a Bayesian approach using Phase I data .\\
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\label{sec:Physics_0nbb}

\ac{bb} is a second order weak decay transforming two neutrons bound in a nucleus simultaneously into two protons via virtual levels. In addition to the ordinary decay mode (\acs{2nbb}) with two neutrinos in the final state, a second mode (\acs{0nbb}) without neutrinos is theoretically possible:
\begin{eqnarray}
  2\upnu\upbeta\upbeta: \quad A(Z,N) & \rightarrow & A(Z+2,N-2) + 2\,e^- + 2\,\bar{\nu}_e  \\
  0\upnu\upbeta\upbeta: \quad A(Z,N) & \rightarrow & A(Z+2,N-2) + 2\,e^-
\end{eqnarray}

\acf{2nbb} can be observed in even-even nuclei for which ordinary beta decay is energetically forbidden but an energetically preferable energy level exists. It has been measured in a handful of isotopes with lifetimes of \mbox{$(10^{18}-10^{24})\,$yr} \cite{RefWorks:49, RefWorks:69}. The latest value for $^{76}$Ge is $T_{1/2}^{2\upnu} = \left( 1.84^{+0.14}_{−0.10} \right)\cdot10^{21}\,$yr \cite{RefWorks:12}. \\

\acf{0nbb} is a by two units \ac{LNV} decay; thus forbidden in the \ac{SM}. Lepton number conservation however is just an accidental symmetry in the \ac{SM} as no operator can be found which violates Lepton number. \ac{LNV} is introduced taking higher dimension operators into account giving rise to physics beyond the \ac{SM}. \\

The possible Majorana nature of neutral spin-1/2 particles was pointed out already in 1937 by Ettore Majorana \cite{RefWorks:134}. Being the only neutral fermion, the neutrino is the sole candidates for a Majorana particle in the \ac{SM}. Moreover, compelling evidence for a nonzero neutrino mass was found by neutrino oscillation experiments \cite{RefWorks:122, RefWorks:128, RefWorks:127}. The standard interpretation of \ac{0nbb} decay is the \textit{mediation by light massive neutrinos which fulfill the Majorana condition $\nu = \bar{\nu}$ as dominant process}. \ac{0nbb} decay --- mediated by light Majorana neutrinos --- is visualized in contrast to the known decay mode, \ac{2nbb}, in \figurename~\ref{fig:FeynmanDiagrams}, by the corresponding Feynman diagrams. \\

The expected signature of such a decay --- in the standard interpretation --- would be a peak at the end-point of the continuous \ac{2nbb} spectrum (see \figurename~\ref{fig:Signature}). \\


It shall be noted that quite some non-standard interpretations of \ac{0nbb} decay exist but are not considered in the following. See e.g. \cite{RefWorks:135} for a compilation of non-standard interpretations and further reference. They become interesting if experiments looking for \ac{0nbb} decay see a signal, while experiments which are sensitive to other combinations of neutrino masses e.g. measurements of the endpoint of the tritium decay \cite{RefWorks:139,RefWorks:140} or cosmological observations of \ac{BAO} and the \ac{CMB} \cite{RefWorks:141} do not confirm the measurements; i.e. a signal is found outside the allowed parameter space of \ac{0nbb} being mediated by light massive neutrinos. That parameter space will be discussed in a moment. \\

Neutrinos of Majorana nature are interesting also in other theoretical aspects. An elegant solution for the smallness of neutrino masses is provided via the see-saw type I mechanism \cite{RefWorks:54} adding only three right-handed components of the neutrino fields to the \ac{SM}. This mechanism is possible if neutrinos are of Majorana nature. \\

The only practical way to prove that neutrinos are Majorana particles \cite{RefWorks:138} for the next $20-30\,$years is to search for \ac{0nbb} decay \cite{RefWorks:135}. \\

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.8\textwidth]{./0nbb_physics/plots/2nbb_0nbb}
  \caption[Feynman diagrams of \ac{2nbb} and \ac{0nbb}]{ Feynman diagrams of \ac{2nbb} (left) and the standard interpretation of \ac{0nbb} (right). }
  \label{fig:FeynmanDiagrams}
\end{figure}
\vspace{5mm}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0.3cm, clip=true, width=0.46\textwidth]{./0nbb_physics/plots/0nbb_spectrum}
  \caption[ Expected spectral signature of \ac{0nbb} decay]{ Expected spectral signature of \ac{0nbb} decay. }
  \label{fig:Signature}
\end{figure}

\clearpage
The inverse half-life of \ac{0nbb} is given by
\begin{equation}
 \Gamma^{0\upnu} = \frac{1}{T_{1/2}^{0\upnu}} = G^{0\upnu}(Q,Z)\,g_{\mathrm{A}}^4\,\frac{\langle m_{\upbeta\upbeta} \rangle^2}{m_{\mathrm{e}}^2}\,|\mathcal{M}^{0\upnu}|^2 
 \label{eqn:InverseHalfLife}
\end{equation}

The phase space factor $G^{0\upnu}$ scales with the end-point energy of \ac{2nbb} decay to the fifth power $Q_{\upbeta\upbeta}^5$ and is calculated numerically. For recent calculations of $G^{0\upnu}$ see \cite{RefWorks:144} and \cite{RefWorks:145}. The so called Q-value or end-point energy, $Q_{\upbeta\upbeta} = M_{\mathrm{i}} − M_{\mathrm{f}} − 2\,m_{\mathrm{e}}$, is given by the difference of initial, $M_{\mathrm{i}}$, and final mass, $M_{\mathrm{f}}$, of the decaying nucleus and the mass of the two electrons, $2\,m_{\mathrm{e}}$. It defines the maximal kinetic energy of the two electrons in the final state of \ac{2nbb}. The \ac{0nbb} signal is expected at this energy. In general, values of $Q_{\upbeta\upbeta}$ are measured experimentally. In \tablename~\ref{tab:QValue} numerical values of $G^{0\upnu}$, the Q-value and the natural abundance of selected isotopes can be found. \\

% table of Phasespacesthe
\begin{table}[p] 
\centering
  \begin{threeparttable}[p]
  \caption[Phase space factor, Q-value and natural abundance]{Phase space factor $G^{0\upnu}$, Q-value and natural abundance for \ac{0nbb} candidate isotopes with $Q_{\upbeta\upbeta} \geq 2\,$MeV. Using $r_0 = 1.2\,$fm for the nuclear size corrections. Isotopic abundance from Table 1 in \cite{RefWorks:135} all other values taken from Table III in \cite{RefWorks:144}.}
  \label{tab:QValue}
    \begin{tabular}{cccc}
      \hline
      \hline
      Isotope & $G^{0\upnu}$ [$10^{-15}\,$y$^{-1}$] & $Q_{\upbeta\upbeta}$ [keV] & nat. Abundance \\ 
      \hline
      $^{48}$Ca & 24.81 & 4272.26(404) & 0.187 \\
      $^{76}$Ge & 2.363 & 2039.04(16)\tnote{\textdagger} & 7.8 \\
      $^{82}$Se & 10.16 & 2995.12(201) & 9.2 \\
      $^{96}$Zr & 20.58 & 3350.37(289) & 2.8 \\
      $^{100}$Mo & 15.92 & 3034.40(17) & 9.6 \\
      $^{110}$Pd & 4.815 & 2017.85(64) & 11.8 \\
      $^{116}$Cd & 16.70 & 2813.50(13) & 7.6 \\
      $^{124}$Sn & 9.040 & 2286.97(153) & 5.6 \\
      $^{130}$Te & 14.22 & 2526.97(23) & 34.5 \\
      $^{136}$Xe & 14.58 & 2457.83(37) & 8.9 \\
      $^{150}$Nd & 63.03 & 3371.38(20) & 5.6 \\
      \hline
      \hline
    \end{tabular}
    \begin{tablenotes}
      \item[\textdagger] A more precise Q-value $Q_{\upbeta\upbeta}(^{76}\mathrm{Ge}) = 2039.061(7)\,$keV can be found in \cite{RefWorks:63}.
    \end{tablenotes}
  \end{threeparttable}
\end{table}

\begin{table}[p]
\centering
\caption[Parameters from global analysis of oscillation experiments]{ Parameters from a global analysis of oscillation experiments which constrain $m_{\upbeta\upbeta}$; values are taken from \cite{RefWorks:147}. $\Delta m_{12}^2 = m_2^2 - m_1^2$ and $\Delta m_{3\mathrm{l}}^2 = m_3^2 - (m_1^2+m_2^2)/2$ where $\Delta m_{3\mathrm{l}}^2 > 0 \, (<0)$ for the \acs{NH} (\acs{IH}).}
\label{tab:OscillationParameters}
 \begin{tabular}{ccccc}
  \hline
  \hline
  hierarchy & parameter & value & $1\sigma$ & $3\sigma$ \\
  \hline
  \multirow{2}{*}{\acs{NH} or \acs{IH}} & $\Delta m_{12}^2$ [$10^{−5}$eV$^2$] & 7.54 & $7.32-7.80$ & $6.99-8.18$ \\
  & $\sin(2\vartheta_{12})$ [$10^{−1}$] & 3.08 & $2.91-3.25$ & $2.59-3.59$ \\
  \hline
  \multirow{4}{*}{\acs{NH}} & $\Delta m_{3\mathrm{l}}^2$ [$10^{−3}$eV$^2$] & 2.43 & $2.37-2.49$ & $2.23-2.61$ \\
  & $\sin(2\vartheta_{13})$ [$10^{−2}$] & 2.34 & $2.15-2.54$ & $1.76-2.95$ \\
  & $\sin(2\vartheta_{23})$ [$10^{−1}$] & 4.37 & $4.14-4.70$ & $3.74-6.26$ \\
  & $\delta/\pi$ & 1.39 & $1.12-1.77$ & $0-2$ \\
  \hline
  \multirow{4}{*}{\acs{IH}} & $\Delta m_{3\mathrm{l}}^2$ [$10^{−3}$eV$^2$] & 2.38 & $2.32-2.44$ & $2.19-2.56$ \\
  & $\sin(2\vartheta_{13})$ [$10^{−2}$] & 2.40 & $2.18-2.59$ & $1.78-2.98$ \\
  & $\sin(2\vartheta_{23})$ [$10^{−1}$] & 4.55 & $4.24-5.94$ & $3.80-6.41$ \\
  & $\delta/\pi$ & 1.31 & $0.98-1.60$ & $0-2$ \\
  \hline
  \hline
 \end{tabular}
\end{table}

\afterpage{\clearpage}

The axial vector coupling constant $g_{\mathrm{A}}$ and the \ac{NME} $\mathcal{M}^{0\upnu}$ are problematic parameters which will be discussed shortly at the end of this chapter and $m_{\upbeta\upbeta}$ is called the \textit{effective Majorana mass}. \\


As $m_{\upbeta\upbeta}$ is a combination of neutrino mass Eigenstates $m_i$
\begin{equation}
 m_{\upbeta\upbeta} = \left|\,e^{i\alpha_1} |U_{\mathrm{e}1}^2| m_1 + e^{i\alpha_2} |U_{\mathrm{e}2}^2| m_2 + |U_{\mathrm{e}3}^2| m_3\,\right| 
\end{equation}

\ac{0nbb} gives a handle on the neutrino mass scale and is sensitive to the two Majorana phases $\alpha_1$ and $\alpha_2$ which only show in \ac{LNV} decays as is \ac{0nbb} decay. The unitary \ac{PMNS} \cite{RefWorks:158,RefWorks:160,RefWorks:161} matrix $U$ describes neutrino mixing. In the standard parametrization, \ac{PMNS} is given by
\begin{equation}
 U = 
 \left(
 \begin{array}{ccc}
  1 & 0 & 0 \\
  0 & c_{23} & s_{23} \\
  0 & -s_{23} & c_{23} \\
 \end{array}
  \right)
 \times
 \left(
 \begin{array}{ccc}
  c_{13} & 0 & s_{13} e^{-i\delta} \\
  0 & 1 & 0 \\
  - s_{13} e^{i\delta} & 0 & c_{13} \\
 \end{array}
 \right)
 \times
 \left(
 \begin{array}{ccc}
  c_{12} & s_{12} & 0 \\
  - s_{12} & c_{12} & 0 \\
  0 & 0 & 1 \\
 \end{array}
 \right) \\
\end{equation}

with $s_{ab} \equiv \sin\vartheta_{ab}$ and $c_{ab} \equiv \cos\vartheta_{ab}$ and the mixing angles $\vartheta_{ab}$. The Dirac phase $\delta$ could be responsible for \textit{\ac{CP} violation in the leptonic sector of the \ac{SM}}. \\

The effective Majorana mass $m_{\upbeta\upbeta}$ can be constrained from parameters obtained in neutrino oscillation experiments, as \mbox{$m_{\upbeta\upbeta} = f(\vartheta_{12},\,\vartheta_{13},\,\alpha_1,\,\alpha_2,\,m_1,\,m_2,\,m_3)$}. The parameters and their uncertainties are listed in \tablename~\ref{tab:OscillationParameters}. Three general parameter spaces for $m_{\upbeta\upbeta}$ are obtained. They are

\begin{listliketab}
  \begin{tabular}{lll}
    \textbullet & \acf{NH}: & $m_1 < m_2 < m_3;\qquad \Delta m_{\odot}^2 \ll \Delta m_{\mathrm{a}}^2 \equiv \Delta m_{23}^2$ \\
    \textbullet & \acf{IH}: & $m_3 < m_1 < m_2;\qquad \Delta m_{\odot}^2 \ll \Delta m_{\mathrm{a}}^2 \equiv |\Delta m_{13}^2|$ \\ 
    \textbullet & \acf{QD}: & $m_1 \simeq m_2 \simeq m_3;\qquad 0 \gg \Delta m_{\mathrm{a}}^2 \gg \Delta m_{\odot}^2 $ \\
  \end{tabular}
\end{listliketab}

With the \textit{solar} and \textit{atmospheric} squared mass differences $\Delta m_{\odot}^2 \equiv \Delta m_{12}^2 = m_2^2 - m_1^2$ and $\Delta m_{\mathrm{a}}^2 \equiv \Delta m_{23}^2 = m_3^2 - m_2^2\ (|\Delta m_{13}^2| = m_3^2 - m_1^2)$ for the \ac{NH} (\ac{IH}). \\

The allowed parameter space for $m_{\upbeta\upbeta}$ using \tablename~\ref{tab:OscillationParameters} can be represented depending on $m_\upbeta =\sqrt{ \sum_i |U_{\mathrm{e}i}|^2 m_i^2 }$ (from tritium decay end-point) or $\Sigma = \sum_i m_i$ (from cosmology). Both representations can be seen in \figurename~\ref{fig:MBetBetaPlot} for the \ac{NH} as well as the \ac{IH}. \\

A large uncertainty on $T_{1/2}^{0\upnu}$ is introduced by $\mathcal{M}^{0\upnu}$, and lately also $g_{\mathrm{A}}$ quenching is discussed \cite{RefWorks:59, RefWorks:143}. In \figurename~\ref{fig:NMEcompilation} a compilation of \ac{NME} values obtained in various models can be found. The models predict \ac{NME} values with up to one order of magnitude difference, which has to be taken into account when making predictions about experimental sensitivities and when comparing \ac{0nbb} searches  with different isotopes.

\begin{figure}[htb]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./0nbb_physics/plots/MBetaBeta_MBeta}
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./0nbb_physics/plots/MBetaBeta_Sigma}
  \caption[ Dependence of allowed parameter space of $m_{\upbeta\upbeta}$ on $m_\upbeta$ and $\Sigma$ ]{ Dependence of allowed parameter space of $m_{\upbeta\upbeta}$ on $m_\upbeta$ (top) and $\Sigma$ (bottom) from \cite{RefWorks:155} obtained using values from \cite{RefWorks:154}.  The values for relative signs of the mass Eigenvalues $m_i$, and the areas which can only be realized for non-trivial \ac{CP} phases $\delta$, are indicated.}
  \label{fig:MBetBetaPlot}
\end{figure}

\begin{figure}[htb]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./0nbb_physics/plots/NMEcompilation}
  \caption[ Predictions of \ac{NME} values calculated in various models ]{ Predictions of \ac{NME} values calculated in various models taken from \cite{RefWorks:59}. Note that the maximal value of $\mathcal{M}^{0\upnu}$ for $^{76}$Ge is more than $2.5$ times larger than the minimally predicted one.
  This introduces a large uncertainty to $T_1/2^{0\upnu}$ and has to be taken into account when making predictions about experimental sensitivities and when comparing \ac{0nbb} searches  with different isotopes. }
  \label{fig:NMEcompilation}
\end{figure}
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Background reduction is one of the main issues low background experiments have to face. In this chapter we derive an expression for the sensitivity of \ac{0nbb} experiments \cite{RefWorks:169} which shows how important it is to keep the background as low as possible. Finally, the \gerda\ experiment is introduced.

\section{Experimental sensitivity}

The sensitivity of a \ac{0nbb} experiment depends strongly on the experimental conditions. Every experiment conducted with presently known techniques will have background. If assumed flat, the number of background events can be written as
\begin{equation}
 N_{\mathrm{B}} = B_{\mathrm{i}}\, M\, \Delta t\, \Delta E
 \label{eqn:background}
\end{equation}

with the source mass $M$\footnote{In the \gerda\ experiment, as detector and source are equivalent, $M$ is the total detector mass.} and the measurement time $\Delta t$ in the energy window $\Delta E$ which depends on the energy resolution. The \ac{BI} $B_{\mathrm{i}}$ is usually given in counts kg$^{-1}$ keV$^{-1}$ yr$^{-1}$. \\

A criterion for the discovery potential of a \ac{0nbb} decay experiment can be expressed as $N_{\upbeta\upbeta} = C_1 \sqrt{N_{\upbeta\upbeta} + N_{\mathrm{B}}}$ with the confidence level $C_1$ in units of the $\sigma$ of a Poisson distribution and the number of signal counts from \ac{0nbb} decay $N_{\upbeta\upbeta}$. If we require a certain signal to background ratio $N_{\upbeta\upbeta} / N_B \equiv r_{\mathrm{SB}} $ the number of signal events is given as 
\begin{equation}
 N_{\upbeta\upbeta} = C_1 \sqrt{ \left( 1 + r_{\mathrm{SB}} \right) N_{\mathrm{B}} } = C_1 \gamma \sqrt{N_{\mathrm{B}}}
 \label{eqn:signalconfidence}
\end{equation}

We can further express the number of signal events using the decay rate $\lambda_{\upbeta\upbeta}$
\begin{equation}
 N_{\upbeta\upbeta} = \lambda_{\upbeta\upbeta} \, \frac{N_{\mathrm{A}}}{W} \, a \, \epsilon\, M \, \Delta t
 \label{eqn:signal}
\end{equation}

where Avogadro's number $N_{\mathrm{A}}$ and the atomic weight $W$ are physical constants and the isotopic abundance $0 < a \leq 1$ is defined by the natural abundance or the enrichment fraction. \\

Combining equations~\ref{eqn:background}-\ref{eqn:signal} and writing the decay rate in terms of the half-life $T_{1/2}^{0\upnu} = \ln(2) / \lambda_{\upbeta\upbeta}$ we get an expression for the sensitivity
\begin{equation}
 T_{1/2}^{0\upnu} = \alpha_1 \, a \, \epsilon\, \sqrt{\frac{M\Delta t}{B_{\mathrm{i}} \,\Delta E}}
 \label{eqn:half-life}
\end{equation}

where
\begin{equation}
 \alpha_1 = \frac{ \ln(2) N_A }{ W } \left( C_1 \sqrt{ 1 + r_{\mathrm{SB}} } \right)^{-1}
\end{equation}

When comparing different experiments $r_\mathrm{SB}$ is chosen and is then fixed. \\

If we assume that the isotopic abundance, the detection efficiency and the energy resolution are naturally given, a higher sensitivity can be reached increasing the source mass $M$, the measurement time $\Delta t$ and reducing the background $B_{\mathrm{i}}$ as much as possible. In general, the source material is expensive and sometimes hard to get, and each experimental setup has a limit on how much material can be hosted. Also, the measurement time has to stay in reasonable boundaries, let's say $<10\,$yr. In conclusion, the only real handle to get a better sensitivity is to reduce the background. \\

For a certain time no background counts are expected in the \ac{ROI}\footnote{The region around $Q_{\upbeta\upbeta}$}. Optimal experimental conditions are reached if this \textit{limit of zero-background} is maintained for the major part of the experimental runtime. Without background the sensitivity takes the form
\begin{equation}
 T_{1/2}^{0\upnu} = \alpha_2 \, a \, \epsilon \, M \, \Delta t 
 \label{eqn:half-life0bkg}
\end{equation}
with $\alpha_2 = \alpha_1\,\sqrt{ 1 + r_{\mathrm{SB}} } $. \\

Note that the dependence on source mass and measurement time in \equationname~\ref{eqn:half-life0bkg} is linear, in contrast to \equationname~\ref{eqn:half-life} where $T_{1/2}^{0\upnu} \propto \sqrt{M\Delta t}$. Thus, in the limit of zero-background the experimental resources of source mass and time are used in the most efficient way. In general, the design goal for the background index of every low background experiment is based on the objective to reach this limit.
From \equationname~\ref{eqn:background} it is evident that the higher the source mass and measurement time the lower $B_{\mathrm{i}}$ has to be, in order to stay in the limit of zero-background. \\

\section{Germanium as a \texorpdfstring{$0\upnu\upbeta\upbeta$}{0nbb} candidate}

Experiments in \ac{0nbb} decay searches make use of very different \ac{0nbb} candidate isotopes. 
In some sense germanium is not a preferable \ac{0nbb} candidate isotope: the decay rate (\equationname~\ref{eqn:InverseHalfLife}) depends upon the phase space factor (see \tablename~\ref{tab:QValue}), hence, the expected half-life is lower for many other \ac{0nbb} candidates as can be seen in \figurename~\ref{fig:HalfLifeExp}. \\

In the case of nonzero-background the sensitivity of a \ac{0nbb} experiment depends upon the energy resolution (see \equationname~\ref{eqn:half-life}). Hence, the relatively long expected half-life is partly compensated by the exceptional energy resolution achievable with germanium detectors (see \sectionname~\ref{sec:HPGeDetectors}). Moreover, \ac{2nbb} decay is an irreducible background source for \ac{0nbb} decay searches. Thus, for longer half-lives a good energy resolution is necessary to distinguish the peak expected from \ac{0nbb} decay from the tail of the distribution of \ac{2nbb} decay. \\

\section{The \protect{\mbox{\sc Gerda}} experiment}
\label{sec:Gerda}

The \ac{GERDA} experiment is located at \ac{LNGS} of \ac{INFN} in Italy with an overburden of about \mbox{$3600\,$m.w.e.}. \gerda\ is operating \ac{HPGe} detectors bare in \ac{LAr} \cite{RefWorks:64}, which are enriched in the \ac{0nbb} candidate isotope $^{76}$Ge. The setup, which is shown in \figurename~\ref{fig:Gerda}, incorporates a copper lined stainless steel cryostat, \mbox{$4\,$m} in diameter, containing \mbox{$63\,\mathrm{m}^3$} of \ac{LAr}. It is surrounded by a \mbox{3-m-thick} active Muon Cerenkov Water Veto, which serves also as a passive $\gamma$ and neutron shield. The Muon Veto is instrumented with 66 photomultipliers in order to identify muon induced events. The detectors are submerged into the cryostat through a lock-system from a glove box in the clean room above the neck of the cryostat. An additional muon veto made of plastic scintillator panels is installed on the roof of the clean room. It is meant to cover the weak spot of the water veto: the neck of the cryostat. Special care was devoted to the selection of radiopure materials for construction, and to a sparse design of all components near the detectors (holders, electronics, cables, etc.) to reduce thereby introduced background.

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=false, width=0.8\textwidth]{./Gerda/plots/expected_halflifes}
  \caption[ Expected \ac{0nbb} half-lives for different candidate isotopes ]{ Expected \ac{0nbb} half-lives for different candidate isotopes. $m_{\upbeta\upbeta} = 1\,$eV and $g_{\mathrm{A}} = 1.269$. Figure adapted from \cite{RefWorks:59}.}
  \label{fig:HalfLifeExp}
\end{figure}

\subsection{The \texorpdfstring{\textsc{Gerda}}{Gerda} detectors}

The \gerda\ detectors are $p\,$-type \ac{HPGe} detectors (for details see the next \chaptername~\ref{chap:intro_detectors}) enriched in the isotope $^{76}$Ge. In the experimental Phase I mainly \ac{Coax} detectors were used while new detectors were produced for the second experimental stage. The Phase II detectors are of \ac{BEGe} type. In \figurename~\ref{fig:GeDetectors} the \ac{Coax} and \ac{BEGe} detector geometry can be seen alongside the \ac{PPC} detector geometry which is similar to the \ac{BEGe} but has an even smaller read-out contact. 

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=false, width=0.9\textwidth]{./GermaniumDetectors/plots/detectors_sketch}
  \caption[ \ac{HPGe} detector geometries ]{ \ac{HPGe} detector geometries. For p-type detectors the HV electrode is the $n^+$ contact which is lithium diffused and the signal readout contact is the boron implanted $p^+$ contact. This is inverted for n-type material. }
  \label{fig:GeDetectors}
\end{figure}

\afterpage{\clearpage}

\subsection{Phase I result}

\gerda\ has concluded the first experimental phase publishing a lower limit on the half-life of \ac{0nbb} of $T_{1/2}^{0\upnu} > 2.1\cdot10^{25}\,$yr ($90\%\,$C.L.), with a median sensitivity of $T_{1/2}^{0\upnu} > 2.4\cdot10^{25}\,$yr \cite{RefWorks:60}. The achieved background index of $10^{-2}\,$cts/(keV$^{-1}$kg$^{-1}$yr$^{-1}$) at $Q_{\upbeta\upbeta}$ was unpreceded. By combining results with prior \ac{0nbb} searches by the \ac{HDM} \cite{RefWorks:182} and the \ac{IGEX} \cite{RefWorks:183} the limit was strengthened to $T_{1/2}^{0\upnu} > 3.0\cdot10^{25}\,$yr ($90\%\,$C.L.). This strongly disfavors a claim that was pending since a subgroup of the \ac{HDM} experiment in 2004 reported the observation of \ac{0nbb} decay in $^{76}$Ge \cite{RefWorks:56}. A comparison of the found limits by \gerda\ with the half-life reported in 2004 and limits published by \ac{0nbb} searches in $^{136}$Xe can be seen in \figurename~\ref{fig:ComparisonGeHalfLife}. 

\subsection{Phase II upgrade}

The transition to the second experimental phase is almost complete \cite{RefWorks:170}. A new lock-system has been installed, and a new detector assembly incorporating seven detector strings has been custom produced and is currently being tested. The \ac{LAr} has been instrumented with a hybrid of 8" photomultipliers tubes (PMTs) and silicon photomultipliers (SiPMs) coupled to wavelength shifting fibers which uses the scintillation light of the \ac{LAr} to identify background from components close to the detectors. Additional 30 \ac{HPGe} detectors of \ac{BEGe} type were produced and tested; they add $20\,$kg of enriched material to the total detector mass. A new holder design replaces the Phase I spring-loaded contacts to the detectors by wire bonds. The challenging goal for Phase II is to achieve a new \ac{BI} of $10^{-3}\,$cts/(keV$\,$kg$\,$yr) and to reach a sensitivity in the range of $10^{26}\,$yr.
\vspace{2cm}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=false, width=0.7\textwidth]{./Gerda/plots/GerdaSetup}
  \caption[ The \gerda\ setup  ]{ The \gerda\ experimental setup. Through a lock system \ac{HPGe} detectors are lowered into the copper-lined stainless steel cryostat which is filled with \ac{LAr}. The cryostat is surrounded by a Muon Cerenkov Water Veto. }
  \label{fig:Gerda}
\end{figure}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=false, width=0.8\textwidth]{./Gerda/plots/GerdaCombined}
  \caption[ Comparison of half-life limits of \ac{0nbb} in $^{76}$Ge and $^{136}$Xe ]{ Comparison of half-life limits of \ac{0nbb} in $^{76}$Ge and $^{136}$Xe with the signal claim reported in 2004. The lines in the shaded gray band are predictions for the correlation of the half-lives in $^{136}$Xe and in $^{76}$Ge according to different NME calculations. Figure adapted from \cite{RefWorks:60}.}
  \label{fig:ComparisonGeHalfLife}
\end{figure}




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%	Doctoral tesis - LEgnaro Germanium Observatory 
%	
%	INtorduction: Germanium Detectors
%	
%	Author: Katharina von Sturm
%	Date: December 2015
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

In the next section a short overview of interactions of photons with matter is given. Hereafter, germanium is introduced as a semiconductor material and the properties of semiconductor diode detector are discussed. The following information can easily be found in every text book about radiation and detection measurements and semiconductor devices. Still one of the best and easiest to understand introductions is given in \cite{RefWorks:1}. 

\section{Interaction of photons with matter}
\label{sec:interactions}

Photons are neutral and massless, thus being able to travel deeper in material than charged particles. In their interactions with matter the incident photon can be absorbed and disappear, or be scattered and change energy and/or direction. When detecting $\gamma$ radiation, i.e. high-energetic photon radiation originating from nuclear decays, only inelastic processes play a role where energy is absorbed in the detector material or transferred to it. Nevertheless, a very brief description of elastic processes is given.

\subsection{Elastic scattering}

An interactions in which the photon energy in the initial and final state of the reaction is conserved is called elastic scattering. \\

\textit{Thomson scattering} is the low energy limit (visible part of the electromagnetic spectrum) of Compton scattering, where a photon gets elastically scattered on free unpolarizable charged particles e.g. free electrons. The electromagnetic component of the photon field accelerates a free electron which in turn radiates at the same frequency. Depending on the observation angle the observed radiation is more or less polarized. \\

\textit{Rayleigh scattering} is the elastic scattering of photons on harmonically bound electrons e.g. shell electrons in an atom. The differential cross section of Rayleigh scattering depends on the wavelength of the photon to the fourth power, in contrast to Thomson scattering, which does not depend on the photon wavelength.

\subsection{Photoelectric effect}

The absorption of a photon by a shell electron of an atom is called \textit{Photoelectric effect}. The photon has to have at least the binding energy of the electron $E_{\mathrm{b}}$ in the respective shell. After the reaction, the electron is free and can be detected. Electrons emitted in this way are called \textit{photoelectrons} and their kinetic energy is given by
\begin{equation}
 E_{\mathrm{kin}} = h\nu - E_{\mathrm{b}}
\end{equation}

where $h$ is the Planck constant and $\nu$ is the frequency of the photon field. $h\nu$ is the initial energy of the photon. \\

A free place in the electronic shell can be filled by an electron from an energetically higher shell emitting characteristic photon radiation with an energy equal to the difference of the two energy levels $E_\upgamma = \Delta E_{\mathrm{b}}$. A sketch of these processes can be found in \figurename~\ref{fig:Photo}.

\begin{figure}[p]
\centering
  \includegraphics[trim=0.2cm 0cm 0cm 0cm, clip=true, width=0.8\textwidth]{./GermaniumDetectors/plots/sketch_photo} \\
  \caption[ Photoelectric effect and characteristic photon radiation ]{ Photoelectric effect. A photon with incident energy $E_{\upnu} = h\nu$ is absorbed by a shell electron which gets emitted carrying the kinetic energy $E_{\mathrm{e}} = E_{\upnu} - E_{\mathrm{b}}$. Subsequently an electron from a higher shell can fall to the free place left vacant by the photo electron emitting characteristic photon radiation with an energy equal to the difference of the two shell levels. }
  \label{fig:Photo}
\end{figure}

\subsection{Compton scattering}
\label{sec:physics_compton}

\textit{Compton scattering} describes the scattering of a photon on a loosely bound (virtually free) electron with energy transfer. An electron which is gaining energy in this manner is called \textit{recoil electron}. The kinetics are completely characterized by energy and momentum conservation if the scattering angle $\theta$ is given (see \figurename~\ref{fig:Compton}). The energy of the scattered photon $E_{\upnu}'$ and electron $E_{\mathrm{e}}$ can be written as
\begin{align}
  \label{eqn:ComptonEnergies}
  E_{\upnu}' & = E_{\upnu} \cdot \left( 1 + \frac{ E_{\upnu}}{ m_{\mathrm{e}} c^2 } \cdot (1-\cos\theta) \right)^{-1} = E_{\upnu} \cdot P(E_{\upnu},\theta) \\
  E_{\mathrm{e}} & = E_{\upnu} - E_{\upnu}'
\end{align}

where $E_{\upnu}$ is the incident photon energy, $m_{\mathrm{e}}$ is the rest mass of the electron and $c$ is the speed of light. \\

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.6\textwidth]{./GermaniumDetectors/plots/sketch_compton} 
  \caption[ Compton scattering ]{ Compton scattering. A photon is scattered on a free electron, dynamics are defined by the incident photon energy and the scattering \mbox{angle $\theta$}. }
  \label{fig:Compton}
\end{figure}

\figurename~\ref{fig:SingleCompton} shows the energy dependence of the scattered photon and electron on the scattering angle $\theta$, with an incident photon energy of $662\,$keV. \\

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./GermaniumDetectors/plots/single_compton}
  \caption[ Photon and electron energy in Compton scattering ]{Energy of photon and electron after a Compton scattering for an incident photon energy of $662\,$keV.}
  \label{fig:SingleCompton}
\end{figure}

The differential cross section $\mathrm{d}\sigma/\mathrm{d}\Omega$ of photons on free electrons for Thomson as well as for Compton scattering is given by the Klein-Nishina formula 
\begin{equation}
 \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2 \lambda_{\mathrm{c}}^2}{2} \, P(E_{\upnu},\theta)^2 \left[ P(E_{\upnu},\theta) + P(E_{\upnu},\theta)^{-1} -1 + \cos^2\theta \right],
 \label{eqn:KleinNishina}
\end{equation}

with the fine-structure constant $\alpha$, the Compton wavelength $\lambda_{\mathrm{c}} = \hbar/ m_{\mathrm{e}} c$ and $P(E_{\upnu},\theta)$ as defined in \equationname~\ref{eqn:ComptonEnergies}. In \figurename~\ref{fig:KleinNishina} the differential cross section is plotted for various photon energies.

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./GermaniumDetectors/plots/Klein_Nishina}
  \caption[ Differential cross section in Thomson and Compton scattering ]{ Differential cross section in Thomson and Compton scattering normalized to $\mathrm{d}\sigma/\mathrm{d}\Omega$ at $0^{\circ}$ scattering angle. }
  \label{fig:KleinNishina}
\end{figure}

\subsection{Pair production}
\label{sec:pairproduction}

For photons with at least twice the rest mass energy of the electron $E_{\upnu} \geq 1022\,$keV \textit{pair production} becomes energetically possible. In the Coulomb field of a nucleus the photon can be transformed into an electron-positron pair, as can be seen in \figurename~\ref{fig:Pair}. All energy which exceeds $2\,m_{\mathrm{e}}$ gets converted into kinetic energy which is shared between the electron and the positron. The positron subsequently thermalizes and finally annihilates with an $e^-$ creating two back-to-back photons with an energy of $511\,$keV each.

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.7\textwidth]{./GermaniumDetectors/plots/sketch_pairproduction}
  \caption[ Pair production ]{ Pair production. In the Coulomb field of a nucleus a photon can be converted to an electron-positron pair if its energy is $E_{\gamma} \geq 1022\,$keV. The positron slows down and annihilates with an electron emitting two photons back-to-back with the characteristic energy of $511\,$keV each. }
  \label{fig:Pair}
\end{figure}

\subsection{Gamma ray attenuation}

When passing through a medium, photons experience all processes described in \sectionname~\ref{sec:interactions}. The surviving fraction of photons at incident energy in dependence of the material thickness $d$ is given by an exponential law
\begin{equation}
 \frac{N(d)}{N_0} = \exp( -\mu \rho \cdot d )
 \label{eqn:gammaattenuation}
\end{equation}

Where $N_0$ is the incident number of photons, $\rho$ is the material density and $\mu$ is the total mass attenuation coefficient. $\mu$ depends on the material and on the photon energy and is composed of the coefficients for the respective inelastic processes
\begin{equation}
 \mu = \mu_{\mathrm{photo}} + \mu_{\mathrm{Compton}} + \mu_{\mathrm{pair}}
\end{equation}

For photons with an energy of $662\,$keV $\mu_{\mathrm{pair}} = 0$, as the energy is below the threshold for pair production. \\

\section{Semiconductors}

Every material can be characterized with respect to its electrical properties. The allowed and forbidden energy states of electrons inside a material are described by band theory. They are derived by studying the wave functions of electrons in a periodic lattice of condensed matter. A simplified model of the band structure of insulators, semiconductors and conductors is given in \figurename~\ref{fig:BandModel}. The lower band represents the \textit{valence band} in which outer shell electrons are contained that are part of covalent bonds between atoms. The next higher band is called the \textit{conduction band}. The structure of valence and conduction band define the conductive/resistive properties of a material. \\

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./GermaniumDetectors/plots/band_model}
  \caption[Band structure model of isolators, semiconductors and conductors]{Simplified band structure model of isolators, semiconductors and conductors.}
  \label{fig:BandModel}
\end{figure}

In \textit{insulators} a large gap, typically $>5\,$eV, separates the two bands, whereas \textit{conductors} have either overlapping or only partially filled valence and conduction bands. In conductors electrons can easily be excited and migrate freely through the crystal. \textit{Semiconductors} have a band gap which is small compared to insulators, of about $1\,$eV. Electrons in a semiconductor can only be excited into the conduction band if they are provided with enough energy to pass the band gap. \\

At absolute zero temperature the energy states in the valence band of insulators and semiconductors would be completely filled and the conduction band would be completely empty. In a semiconductor at non zero temperature a valence electron can gain enough thermal energy to be excited into the conduction band. It leaves a vacancy behind forming an electron-hole pair. The probability for an electron to gain enough energy to form an electron-hole pair by thermal excitation is temperature dependent
\begin{equation}
 p(T) = C\,T^{3/2}\,\exp\left( - \frac{ E_{\mathrm{g}} }{ 2k_{\mathrm{B}}T } \right)
\end{equation}

Where $T$ denotes the absolute temperature, $C$ is a material constant, $E_{\mathrm{g}}$ is the gap energy which an electron has to gain in order to pass the band gap and $k_{\mathrm{B}}$ is the Boltzmann constant. \\

The probability of thermal excitation is critically dependent on the gap energy $E_{\mathrm{g}}$ and decreases fast if the material is cooled. \\

In reality, band structures are much more complex and depend on the material temperature and on the crystal axis. \figurename~\ref{fig:BandModelGermanium} shows a realistic model of the band structure of germanium. Germanium is an indirect semiconductor as the minimal state in the conduction band and the maximal state in the valence band are not at the same $k$-vector. When going from the valence band to the conduction band the electron has to change its momentum. Some useful properties of germanium are given in \tablename~\ref{tab:germanium}.

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.7\textwidth]{./GermaniumDetectors/plots/band_structure_germanium.png}
  \caption[Realistic band structure model of germanium]{Realistic band structure model of germanium. Adapted from \cite{RefWorks:110}.}
  \label{fig:BandModelGermanium}
\end{figure}

\begin{table}[p]
\centering
\begin{threeparttable}
    \caption[Properties of germanium]{Properties of germanium adapted from \tablename~11.1 in \cite{RefWorks:1}. }
    \label{tab:germanium}
      \begin{tabular}{cc}
	\hline
	\hline
	atomic number & 32 \\
	density & $5.323\,$g/cm$^3$ \\
	dielectric constant & 16 \\
	energy gap & 0.665 \\
	energy gap\tnote{\textdagger} & 0.746 \\
	intrinsic carrier density\tnote{\textdagger} & $2.4\cdot10^{13}\,$cm$^{-3}$ \\
	electron mobility\tnote{\textdagger} & $3.6 \cdot 10^4\,$cm$^2$/V$ \cdot $s \\
	hole mobility\tnote{\textdagger} & $4.2 \cdot 10^4\,$cm$^2$/V$ \cdot $s \\ 
	energy per e-h pair\tnote{\textdagger} & $2.96\,$eV \\
	Fano Factor\tnote{\textdagger} & 0.057 - 0.130 \\ 
	\hline
	\hline
      \end{tabular}
      \begin{tablenotes}
	\item[\textdagger] \footnotesize{values at $77\,$K all other values given at at $300\,$K}
      \end{tablenotes}
\end{threeparttable}
\end{table}

\subsection{Doping of semiconductors}

The electric properties of semiconductors can be altered by doping. Impurities are introduced in a pure semiconductor material which donate or accept electrons and alter thus the conductivity. It is possible to create an excess or a deficiency of electrons and hence obtain $n$ or $p$ doped material. \\

There are different methods of doping a semiconductor. Depending on the donor/ acceptor atoms, they can either replace an atom and become part of the crystal, or stay in the intermediate spaces of the lattice. Germanium for example is usually doped with boron as acceptor and lithium as donor atoms. The boron atoms replace a germanium atom in the crystal lattice; as germanium has four outer shell electrons and boron has only three a vacancy is created, which can be easily filled by other electrons. Lithium on the other hand has only one outer shell electron it can share with other atoms. Lithium is very small and can thus stay in between the crystal lattice acting as a donor impurity.

\subsection{P-n junctions as diode detectors}

A $p\,$-$\,n$ junction is formed, by bringing $n$ and $p$ doped material in contact. The excess of electrons in the $n$ doped region diffuses to the $p$ doped side and the holes from the $p$ doped region vice versa. Diffusion of charge carriers will, however, upset the local electric neutrality inside the crystal. A small portion of charge carriers diffuses, resulting in a \textit{built-in electric field} directed from $n$ to $p$. $P\,$-$\,n$ junctions reveal an asymmetric conductance transmitting current only in one direction; they are diodes. \\

The contact zone in a $p\,$-$\,n$ junction is depleted of free charge carriers. We call this the \textit{depletion region}. It can be enlarged applying an inverse bias voltage. If energy is deposited inside the depletion region, e.g. by ionizing radiation, electron-hole pairs are created. They drift along the internal electric field lines and can be collected and read. Thus, semiconductor diodes can be used as detectors for ionizing radiation. \\

\section{High Purity Germanium detectors}
\label{sec:HPGeDetectors}

To further enlarge the depletion zone, diode detectors are built as $p\,$-$\,I\,$-$\,n$ junctions instead of simple $p\,$-$\,n$ junctions. $I$ stands for \textit{intrinsic} semiconductor material as it is undoped and has intrinsic impurities only. The outer surface is doped to form an $n^+$\footnote{Here: $^+$ stands for highly doped material} and a $p^+$ contact and the interior region can be fully depleted. \\

Germanium detectors are produced with depletion layers of several centimeters in height and areas of many square centimeters. They are operated at a reverse bias of a few thousand volts. To achieve such thick depletion layers and collect all the charges generated in the depletion region it is essential that the net-impurity concentration does not exceed $2.5\cdot10^{-13}\,$impurities / Ge-atom \cite{RefWorks:163}. Because of the ultra-purity of the detector material these detectors are called \acf{HPGe} detectors. \\

All properties of \ac{HPGe} detectors are defined by the intrinsic impurity concentration: a surplus of negative (positive) intrinsic charges will create an $n$-type ($p$-type) germanium detector. In the production process the intrinsic impurities can be influenced within certain limits and the type of detector can be chosen.

\subsection{Signal formation}
\label{chapter:signalformation}

If energy is deposited in a diode detector a charge cloud is formed. The charges drift along the field lines of the interior electric field. An induced charge $Q$ on the read out electrode is formed by their movement along the trajectory\footnote{position $r_{\mathrm{q}}$ at time $t$} $r_{\mathrm{q}}(t)$. As demonstrated independently by Shockley and Ramo \cite{RefWorks:162} the charge signal on the electrode is given by
\begin{equation}
 Q(t) = -q \, \phi_{\mathrm{w}} (r_{\mathrm{q}}(t))
 \label{eqn:chargepulse}
\end{equation}

The current signal, which is given by the time derivative of $Q(t)$, is then
\begin{align}
 I(t) = \frac{\mathrm{d}Q}{\mathrm{d}t} = q \, v_\mathrm{d}(r_{\mathrm{q}}(t)) \cdot E_\mathrm{w} (r_{\mathrm{q}}(t))
 \label{eqn:currentpulse}
\end{align}

with the total charge $q$, the \textit{weighting potential} $\phi_\mathrm{w} (r_{\mathrm{q}}(t))$ and the \textit{weighting field} $E_\mathrm{w} (r_{\mathrm{q}}(t)) = - \nabla \phi_\mathrm{w}(r_{\mathrm{q}}(t))$; and the charge carrier drift velocity $v_\mathrm{d}(r_{\mathrm{q}}(t)) = \mathrm{d}r_{\mathrm{q}}(t)/\mathrm{d}t$. \\

The weighting potential is defined as the potential that can be calculated solving the Laplace equation $\nabla^2 \phi_{\mathrm{w}} = 0$ for the boundary conditions $\phi_{\mathrm{w}}(b^*) = 1$ on the read out electrode $b^*$ and $\phi_{\mathrm{w}}(\overline{b^*} ) = 0$ on all other boundaries when removing all internal charges. 

\subsection{Charge carrier mobilities}

The determination of the charge carrier mobilities and thereby the drift velocities $v_{\mathrm{d}}$ inside the detector crystal is a rather non-trivial problem: e.g. it depends on the field orientation with respect to the crystal lattice. Therefore, we will not discuss this in detail. It shall be noted that both for electrons and for holes the mobility is strongly anisotropic. Large differences for the longitudinal and tangential velocity anisotropy of electrons and holes are observed \cite{RefWorks:166}. They cause specific rise times and pulse shapes as a function of the location of energy deposition inside the crystal \cite{RefWorks:184}. Along the three crystallographic axis $\langle100\rangle$, $\langle110\rangle$ and $\langle111\rangle$ direct information on the longitudinal anisotropy can be obtained experimentally; when simulating pulse shapes of germanium detectors the anisotropy of the charge carrier mobilities has to be taken into account.

\subsection{Energy resolution and the Fano factor}

Semiconductor detectors have a very good energy resolution. It is better than what is expected for a purely Poissonian process, as the production of charge carriers is not independent but restricted by the atomic shell structure of the semiconductor material. \\

To quantify this effect, the Fano factor $F$ is introduced. It is defined as the fraction of the observed energy variance $\sigma_{\mathrm{E}}^2$ and the quantum efficiency
\begin{equation}
  F = \frac{ \sigma_{\mathrm{E}}^2 }{ N_{\mathrm{Q}} } 
\end{equation}

The quantum efficiency $N_{\mathrm{Q}}$ is given by the total deposited energy divided by the energy necessary to create an electron-hole pair; simply the number of charge carriers produced. The energy necessary to create an electron-hole pair in germanium is $w \approx 2.96\,$eV (see \tablename~\ref{tab:germanium}). \\

Without electronic noise and charge collection inefficiency, the theoretical resolution limit at some energy $E$ is given by \cite{RefWorks:180}
\begin{equation}
 \mathrm{FWHM} = \sqrt{8 \ln(2) F w E} 
\end{equation}

with the \ac{FWHM}. For a Gaussian distribution $\mathrm{FWHM} = \sqrt{8 \ln(2)}\,\sigma$, where $\sigma$ is the standard deviation of the Gaussian. \\

Assuming that the electron-hole pair creation $w$ is independent of the total energy deposition, the Fano factor is \mbox{$<0.06$} \cite{RefWorks:186} for germanium and the theoretically achievable energy resolution at $Q_{\upbeta\upbeta}(^{76}\mathrm{Ge})$ is better than 1\textperthousand. 

\subsection{Spatial resolution limit}

The limitation on spatial resolution inside a semiconductor detector is given by the random electron drift along their path to the read out electrode. The distribution will have a spatial variance of
\begin{equation}
  \sigma_{\mathrm{S}}^2 = \frac{2\, k_{\mathrm{B}}\, T\, x}{e\, E_{\mathrm{p}} }
\end{equation}

Where $x$ is the drift length of the charges from their creation point to the read out electrode and $E_{\mathrm{p}}$ is the electric potential. For $E_{\mathrm{p}} = 1\,$kV/cm and $x < 7\,$cm resulting in a maximal dispersion of $\sigma_{\mathrm{S}} = 100\,\upmu$m. This limits the precision to which position measurements of energy deposition inside the crystal can be made. 

\subsection{Operational voltage and temperature}

\ac{HPGe} detectors are generally mounted inside a vacuum cryostat connected to a \ac{LN} dewar vessel, through a heat conducting cold finger. In order to keep thermal excitation of electrons to the conduction band at a minimum germanium detectors have to be cooled to cryogenic temperatures. The operational \ac{HV} varies from detector to detector; the \ac{HV} is increased until the interior region is fully depleted. This happens typically at around $4\,$kV depending on the detector geometry. \\

As the donor lithium atoms are not fixed in the lattice of the crystal they can move due to thermal excitation of the lattice itself. Especially $p\,$-type germanium detectors should be kept at cryogenic temperatures as much as possible also if no \ac{HV} is applied to prevent further lithium diffusion inside the crystal. In the lithium diffused region electron-hole pairs partly recombine and consequently do not contribute to the signal on the read out electrode. Therefore, a growth of the lithium diffused outer layer results in a deterioration of detection efficiency, and also, the detection threshold for external low energetic radiation becomes higher with a thicker lithium diffused outer layer.
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In order to perform the measurement campaign described in the following chapters in a reliable manner, it was necessary to conduct an extensive characterization of the various detectors used. This is the argument of the following chapter. First of all, the \ac{DAQ} including signal amplification is described; next, the energy reconstruction and calibration are explained and the determination of the operational voltage with an \ac{HV} scan is illustrated. Finally, an automatized system is presented which serves to perform fine grain surface scans of \ac{HPGe} detectors. Surface scans of two detectors taken with this system are compared.

\section{Detectors and voltage supply}

The \ac{HPGe} detectors at hand are three \ac{Coax} $n\,$-type detectors, one \ac{BEGe} detector and one detector of \ac{PPC} geometry. The last two are made of $p\,$-type material. All of them, except for the \ac{BEGe}, contain a \textit{natural} mixture of germanium isotopes. A sketch of the detector geometries can be found in \figurename~\ref{fig:GeDetectors} and a summary of their basic properties is listed in \tablename~\ref{tab:alldetectors}. \\ 

\begin{table}[b]
\centering
\caption[Available detectors]{ Available detectors. The \ac{BEGe} and the \ac{PPC} detector are of $p\,$-type material with holes as dominant charge carriers, the \ac{Coax} detectors are $n\,$-type detectors with electrons as main charge carrier type. }
\label{tab:alldetectors}
 \begin{tabular}{ccccccc}
 \hline
 \hline
  && operational & dewar && \\
  detector & material & voltage [kV] & volume [l] & height [mm] & diameter [mm]\\% & GASP \\
  \hline
  BEGe & depleted & $+4.0$ & $7\,$ & 40.7 & 74.1 \\%  & -  \\
  PPC  & natural & $+4.4$ & $7\,$ & 50.5 & 66.7 \\%  & -  \\
  Coax1-3 & natural & $-4.0$ & $3\,$ & 74.0 & 72.0 \\%  & 34 \\
  \hline
  \hline
 \end{tabular}
\end{table}

The germanium of the \gerda\ detectors is \textit{enriched} in the \ac{0nbb} candidate isotope $^{76}$Ge. The residual material remaining after the enrichment process is commonly referred to as \textit{depleted} material. It behaves chemically identical to natural and enriched germanium. \\

For the second experimental Phase of the \gerda\ experiment 30 enriched \ac{BEGe} detectors were produced. The remaining depleted germanium was processed, in order to test the detector production chain \cite{RefWorks:98}, and the \ac{BEGe} used here is one of the detectors that were produced. It cannot used be for \ac{0nbb} search but serves as an optimal test detector. \\

The three \ac{Coax} detectors are cylindrical with a borehole on the lower surface which measures $10.0\,$mm in diameter and $30.0\,$mm in depth. The read-out electrode is placed on the inner surface of the borehole and the \ac{HV} contact is located on the outer surface. The \ac{BEGe} detector has a boron implanted read-out contact on the lower surface, $15.0\,$mm in diameter, which serves as read out electrode. The \ac{HV} and the read-out electrode are separated by a groove which is $3.0\,$mm in width and $2.0\,$mm in depth. The \ac{PPC} detector is similar to the \ac{BEGe} but has an even smaller read-out contact inside a small ditch on the lower surface $3.1\,$mm in diameter and $1.3\,$mm in depth. For the \ac{BEGe} as well as the \ac{PPC} detector the \ac{HV} contact is formed by the lithium diffused outer surface. \\

All detector \ac{PreAmp} are supplied with \ac{LV} which is implemented in the \ac{SpecAmp}\footnote{\label{note1} \ac{Coax}: Silena Model 7611/L spectroscopy amplifier}\footnote{\label{note2} \ac{BEGe}/\ac{PPC}: ORTEC Model 672 spectroscopy amplifier. }. The \ac{HV} is supplied by two programmable \ac{HV} modules\footnote{CAEN: Model N1471H 4 channel programmable \ac{HV}. } which can deliver positive as well as negative \ac{HV}.

\section{Data acquisition}
\label{sec:DAQ}

Two data acquisition systems are used depending on the information needed:
\begin{itemize}\setlength{\parskip}{-0.2em}
 \item \textbf{\acs{MCA}} Energy spectra can be recorded using a \ac{MCA}\footnote{ORTEC: Model 926 ADCAM Multichannel Buffer. }. They provide information about energy resolution and operational voltage. The usage is limited, since only the energy information is available. On the other hand, the storage needed on disk is minimal and is independent of the measurement time and number of signals analyzed. \\
 \item \textbf{\acs{FADC}} A \ac{FADC}\footnote{CAEN: Model DT5724 Desktop Digitizer 4 channels, 14-bit, $100\,$MHz. } is available, which continuously records the detector electrical signal (trace). In case a trigger is generated the event is recorded on disk. The information that can be extracted from the full event traces is rich and serves for \ac{PSA} and to obtain timing information. However, the disk space needed is quite high in comparison to the \ac{MCA} system. It scales with the trace length and number of events recorded. \\
\end{itemize}

\newpage
\subsection{Signal amplification}

Each system is implemented with its proper amplification method. \\

The \ac{MCA} system is used in combination with a \ac{SpecAmp}\footnoteref{note1}\footnoteref{note2} which amplifies the signal and applies a semi-Gaussian shaping to the pulses. The \ac{SpecAmp}s feature pole-zero adjustment, and the shaping constant and amplification gain can be chosen manually. The gain is set such as to utilize the full range of the \ac{MCA} if possible. \\

When taking data with the \ac{FADC}, a signal amplification without shaping is preferable to prevent loss of information. Some detectors can be used without amplification because the pre-amplification is already high enough to utilize the \ac{FADC} dynamic range. For signal amplification without shaping a Genius Shaper, developed at the \ac{MPIK} Heidelberg and used in \gerda, was chosen. \\

Sketches of both the \ac{MCA} and the \ac{FADC} \ac{DAQ} systems including signal amplification can be seen in \figurename~\ref{fig:LEGO_DAQsketch}.

\begin{figure}[b]
\vspace{-5mm}
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/DAQ_sketch}
  \caption[Sketch of \ac{MCA} and \ac{FADC} \ac{DAQ} systems]{Sketch of \ac{MCA} and \ac{FADC} \ac{DAQ} systems. The external trigger logic for the \ac{FADC} is optional and is used further on.}
  \label{fig:LEGO_DAQsketch}
\end{figure}


\subsection{Genius Shaper}

The Genius Shaper, used for linear amplification without signal shaping, has 4 channels with two outputs each (see \figurename~\ref{fig:LEGO_GeniusShaper}). The gain is adjustable between roughly $2\,$x and $8\,$x for each channel and is common to both outputs, while an offset can be adjusted for each of the two outputs separately. \\

A comparison of uncalibrated $^{60}$Co spectra taken with a \ac{Coax} detector at maximal amplification for each channel can be found in \figurename~\ref{fig:SpecCC4}. As the position of spectral lines in uncalibrated spectra depends on the gain it is evident that the maximal amplification of the Genius Shaper channels is comparable. All parameters and settings are listed in \tablename~\ref{tab:GStesting}. \\

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=false, width=0.7\textwidth]{./CharactDetectors/plots/GeniusShaper_Pulser_v4}
  \caption[Genius Shaper module for amplification without shaping]{Genius Shaper module for amplification without shaping with four input channels. Each input channel has adjustable gain and two output channels. For each output channel an offset can be set separately.}
  \label{fig:LEGO_GeniusShaper}
\end{figure}

\begin{table}[p]
\centering
\caption[Genius Shaper parameters and settings]{Genius Shaper parameters and settings. }
\label{tab:GStesting}
 \begin{tabular}{crrrrrc}
    \hline
    \hline
    ch & out & offset [V] & gain max & gain min & note \\
    \hline
    \multirow{2}{*}{1} & A & 0 & 8x & 2x & \\
    & B & 0 & 8x & 2x & \\
    \hline
    \multirow{2}{*}{2} & A & 0 & 7.6x & 1.8x & broken \\
    & B & 0 & 8x & 1.9x & \\
    \hline
    \multirow{2}{*}{3} & A & 0 & 7.8x & 2x & \\
    & B & 0 & 7.8x & 2x & \\
    \hline
    \multirow{2}{*}{4} & A & 0 & 7.9x & 2x & \\
    & B & 0 & 7.9x & 2x &  noisy \\
    \hline
    \hline
  \end{tabular}
\end{table}

\begin{figure}[p]
\centering
 \includegraphics[trim=0cm 0cm 2cm 5mm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/CC4_GS1_Co60_20141118_180904_hraw}
 \includegraphics[trim=0cm 0cm 2cm 5mm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/CC4_GS2_Co60_20141118_180904_hraw}
 \includegraphics[trim=0cm 0cm 2cm 5mm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/CC4_GS3_Co60_20141118_180904_hraw}
 \includegraphics[trim=0cm 0cm 2cm 5mm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/CC4_GS4_Co60_20141118_180904_hraw}
  \caption[\ac{Coax}3 $^{60}$Co spectra with Genius Shaper maximal amplification]{\ac{Coax}3 uncalibrated $^{60}$Co spectra recorded with Genius Shaper maximal amplification. Top to bottom channels 1 to 4. In the measurement using channel 4 a lower energy threshold was set of ca. $600\,$ch. }
  \label{fig:SpecCC4}
\end{figure}


\afterpage{\clearpage}

% A $^{60}$Co spectrum taken with the PPC detector and using the Genius Shaper is shown in \figurename~\ref{fig:SpecCC7}. 

% \begin{figure}[htb]
%  \begin{center}
%   \includegraphics[trim=0.5cm 0cm 3cm 0cm, clip=false, width=0.6\textwidth]{./CharactDetectors/plots/CC7_Co60_GS1_20141118_174323}
%   \caption{PPC $^{60}$Co spectrum with amplification using the Genius Shaper.}
%   \label{fig:SpecCC7}
%  \end{center}
% \end{figure}


\section{Data processing}

Pulses recorded with the \ac{FADC} system can be fully analyzed off-line and contain all information that can be extracted from the traces. \\

The data is processed as is usually done with \gerda\ data, using a multi-tier approach. The raw data is transformed into a format based on \textsc{Cern ROOT} classes \cite{RefWorks:117} which is compressed by a factor of about two. We call the raw data format \textit{tier0} and the rootified format \textit{tier1}. Both formats contain the same information but the tier1 format can be read by the \gerda\ analysis software \cite{RefWorks:116, RefWorks:115}. A new decoder for this conversion was written and integrated into the \gerda\ software. It reads the tier0 data recorded with the \ac{FADC} \ac{DAQ} (see  \sectionname~\ref{sec:DAQ}) and transforms it into the tier1 format. For details about the multi-tier structure and the implemented decoder see \appendixname~\ref{appendix:LEGOdecoder}. \\

\section{Energy reconstruction and optimization}

To extract the energy of an \ac{FADC} trace we use a pseudo-Gaussian filter which corresponds to a high-pass filter followed by $n$ low-pass filters. First step is a deconvolution of the original trace $x_0[t]$ by the transform
\begin{align}
\begin{split}
x'[t] &= x_0[t] - x_0[t-\delta] \\
x_1[t] &= x'[t] + f \cdot \sum_{t' = 0}^{t-1} x'[t'],
\end{split}
\label{eqn:transform1}
\end{align}

where $\delta$ is called delay and $f = 1 - \exp( -1 / \tau )$. The decay parameter $\tau \sim 50\,\upmu$s is supposed to compensate the exponential decay of the trace which by design is caused by a feedback circuit in the \ac{PreAmp}\cite{RefWorks:103}. As can be seen in the first step of \figurename~\ref{fig:EnergyReconstruction}, this parameter is chosen such that the tail of the traces becomes flat after applying \equationname~\ref{eqn:transform1}. \\  
 
Thereafter, $n$ \ac{MWA} are applied:
\begin{equation}
x_{i+1}[t] = \frac{1}{\delta} \sum_{t' = t -\delta}^{t} x_i[t'] \qquad i = 2,...,n
\label{eqn:MWA}
\end{equation}

The signal is transformed into a pseudo-Gaussian and its height is proportional to the energy deposition in the detector. After each \ac{MWA}, its maximum moves further to the right side of the trace (see \figurename~\ref{fig:EnergyReconstruction}) which has a limited size. The maximum of the pseudo-Gaussian has to stay inside the trace: this is the limiting factor for $n$, the number of \ac{MWA}s applicable. \\

The standard energy reconstruction in \gerda\ is done with $f = 0$, $\delta = 5\,\upmu$s and $n = 25$ \cite{RefWorks:103} and a trace length of $160\,\upmu$s. Here, shorter \ac{FADC} traces were chosen in order to save disk space, and therefore the combination of $\delta$ and $n$ was optimized to minimize the energy resolution $\sigma$ (see \sectionname~\ref{sec:energycalibration}). As can be seen in \figurename~\ref{fig:STscanCC7FADC} for the \ac{PPC} detector a better energy resolution is achieved with larger $n$ and $\delta$. With $\delta = 10\,\upmu$s a slightly better energy resolution is achieved with $n=0$ than with $\delta = 6\,\upmu$s and $n=15$. For the \ac{PPC} detector we chose $\delta = 10\,\upmu$s and $n = 7$ or lower if the trace length is too short for seven iterations. In general, the higher $\delta$ and $n$, the better the energy resolution. Also if the resolution worsens after some iterations the effect is small with respect to the gain in resolution achieved beforehand. If an optimization is too time consuming the parameters $\delta$ and $n$ can be chosen in a quick manner shifting the pseudo-Gaussian to the end of the trace. \\

Also the \ac{MCA} shaping time $\tau_s$, which can be set on the \ac{SpecAmp}, has to be optimized in order to minimize the energy resolution (see \sectionname~\ref{sec:energycalibration}). In \figurename~\ref{fig:STscanBEGeMCA} the resolution of the \ac{BEGe} detector at $^{60}$Co energies is plotted as a function of the \ac{MCA} shaping time. The best resolution is achieved for a shaping time of $\tau_s = 6\,\upmu$s. \\

The chosen shaping parameters for all detectors and for \ac{FADC} as well as \ac{MCA} systems is summarized in \tablename~\ref{tab:Shaping}. \\

\begin{figure}[h]
  \centering
  \includegraphics[width=\textwidth]{./CharactDetectors/plots/EnergyReconstruction} 
  \caption[ Visualization of the pseudo-Gaussian energy reconstruction algorithm ]{ Visualization of the pseudo-Gaussian energy reconstruction algorithm. Sequence of applied steps from left to right top row then bottom row. The sequence starts with the raw trace, first step is the application of \equationname~\ref{eqn:transform1} and subsequently six \ac{MWA}s are applied \equationname~\ref{eqn:MWA}.  }
  \label{fig:EnergyReconstruction}
\end{figure}

\begin{figure}[p]
  \centering
  \includegraphics[trim=0cm 0cm 1cm 0.7cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/CC7_MWA_optimization_sigma_20141118_174323} \\
  \includegraphics[trim=0cm 0cm 1cm 0.7cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/CC7_MWAwidth_optimization_sigma_20141118_174323} \\
  \caption[ \ac{FADC} Energy reconstruction parameter optimization: \ac{PPC} ]{ Energy reconstruction parameter optimization of the \ac{PPC} detector using $^{60}$Co \ac{FADC} data. Top: energy resolution at $1332\,$keV for $\delta = 6\,\upmu$s and $10\,\upmu$s in function of the \ac{MWA} number $n$. Bottom: energy resolution for $n = 3$ in function of the delay or the \ac{MWA} width $\delta$. }
  \label{fig:STscanCC7FADC}
\end{figure}

\begin{figure}[p]
  \centering
%   \includegraphics[trim=0cm 0cm 1cm 0.6cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/list_shaping_area} \\
 % \includegraphics[trim=0cm 0cm 1cm 0.6cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/list_shaping_pos} \\
  \includegraphics[trim=0cm 0cm 1cm 0.6cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/list_shaping_sigma}
  \caption[ \ac{MCA} Shaping time optimization: \ac{BEGe}]{ Shaping time optimization of the \ac{BEGe} detector using $^{60}$Co \ac{MCA} data. The energy resolution reaches a minimum for a shaping time of $\tau_s = 6\,\upmu$s. }
  \label{fig:STscanBEGeMCA}
\end{figure}

\begin{table}[h]
\centering
\caption[Shaping parameters for energy reconstruction of \ac{FADC} and \ac{MCA} data]{Shaping parameters for energy reconstruction from \ac{FADC} (off-line signal processing) and \ac{MCA} (on-line using a \ac{SpecAmp}) data.}
\label{tab:Shaping}
  \begin{tabular}{c|ccc|c}
    \hline
    \hline
    & \multicolumn{3}{c|}{FADC} & MCA \\
    detector & $\tau$ [$\upmu$s] & $\delta$ [$\upmu$s] & n & $\tau_s$ [$\upmu$s] \\
    \hline
    BEGe & 45.5 & 6 & 10 & 6 \\
    PPC & 54.0 & 10 & 7 & 10 \\
    Coax1 & 39.0 & 4 & 8 & - \\
    Coax2 & 47.0 & 6 & 10 & - \\
    Coax3 & 44.0 & 5 & 7 & - \\
    \hline
    \hline
    \end{tabular}
\end{table}

\afterpage{\clearpage}

\section{Energy calibration and resolution}
\label{sec:energycalibration}

Various $\gamma$ sources were used for energy calibrations and dedicated measurements, precisely:
\begin{itemize}\setlength\itemsep{-0.1em}
 \item $^{22}$Na: energy calibration, external trigger gate calibration (\sectionname~\ref{sec:gatecalibration})
 \item $^{60}$Co: energy calibration
 \item $^{137}$Cs: coincidence measurement (\chaptername~\ref{chap:compton_setup}-\ref{chap:compton_measurements})
 \item $^{228}$Th: energy calibration, \ac{PSA} calibration (\sectionname~\ref{sec:Th228Meas})
 \item $^{241}$Am: fine grain surface scan (\sectionname~\ref{sec:SurfaceScans})
\end{itemize} 

The decay schemes of these sources with their individual $\gamma$ energies and branching ratios can be found in \appendixname~\ref{chap:DecaySchemes}. \\

Energy calibration and resolution measurements are performed regularly using mostly $^{60}$Co with $\gamma$-lines at $1173\,$keV and $1332\,$keV. To calibrate the recorded spectra the ROOT \cite{RefWorks:117} \textit{TSpectrum} class is used to find the $\gamma$-lines, and the spectrum is calibrated assuming a linear calibration function. The calibration curves obtained can be used to calibrate other data; e.g. $^{137}$Cs spectra in which usually only one $\gamma$-line is observed.\\

Finally all $\gamma$-lines are fitted using two different fit functions in order to determine the energy resolution and Gaussianity of the lines. \\

The first fit is done using a Gaussian peak on a background modeled with an \ac{ERFC}
\begin{equation}
  f(x) = b_\mathrm{l} + \frac{b_\mathrm{l} - b_\mathrm{r}}{ 2 } \cdot \mathrm{erfc} \left( \frac{\mu - x}{\sqrt{2} \, \sigma} \right) + \frac{ a }{ \sqrt{2 \pi} \, \sigma } \cdot \exp \left( - \frac{(x - \mu)^2}{2 \, \sigma^2} \right)
\label{eqn:GaussErfcBackground}
\end{equation}

With the background on the left $b_\mathrm{l}$ and on the right $b_\mathrm{r}$ side of the peak, the centroid $\mu$ and the standard deviation $\sigma$. The amplitude $a$ is also the integral of the Gaussian itself. \\

The second fit models the background with the same inverse error function but the peak is allowed to have a low energy tail
\begin{align}
  \begin{split}
  g(x) =\ & b_\mathrm{l} + \frac{b_\mathrm{l} - b_\mathrm{r}}{ 2 } \cdot \mathrm{erfc} \left( \frac{\mu - x}{\sqrt{2} \, \sigma} \right) \\
   & + \frac{ a }{ \sqrt{2 \pi} \, \sigma } \cdot
   \begin{cases}
    \exp \left( - \frac{(x - \mu)^2}{2 \, \sigma^2} \right),		& \text{if } x < (\mu - C)\\
    \exp \left( \frac{C \,(2\,(x - \mu) + C) }{2 \, \sigma^2} \right), & \text{if } x \geq (\mu - C)
   \end{cases}
   \end{split}
\label{eqn:LEGO_tailfitfunction}   
\end{align}

At the joining point $C$, to the left of the centroid $\mu$, the fit function starts to deviate from the Gaussian form and fits a low energy tail. An example of a $\gamma$-line fit of the $^{60}$Co $1332\,$keV line recorded with \ac{Coax}3 can be found in \figurename~\ref{fig:LEGO_peakfit}; showing all components of the two fit functions \ref{eqn:GaussErfcBackground} and \ref{eqn:LEGO_tailfitfunction}. \\

The \ac{FWHM}, \ac{FWTM} and \ac{FWFM} of the peak maximum provide a measure of the energy resolution and Gaussianity of the $\gamma$-lines. Purely Gaussian values can be calculated analytically using
\begin{itemize}\setlength\itemsep{0em}
 \item $\mathrm{FWHM} = 2\sqrt{2\cdot\ln(2)}\,\sigma $
 \item $\mathrm{FWTM/FWHM} = \sqrt{\ln(10) / \ln(2)} \approx 1.82$
 \item $\mathrm{FWFM/FWHM} = \sqrt{\ln(50) / \ln(2)} \approx 2.38$
\end{itemize}

The \ac{FWHM} and the Gaussianity parameters, FWTM/FWHM and FWFM/FWHM, of all detectors are listed in \tablename~\ref{tab:LEGO_peakfit}. Considering that the measurements were taken with some time difference, and the detector grounding was optimized after the \ac{MCA} measurements were recorded, the resolution obtained with the \ac{MCA} is comparable to the \ac{FADC} measurement. 
\enlargethispage{2cm}
\begin{figure}[h]
\centering
%   \includegraphics[trim=0.5cm 0cm 2cm 0.8cm, clip=true, width=0.7\textwidth]{./CharactDetectors/plots/Fit1332keV_tier2_c0_c0_CC3_4500V_Co60_calib_20150923_151652_CAL}
%   \includegraphics[trim=0.5cm 0cm 2cm 0.8cm, clip=true, width=0.7\textwidth]{./CharactDetectors/plots/Fit1332keV_tier2_c1_c1_CC1_Co60_calib_20150923_132704_inv_CAL}
%   \includegraphics[trim=0.5cm 0cm 2cm 0.8cm, clip=true, width=0.7\textwidth]{./CharactDetectors/plots/Fit1332keV_tier2_c2_c2_CC2_Co60_calib_20150923_134726_inv_CAL}
  \includegraphics[trim=0cm 0cm 3cm 0.2cm, clip=true, width=0.95\textwidth]{./CharactDetectors/plots/FIT1332keV_tier2_c3_c3_CC4_Co60_calib_20150923_142507_inv_CAL}
  \caption[Peak fit of the $^{60}$Co $1332\,$keV $\gamma$-line recorded with Coax3]{Peak fit of the $^{60}$Co $1332\,$keV $\gamma$-line recorded with Coax3. The fit with a Gaussian plus \ac{ERFC} from \equationname~\ref{eqn:GaussErfcBackground} is shown in blue and the fit function from \equationname~\ref{eqn:LEGO_tailfitfunction} is shown in three parts: Gaussian (red), Tail (green) and \ac{ERFC} (magenta). }
  \label{fig:LEGO_peakfit}
\end{figure}
\begin{table}[h]
\centering
\caption[Resolution and Gaussianity parameters of all detectors]{Resolution and Gaussianity parameters of for all detectors; obtained by fitting the $^{60}$Co $1332\,$keV $\gamma$-line. }
\label{tab:LEGO_peakfit}
  \begin{tabular}{ccccccc}
    \hline
    \hline
    & HV & \multicolumn{2}{c}{FWHM} & \multicolumn{2}{c}{FADC} \\
    detector & [kV] & MCA & FADC & FWTM/FWHM & FWFM/FWHM \\
    \hline
    BEGe  & 4.0 & $2.05\pm0.02$ & $2.16 \pm 0.06$ & $1.85$ & $2.55$ \\ %20150702
    BEGe  & 4.5 & - & $2.06 \pm 0.04$ & $1.84$ & $2.52$ \\ %20150923
    PPC   & 4.4 & - & $2.07 \pm 0.04$ & $1.85$ & $2.58$ \\ %20150126
    Coax1 & 4.0 & $2.96\pm0.03$ & $2.39 \pm 0.07$ & $1.87$ & $2.83$ \\ %20150923
    Coax2 & 4.0 & $2.24\pm0.02$ & $2.14 \pm 0.05$ & $1.85$ & $2.64$ \\ %20150923
    Coax3 & 4.0 & $2.17\pm0.03$ & $1.99 \pm 0.07$ & $2.09$ & $3.37$ \\ %20150923
    \hline
    \hline
    \end{tabular}
\end{table}

\newpage
\section{High voltage scan}

In order to determine the depletion and operational voltage of germanium detectors, \ac{MCA} measurements with $^{60}$Co (or a different $\gamma$ source) are taken: the detector \ac{HV} is varied while the acquisition time is fixed. We call this a \textit{High Voltage Scan}. When the peak position and area of the $\gamma$-lines reach a plateau the detector is fully depleted (depletion voltage). To obtain the operational voltage, the \ac{HV} is increased until the standard deviation $\sigma$ of the Gaussian fit function is minimized. \\

In \figurename~\ref{fig:HVscanBEGe} peak area, position and $\sigma$ are plotted for both $\gamma$-lines of a $^{60}$Co \ac{HV} scan of the \ac{BEGe} detector. The voltage was varied between $2000\,$V and $4350\,$V. The depletion voltage is reached at $3700\,$V and the operational voltage was determined to be $4000\,$V. \\

This \ac{BEGe} detector shows an atypical behavior for such a kind of measurement. This is clearly visible in the resolution $\sigma$ versus \ac{HV} plot in \figurename~\ref{fig:HVscanBEGe}. Usually $\sigma$ improves with increasing \ac{HV}; in this case however, before reaching full depletion, $\sigma$ worsens drastically reaching a maximum at $3650\,$V. \\

This effect is due to the geometry of the \ac{BEGe} detector. The \ac{BEGe} was produced larger than usual and for certain values of the bias voltage the configuration of the internal electric field is such that charges are accumulated in the detector center and only slowly released. Consequently, for many events the energy is reconstructed wrong and resolution deteriorates strongly as can be seen in \figurename~\ref{fig:HVscanShapeBEGe}. \\

A high voltage scan for the \ac{PPC} respectively is shown in \figurename~\ref{fig:HVscanPPC}. The \ac{PPC} does not show atypical behavior like the \ac{BEGe}, although it is even one centimeter larger in height. This seems to be due to the smaller read out contact which creates a more favorable field configuration for charge collection. The depletion and operational voltage are slightly higher than for the \ac{BEGe} with $4.0\,$kV and \mbox{$4.4\,\mathrm{kV} - 4.5\,$kV} respectively.
\newpage
\vspace{-2mm}
\begin{figure}[H]
  \centering
  \vspace{-2mm}
  \includegraphics[trim=0cm 0cm 1.7cm 0cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/list_hvscan_area} \\
  \includegraphics[trim=0cm 0cm 1.8cm 0cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/list_hvscan_pos} \\
  \includegraphics[trim=0cm 0cm 1.9cm 0.4cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/list_hvscan_sigma}
  \caption[BEGe $^{60}$Co \ac{HV} scan]{ \ac{BEGe} $^{60}$Co \ac{HV} scan. Top to bottom: area, peak position and $\sigma$ as function of the \ac{HV}. }
  \label{fig:HVscanBEGe}
\end{figure}
\enlargethispage{3cm}
\vspace{-5mm}
\begin{figure}[H]
  \centering
  \includegraphics[trim=0cm 0cm 2.5cm 0.5cm, clip=true, width=0.79\textwidth]{./CharactDetectors/plots/PeakShapeBubble_BEGe_v2}
  \caption[ BEGe $^{60}$Co spectrum at $3600\,$V, $3650\,$V, $3700\,$V and $4000\,$V ]{BEGe $^{60}$Co spectrum at $3600\,$V, $3650\,$V and $3700\,$V. Electric field configuration traps charges in the detector center and the resolution deteriorates strongly below the depletion voltage of $3700\,$V. }
  \label{fig:HVscanShapeBEGe}
\end{figure}

\begin{figure}[p]
  \centering
  \vspace{-2mm}
  \includegraphics[trim=0cm 0cm 1.8cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/list_hvscan_area_PPC} \\
  \includegraphics[trim=0cm 0cm 1.2cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/list_hvscan_pos_PPC} \\
  \includegraphics[trim=0cm 0cm 1.8cm 0.3cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/list_hvscan_sigma_PPC} \\
  \includegraphics[trim=0cm 0cm 1.8cm 0.4cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/list_hvscan_sigma_fine_PPC}
  \caption[PPC $^{60}$Co \ac{HV} scan]{ \ac{PPC} $^{60}$Co \ac{HV} scan. Top to bottom: area, peak position, $\sigma$ and a zoom of $\sigma$, showing the last part of the \ac{HV} scan, from $3850\,$V up to $4500\,$V as function of the \ac{HV}. }
  \label{fig:HVscanPPC}
\end{figure}

\clearpage
\section{Baseline stability}

For \ac{FADC} measurements a fixed trigger threshold was used. Thus, baseline drifts influence the trigger level. The stability of the baseline is analyzed for a measurement with a lifetime of $130\,$h. All detectors reveal a smooth rise in baseline level. This can be seen in \figurename~\ref{fig:BLstability} for the \ac{BEGe} and \ac{Coax}1 detector. Over a period of $130\,$h the baseline of the \ac{BEGe} increased slightly by about $20\,$channels. Through determination of the baseline level and adjustment of the trigger threshold before each measurement we ensured stable conditions for measurements not exceeding a time period of a week. The periodic spikes, present in the plots, coincide with the filling of the dewars with \ac{LN}.

\vspace{1cm}

\begin{figure}[htb]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 1cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/baseline_tier2_c0_c0_CC3_c1_CC1_c2_CC2_c3_CC4_Cs137_p+_coinc_20141216_192020} \\
  \includegraphics[trim=0cm 0cm 0cm 0.6cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/baseline_tier2_c1_c0_CC3_c1_CC1_c2_CC2_c3_CC4_Cs137_p+_coinc_20141216_192020_inv} \\
%   \includegraphics[trim=0cm 0cm 0cm 0.6cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/baseline_tier2_c2_c0_CC3_c1_CC1_c2_CC2_c3_CC4_Cs137_p+_coinc_20141216_192020_inv} \\
%   \includegraphics[trim=0cm 0cm 0cm 0.6cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/baseline_tier2_c3_c0_CC3_c1_CC1_c2_CC2_c3_CC4_Cs137_p+_coinc_20141216_192020_inv}
  \caption[Baseline of \ac{BEGe} and \ac{Coax}1 over a time period of $130\,$h]{ Baseline of \ac{BEGe} (top) and \ac{Coax}1 (bottom) over a time period of $130\,$h. The periodic spikes in the baseline coincide with the filling of the dewars with \ac{LN}. }
  \label{fig:BLstability}
\end{figure}


\clearpage
\section{Fine grain surface scans}
\label{sec:SurfaceScans}

Positioning of detectors inside their vacuum cryostats as well as the homogeneity of their outer contacts can only be measured from the outside. A dedicated setup is used which is able to perform automatized, fine grain, full surface scans \cite{RefWorks:98}. 

\subsection{Scanning table setup}

The setup incorporates a collimated $^{241}$Am $\gamma$ source with an activity of $5\,$MBq. $^{241}$Am has a prominent $\gamma$-line at $60\,$keV. These photons penetrate only the outer layer of the detector interacting almost exclusively through photoelectric effect and are sensitive to changes of the outer contact of the order of a few tens of $\upmu$m. All numbers derived in the following are valid for $60\,$keV photons. \\ 

The source is hosted in a copper encapsulation with a collimation diameter of $1\,$mm. The collimator is attached to a movable arm whose motion is controlled by precision motors. The arm position can be changed between vertical and horizontal orientation and the collimator can be moved along the arm. The vertical orientation serves to scan lateral detector surfaces, the horizontal orientation is used for top surface scans. Moreover, in vertical as well as horizontal position the arm can be rotated. In this manner complete and fully automatized, fine grain scans of the detector top and lateral surfaces can be performed. Thanks to the precision motors and a standard positioning calibration the reproducible precision is better than $1\,$mm \cite{RefWorks:98}. The setup and possible movements along three axes can be seen in \figurename~\ref{fig:GarfieldMovement}. \\
\enlargethispage{4mm}
\vspace{-3mm}
\begin{figure}[H]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.75\textwidth]{./CharactDetectors/plots/Garfield_Movement_v2} %Garfield_movement
  \caption[ Fine grain surface scanning table setup and its motion axes ]{ Fine grain surface scanning table setup and motion axes. The detector vacuum cryostat endcap is placed upright below the scanning arm and its center is aligned with the rotation axis 1. Rotation around axis 3 permits to change between horizontal and vertical arm orientation, the collimator can be moved along axis 2, and the whole arm can be rotated around axis 1. Figure taken from \cite{RefWorks:98}.}
  \label{fig:GarfieldMovement}
\end{figure}

\subsection{Analysis of surface scans}

For each position an $^{241}$Am spectrum is taken and the count rate $C$ of the $60\,$keV $\gamma$-line is calculated by subtracting the background at the left $B_{\mathrm{left}}$ and the right $ B_{\mathrm{right}}$ from the peak region $P$
\begin{align}
 \begin{split}
  C & = P - B_{\mathrm{left}} - B_{\mathrm{right}} \\
    & = \sum_{i = E - w}^{E + w} b_i - \sum_{j = E - 2\, w}^{E - w} b_j - \sum_{k = E + w}^{E + 2\, w} b_k 
 \end{split}
\end{align}

Where $E$ is the centroid of the $\gamma$-line and $b$ denotes the respective bin content. The window size $w$ is large enough to contain all the peak and small enough so that the background is flat on the left and on the right side of the $\gamma$-line.

\subsection{Alignment}
\label{sec:alignment}

The detector has to be carefully aligned with the robotic arm; laser optics help to center the detector and adjust inclination. \\

Slight inclination of the detector with respect to the scanning arm is almost unavoidable. When scanning the lateral detector surface structures which should be on a fixed height are seen at different heights depending on the inclination. This is visualized in \figurename~\ref{fig:TiltSketch}; a sketch of a sharp edge scan is shown for small and large inclination. The count rate pattern observed depends on the inclination value. 

\begin{figure}[b]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.45\textwidth]{./CharactDetectors/plots/sketch_tilt_1_v2}
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.45\textwidth]{./CharactDetectors/plots/sketch_tilt_2_v2}
  \caption[ Sketch of the count rate pattern observed in a sharp edge scan ]{ Sketch of the count rate pattern observed in a sharp edge scan for a large (left) and for a small inclination value (right). }
  \label{fig:TiltSketch}
\end{figure}

% The goodness of alignment can be tested by following the laser spot on the detector top in a full 360$^{\circ}$ rotation around axis 1 (\figurename~\ref{fig:GarfieldMovement}). 
% 
% Best alignment is achieved if the laser spot does not change position over a full $360^{\circ}$ movement and is subsequently centered on the vacuum cryostat end-cap. An example is shown in \figurename~\ref{fig:GarfieldAlignment}. 
% 
% \begin{figure}[htb]
%   \centering
%   \includegraphics[trim=0cm 15cm 0cm 25cm, clip=true, width=0.4\textwidth]{./CharactDetectors/plots/Garfield_alignment_1} \hspace{2mm} 
%   \includegraphics[trim=0cm 25cm 0cm 15cm, clip=true, width=0.4\textwidth]{./CharactDetectors/plots/Garfield_alignment_3}
%   \caption{Alignment procedure using the laser system attached to the robotic arm of the scanning table. Positioning is improved from \textcircled{\oldstylenums{1}} to \textcircled{\oldstylenums{2}} to a positioning error of about $2\,$mm.}
%   \label{fig:GarfieldAlignment}
% \end{figure}


\subsection{Collimation}
\label{sec:collimation}

The initial source collimation is $1\,$mm but the further the collimator is placed from the scanned surface the more the photon beam diverges.
The divergence of the source beam can be measured by the change of rate on sharp edges. The sketch shown in \figurename~\ref{fig:sourceEdge} shows the movement of the source beam over the edge. \\

A count rate simulation of a sharp edge scan with a step size of $1\,$mm can be seen in \figurename~\ref{fig:sourceEdge15}. Ten different start positions were simulated at random. The most probable number of intermediate points where the photon beam is partly on the left and partly on the right side of the edge is given by $p = w_\mathrm{b}/\Delta x$; dividing the photon beam divergence $w_\mathrm{b}$ by the step size $\Delta x$. This is used in the following to estimate the photon beam divergence $w_\mathrm{b}$. 

\subsection{Linear surface scans}

As linear surface scan we intend changing only the source position along motion axis 2 in \figurename~\ref{fig:GarfieldMovement}. Linear scans on the detector top (lateral) surface can be done with a horizontal (vertical) arm position. A fixed position for the rotation axis 1 is chosen and the collimator is only moved along the scanning arm (motion axis 2). \\

Results of linear top and lateral scanning measurements of the \ac{PPC} and \ac{BEGe} detector are presented in the following. The position of the detector inside the end-cap and the detector holder geometry can be measured. \\
\vspace{10mm}

\begin{figure}[h]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/source_edge}
  \caption[ Sketch of the movement of a source beam over a sharp edge]{Sketch of the movement of a source beam over a sharp edge.}
  \label{fig:sourceEdge}
\end{figure}
\enlargethispage{3cm}
\vspace{10mm}

\begin{figure}[h]
  \centering
  \includegraphics[trim=0cm 0cm 4cm 1.2cm, clip=true, width=0.7\textwidth]{./CharactDetectors/plots/source_edge_15}
  \caption[Simulation of a sharp edge scan]{Simulation of a sharp edge scan with a step size of \mbox{$\Delta x = 1\,$mm} for 10 different start positions and a photon beam divergence of \mbox{$w_\mathrm{b} = 1.5\,$mm}. The edge is drawn hatched while the collimation width is indicated with a red horizontal line.}
  \label{fig:sourceEdge15}
\end{figure}

\newpage

\subsection{PPC detector top and lateral linear surface scan}

The \ac{PPC} detector top and lateral surface were scanned with a step size of \mbox{$\Delta x = 1\,$mm}; each point with a measurement lifetime\footnote{ The lifetime of a measurement is given by the real measurement time minus the dead time. } of $T_\mathrm{L} = 120\,$s. The source position along the scanning arm will be denoted by $x$ in the following. In \figurename~\ref{fig:LinearScansPPC} the count rate of the $60\,$keV $^{241}$Am $\gamma$-line is plotted versus the scanning position for both measurements. \\

In the lateral scan we see that from $x = 266\,$mm to $x = 271\,$mm the count rate drops significantly; we infer that in this region the holder material is substantially thicker than the rest of the holder cup and exhibits a sort of ring structure; this is common for germanium detector holders. \\

With the difference in count rate and the knowledge that the holder cup is made of copper we can estimate the thickness of the ring structure rearranging \equationname~\ref{eqn:gammaattenuation}. Fitting the flat parts of the graph with a constant we can extract the different count rates 
\begin{align*}
  d_{\mathrm{ring}} & = \ln \left( \frac{ N_1 }{ N_2 } \right) \cdot \frac{1}{\mu_{\mathrm{Cu}} \rho_{\mathrm{Cu}}} 
     = \ln \left( \frac{ 819 \pm 7 }{ 284 \pm 9 } \right) \cdot \frac{1}{ 1.485\,\mathrm{cm}^2 / \mathrm{g} \cdot 8.9\,\mathrm{g} / \mathrm{cm}^3 }\\
    & = (0.80 \pm 0.03)\,\mathrm{mm}
\end{align*}

The ring structure has a sharp edge hence we can analyze the divergence of the source beam $w_\mathrm{b}$. It is at least $1\,$mm from collimation and maximal $2\,$mm considering that at $x = 264\,$mm the source beam is on the left side of the edge and at $x = 266\,$mm it has already passed it; therefore we make the conservative estimate of $w_\mathrm{b} = (1.5 \pm 0.5)\,$mm. \\

The height of the ring is estimated making use of the photon beam divergence $w_\mathrm{b}$ as 
\begin{equation*}
  h_{\mathrm{ring}} = 271\,\mathrm{mm} - 266\,\mathrm{mm} + w_\mathrm{b} = (6.5\pm1.5)\,\mathrm{mm} \\ 
\end{equation*}

considering a position uncertainty of $\Delta x = \pm1\,$mm. \\

The edges of the \ac{PPC} are rounded as can be seen in both the top and the lateral scan possibly to ensure a good charge collection as the internal electric field is weak in corners. \\

We estimate the active length of the \ac{PPC} from the lateral scan as \mbox{$L_{\mathrm{a}} = 48.5\pm1.5\,$mm} and the active diameter from the top scan as \mbox{$D_{\mathrm{a}} = 62.5\pm1.5\,$mm}.

% 20 bins integration width 20151123
\begin{figure}[h]
  \centering
  \includegraphics[trim=0.2cm 0cm 2cm 0.2cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/Graph_Paride_TOP_120s_20bins_20151001-174212_v2}
  \includegraphics[trim=0cm 0cm 2.4cm 0.2cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/Graph_Paride_LAT_120s_20bins_20151001-150519_3}
  \caption[PPC top and lateral linear surface scans ]{PPC top (top) and lateral (bottom) linear surface scans with a step size of $\Delta x = 1\,$mm and a lifetime of $120\,$s for each position.}
  \label{fig:LinearScansPPC}
\end{figure}

\clearpage

\subsection{BEGe detector top and lateral surface scan}

Also for the \ac{BEGe} detector a top and lateral linear surface scan were performed. For the top scan $T_\mathrm{L} = 60\,$s was chosen for each point and for the lateral scan $T_\mathrm{L} = 120\,$s respectively. The step size is $\Delta x = 1\,$mm like before. \\

The count rate as function of the source position can be seen in \figurename~\ref{fig:LinearScansBEGe}. \\ 

\begin{figure}[p]
  \centering
  \includegraphics[trim=0cm 0cm 2cm 0.2cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/Graph_Bege_TOP_60s_11bins_20151014-13_v2}
  \includegraphics[trim=0cm 0cm 2cm 0.2cm, clip=true, width=0.8\textwidth]{./CharactDetectors/plots/Graph_Bege_LAT_120s_11bins_20151002-161833_v2}
  \caption[BEGe top and lateral linear surface scan ] {BEGe top (top) and lateral (bottom) linear surface scan with a step size of $\Delta x = 1\,$mm and a lifetime of $60\,$s (top surface) and $120\,$s (lateral surface) for each position.}
  \label{fig:LinearScansBEGe}
\end{figure}

In the lateral surface scan which is shown on bottom of \figurename~\ref{fig:LinearScansBEGe} at $x = 300\,$mm we see a part of the detector which is uncovered by the cup with a count rate of about $4000/120\,$s. Augmenting the source position, the count rate drops and, in compatibility with a technical drawing, shows the detector holder with a two ring structure. \\ 

We analyze the thickness of the copper holder and rings, comparing the count rate of the uncovered part with the count rate at the ring position, and the thinner part of the detector holder
\begin{align*}
d_{\mathrm{ring}} & = \ln\left( \frac{4076\pm64}{64\pm7} \right) \cdot \frac{1}{ 1.485\,\mathrm{cm}^2 / \mathrm{g} \cdot 8.9\,\mathrm{g} / \mathrm{cm}^3 } = (3.14 \pm 0.08)\,\mathrm{mm} \\ 
d_{\mathrm{cup}} & = \ln\left( \frac{4076\pm64}{566\pm8} \right) \cdot \frac{1}{ 1.485\,\mathrm{cm}^2 / \mathrm{g} \cdot 8.9\,\mathrm{g} / \mathrm{cm}^3 } = (1.49 \pm 0.02)\,\mathrm{mm} \\
\end{align*}

$d_{\mathrm{cup}}$ denotes the thickness of the holder cup and $d_{\mathrm{ring}}$ the thickness of the ring structure. Both are in accordance with a technical drawing where the holder thickness is given with $1.5\,$mm and the ring thickness with $3.0\,$mm.  \\

The \ac{BEGe} is slightly cone shaped; this is seen in a picture taken of the \ac{BEGe} crystal before being contacted. Hence, the active diameter is not a meaningful figure; for its active length we find $L_{\mathrm{a}} = 39.5\pm1.5\,$mm.

\clearpage

\subsection{Circular surface scans}

For a so called top (lateral) circular scan the scanning arm is placed horizontally (vertically), as was done for the top (lateral) linear scan. To change the scanning position the source is moved along axis 2 and the arm is rotated around axis 1 (see \figurename~\ref{fig:GarfieldMovement}).\\

In the following, for all top surface scans the scanning points will be denoted in polar coordinates $[r,\theta]$ where $r$ is the source position along motion axis 2 in mm/10 and $\theta$ is the rotation angle around axis 1 in degrees. Note that all coordinates are given in the system of reference of the scanning table, not to be confused with the coordinate system of the detector. The largest radius scanned in the coordinate system of the detector is the scan with the smallest $r$ value. \\

For lateral surface scans the scanning points are denoted in cylindrical coordinates $[h,\theta]$ with the scanning height $h$ along motion axis 2 in mm/10 and the rotation angle $\theta$ around axis 1 in degrees. 

\subsection{PPC detector top circular surface scan}

The positions and the count rates of a top circular surface scan of the \ac{PPC} detector are shown in \figurename~\ref{fig:TOPCircScansPPCcol}. The step sizes are $\Delta r = 5\,$mm and $\Delta \theta = 10\,^{\circ}$, and the measurement lifetime for each point $T_\mathrm{L} = 120\,$s. The detector is not perfectly centered with rotation axis 1 and in the \ac{PPC} center the count rate is systematically lower than on the outer parts. Count rates for all scanned points are shown in \figurename~\ref{fig:TOPCircScansPPCpoly}. \\

In positions \mbox{[$r = 480$, $\theta = 310^{\circ}$]} and \mbox{[$r = 530, \theta = 240^{\circ}$]} the count rate drops drastically. The spectra in these two points reveal a double peak structure and are therefore ignored in the following. Apart from these two points the detector is rotationally symmetric. \\

The outermost ring which was scanned at $r = 480$ shows a change in count rate in function of the rotation angle $\theta$. This is due to a slight misalignment of the detector center with the arm rotation axis 1: the source beam only partly hits the detector and is moving with respect to the detector edge. This was explained in \sectionname~\ref{sec:alignment}f. \\

The top contact thickness the \ac{PPC} detector is not homogeneous. The largest difference in count rate is observed for $r = 630$ and $r = 680$. Averaging over all rotation angles $\theta$ at these positions and using \equationname~\ref{eqn:gammaattenuation} we find
\begin{equation}
 \Delta = \ln \left( \frac{ 3317 \pm 10 }{ 3060 \pm 10 } \right) \cdot \frac{1}{ 1.9 \,\mathrm{cm}^2 \cdot 5.323 \,\mathrm{g} / \mathrm{cm}^3 }
 = ( 80 \pm 4 ) \,\upmu \mathrm{m}
\end{equation}

This is about $11\%$ of the design contact thickness which is about $0.7\,$mm as given in the detector data sheet.

\begin{figure}[h]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 1.3cm, clip=true, width=0.4\textwidth]{./CharactDetectors/plots/ScanPoints_color_PPC_CIRC-TOP_120s_20151006-144529}
  \includegraphics[trim=0cm 0cm 0cm 1.7cm, clip=true, width=0.59\textwidth]{./CharactDetectors/plots/Graph_PPC_CIRC-TOP_120s_20151006-144529}
  \caption[ Scan points of \ac{PPC} circular top surface scan ]{ \ac{PPC} circular top surface scan: scanned points (left) and three dimensional surface (right). The count rate is indicated with a color scale. In the left figure a couple of points are white because there are no data; they can be neglected. }
  \label{fig:TOPCircScansPPCcol}
\end{figure}

\begin{figure}[h]
  \centering
  \includegraphics[trim=0cm 0cm 4cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/Polygraph_PPC_CIRC-TOP_120s_20bins_20151006-144529}
  \caption[ Count rates of \ac{PPC} circular top surface scan ]{ Count rate as function of the polar rotation angle $\theta$ measured with the \ac{PPC} in a circular top surface scan. }
  \label{fig:TOPCircScansPPCpoly}
\end{figure}

\afterpage{\clearpage}
\subsection{PPC detector lateral circular surface scan}

Also the \ac{PPC}'s lateral surface has been analyzed for several scanning heights $h$, with a rotation step size of $\Delta\theta = 10^{\circ}$ and $T_\mathrm{L} = 120\,$s in each point. See \figurename~\ref{fig:LATCircScansPPC} for the scan points. Count rates as a function of the rotation angle $\theta$ are found in \figurename~\ref{fig:LATCircScansPPCpoly}. \\

\enlargethispage{1mm}
As in the top surface scan we observe one point $[h = 2990, \theta = 120^{\circ}]$ where the count rate drops and which exhibits a double peak structure. This is peculiar as the top and the lateral scan are about $180^{\circ}$ rotated with respect to each other. This means that the peculiarity occurs in almost the same region of the detector surface as before. To further investigate this peculiar behavior, the effect would have to be checked for reproducibility and the respective region would have to be scanned with a higher resolution. \\

Fitting a constant function to all count rates at scanning heights $h = 3170$ and $h = 3080$ in \figurename~\ref{fig:LATCircScansPPCpoly} we can calculate again the thickness of the ring structure and find \mbox{$d_{\mathrm{ring}} = (0.88 \pm 0.01)\,$mm}. This value is higher than the one found with the linear scan. The reasons can be various. As we have seen in the top scan the contact thickness is not homogeneous. Also, the production precision of the holder cup can vary. This has to be taken into account as a systematic effect e.g. when making predictions with simulations. The ring structure thickness averaged over the value found in the linear and the circular scan is $\langle d_{\mathrm{ring}} \rangle = (0.84 \pm 0.02)\,\mathrm{mm}$. 

\begin{figure}[p]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.45\textwidth]{./CharactDetectors/plots/ScanPoints_color_PPC_CIRC-LAT_120s_20151007-155332.pdf}
  \includegraphics[trim=0.3cm 0.5cm 0.1cm 1.7cm, clip=true, width=0.54\textwidth]{./CharactDetectors/plots/SurfPlot_PPC_CIRC-LAT_120s_20bins_20151007-155332.pdf}
  \caption[ Scan points of \ac{PPC} circular lateral surface scan ]{ \ac{PPC} circular lateral surface scan: scanned points (left) and three dimensional surface (right). The count rate is indicated with a color scale. In the left figure a couple of points are white because there are no data; they can be neglected. }
  \label{fig:LATCircScansPPC}
\end{figure}
\begin{figure}[p]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/Polygraph_PPC_CIRC-LAT_120s_20bins_20151007-155332.pdf}
  \caption[ Count rates of \ac{PPC} circular lateral surface scan ]{ Count rate as function of the polar rotation angle $\theta$ measured with the \ac{PPC} in a circular lateral surface scan. }
  \label{fig:LATCircScansPPCpoly}
\end{figure}

\subsection{BEGe detector top and lateral surface scan}

The scan points and count rates are plotted for a circular top surface scan of the \ac{BEGe} detector in \figurename~\ref{fig:TOPCircScansBEGe} and \figurename~\ref{fig:TOPCircScansBEGepoly}. The scan was performed with step sizes of $\Delta r = 4\,\mathrm{mm}$ and $\Delta\theta = 10^{\circ}$ and a measurement lifetime of $T_\mathrm{L} = 60\,$s. \\

At $r = 540$ the source beam is outside the detector radius and the count rate observed in 0. Again, the outermost scanned detector radius at $r = 580$ shows a change in count rate due to misalignment of the detector center and the rotation axis 1. \\

The top contact of the \ac{BEGe} seems more homogeneous than the \ac{PPC} one. However, the largest difference found for radii $r = 780$ and $r = 860$ translates to $40 \pm 5\,\upmu$m which is $10\%$ of the contact thickness $(0.40\pm0.05)\,$mm. Hence, the same order of inhomogeneity as for the \ac{PPC} outer contact is found for the \ac{BEGe}. The smaller contact thickness of the \ac{BEGe} explains the higher count rate observed in top scans with respect to the \ac{PPC} detector. \\

Scan points and a three dimensional plot of the lateral circular scan of the \ac{BEGe} are shown in \figurename~\ref{fig:LATCircScansBEGe}. Measurement step sizes are $\Delta h = 5\,\mathrm{mm}$ and $\Delta \theta = 10^{\circ}$ and the measurement lifetime per point is $T_\mathrm{L} = 120\,$s. Some points have not been scanned, the points are missing in \figurename~\ref{fig:LATCircScansBEGe} on the left. The positions were scanned but the automatized system failed to save the data. \\

As can be seen in \figurename~\ref{fig:LATCircScansBEGepoly} at three scanning heights $h = 2920$, $h = 3020$ and $h = 3070$ a sinusoidal change in count rate is observed, which is expected for a slight tilt of the scanning arm with respect to the lateral detector surface (see \figurename~\ref{fig:TiltSketch}). If we assume that the change in scanning height for a $180^{\circ}$ rotation is not more than the photon beam divergence $w_\mathrm{b}$ this translates to an inclination of less than $1^{\circ}$. \\

At the uppermost scanning height the count rate is higher as the source beam hits the part of the \ac{BEGe} which is uncovered by the copper holder. \\

The three lower most scan positions $h = 3220$, $h = 3270$ and $h = 3300$ show a structure from $\theta = 250^{\circ}$ to $\theta = 280^{\circ}$ which measures at least $8\,$mm in height and $30^{\circ}$ in circumference. This can be a screw in the holder structure or similar. These small details are necessary to know and can be implemented in \ac{MC} simulations. In case very precise simulations have to be performed, measurements with a higher resolution or clarification by the manufacturer are necessary. 
\vspace{2cm}

% TOP
\begin{figure}[h]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 1.5cm, clip=true, width=0.4\textwidth]{./CharactDetectors/plots/ScanPoints_color_BEGe_CIRC-TOP_60s_20151014-153348}
  \includegraphics[trim=0cm 0cm 0cm 1.1cm, clip=true, width=0.59\textwidth]{./CharactDetectors/plots/SurfPlot_BEGe_CIRC-TOP_60s_20151014-153348}
  \caption[ Scan points of \ac{BEGe} circular top surface scan ]{ \ac{BEGe} circular top surface scan: scanned points (left) and three dimensional surface (right). The count rate is indicated with a color scale. In the left figure a couple of points are white because there are no data; they can be neglected. }
  \label{fig:TOPCircScansBEGe}
\end{figure}

\begin{figure}[h]
  \centering
  \includegraphics[trim=0cm 0cm 0.5cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/Polygraph_BEGe_CIRC-TOP_60s_11bins_20151014-153348}
  \caption[ Count rates of \ac{BEGe} circular top surface scan ]{ Count rate as function of the polar rotation angle $\theta$ measured with the \ac{BEGe} in a circular top surface scan. }
  \label{fig:TOPCircScansBEGepoly}
\end{figure}
% LATERAL
\begin{figure}[h]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.45\textwidth]{./CharactDetectors/plots/ScanPoints_color_CC3_CIRC-LAT_120s_20151013-155329.pdf}
  \includegraphics[trim=0.7cm 0cm 0cm 1.5cm, clip=true, width=0.54\textwidth]{./CharactDetectors/plots/SurfPlot_CC3_CIRC-LAT_120s_20151013-155329} 
  \caption[ Scan points of \ac{BEGe} circular lateral surface scan ]{ \ac{BEGe} circular lateral surface scan: scanned points (left) and three dimensional surface (right). The count rate is indicated with a color scale.  }
  \label{fig:LATCircScansBEGe}
\end{figure}

\begin{figure}[h]
  \centering
  \includegraphics[trim=0cm 0cm 0.65cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/Polygraph_CC3_CIRC-LAT_120s_11bins_20151013-155329} \\
  \vspace{8mm}
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./CharactDetectors/plots/Polygraph_CC3_CIRC-LAT_120s_11bins_20151013-155329_zoom}
  \caption[ Count rates of \ac{BEGe} circular lateral surface scan ]{ Count rate as function of the polar rotation angle $\theta$ measured with the \ac{BEGe} in a circular lateral surface scan: all scanned positions (top), zoom to scans with lower count rate (bottom). }
  \label{fig:LATCircScansBEGepoly}
\end{figure}








%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%	Doctoral tesis - LEgnaro Germanium Observatory 
%	
%	LEGO SETUP
%	
%	Author: Katharina von Sturm
%	Date: December 2015
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

In order to develop new algorithms for background rejection in \gerda\ Phase II, detailed knowledge of signal-like event structure in \ac{BEGe} detectors is of great importance. \\

In this chapter an experimental setup is described which has been designed and constructed with the purpose of performing three-dimensional scans of \ac{BEGe} detectors in order to study signal-like pulse shapes in confined detector regions. We base the selection of such events on single Compton interactions in coincidence measurements. \\

The method has been used with non-segmented and segmented \ac{HPGe} detectors \cite{RefWorks:193, RefWorks:192} and for detector characterization in the \textsc{Greta} and \textsc{Agata} experiment \cite{RefWorks:167, RefWorks:187, RefWorks:188}. It is adapted in this work for a \ac{BEGe} detector in the context of the \gerda\ experiment. The Compton coincidence measurements described in the following have never been successfully performed before with a \ac{BEGe} detector. \\

After an introduction in which we explain the principle of operation, the experimental setup is described in detail. Finally, the measurement campaign is displayed.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% MOTIVATION
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Motivation for single site event studies}
\label{sec:LEGOmotivation}

In \figurename~\ref{fig:PulseShapes} measured charge and respective current pulses for three different event classes are plotted. The current pulse $x'[t]$ was calculated based on the charge pulse $x[t]$ by a moving window differentiation with a width of $w_d = 80\,$ns
\begin{equation}
  x'[t] = x[t] - x[t-w_d]
  \label{eqn:differentiation}
\end{equation}

The three event types shown are a \acf{SSE} depositing energy in one small region, a \acf{MSE} depositing energy in two well separated regions and a slow pulse event which deposits energy in the outer $n^+$ contact of the detector. The latter type is called slow pulse because charge carriers have to diffuse from the outer contact layer into the active volume of the detector, before drifting along the electric field lines and being collected on the read-out electrode. The diffusion process is rather slow, resulting in a distinct pulse shape. \ac{MSE} events reveal a multiple peak structure in their current pulse while \ac{SSE} events show a single peak. \\

In \ac{0nbb} decay energy is released in form of two electrons (see \sectionname~\ref{sec:Physics_0nbb}). An upper limit of the extension of the subsequent energy deposition $d^{\mathrm{UL}}_{\varepsilon}$ is given by the range of the two electrons at $\sim1\,$MeV in germanium in the continuous-slowing-down approximation (CSDA) \cite{ESTAR} divided by the density of germanium $\rho_{\mathrm{Ge}}$
\begin{equation}
 d^{\mathrm{UL}}_{\varepsilon}  < 2 \cdot \frac{ r_{\mathrm{CSDA}} }{ \rho_{\mathrm{Ge}} } 
 = 2 \cdot \frac{ 6.56 \cdot 10^{-1}\,\mathrm{g\,cm}^{-2} }{ 5.323\,\mathrm{g\,cm}^{-3} } \approx 2.5\,\mathrm{mm}
 \label{eqn:0nbbrange}
\end{equation}

An energy deposition in a volume smaller than the spatial resolution of the detector is commonly referred to as \ac{SSE}. In unsegmented \ac{HPGe} detectors the \ac{0nbb} events belong to the \ac{SSE} event class. In order to gain knowledge about signal-like events which deposit energy similar to \ac{0nbb} the properties of \ac{SSE} events are studied. \\

Being able to discriminate \ac{MSE} from \ac{SSE} events helps identifying and reducing background in the \gerda\ experiment and is a key feature of background reduction in \gerda\ Phase II. One handle for such a discrimination using \ac{PSA} is the \textit{A over E parameter} (A/E) \cite{RefWorks:189}; the amplitude of the current pulse divided by the energy of the event. On the left side of \figurename~\ref{fig:PulseShapes} energy and current amplitude are indicated for an \ac{SSE} event. An \ac{MSE} event is composed of multiple, spatially well separated interactions. The energy, which is an integrated parameter, contains all interactions whereas the maximum amplitude of the current pulse contains only the interaction which deposits most energy. Therefore, the A/E parameter of an \ac{MSE} is smaller than for an \ac{SSE} of the same energy. \\

To study the spatial homogeneity of the A/E parameter of signal-like events we need samples of \ac{SSE} events of well defined interaction regions. 
Furthermore, the comparison of measured and simulated \ac{SSE} pulse shapes, due to interactions in confined detector regions, can be used to improve and verify pulse shape simulations. And last but not least, confined \ac{SSE} event samples can help in creating new strategies and algorithms to reduce background in \gerda\ Phase II. 

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.325\textwidth]{./LEGO/plots/CaCu_SS_v2}
  \includegraphics[trim=0cm 0cm 0.5cm 1cm, clip=true, width=0.325\textwidth]{./LEGO/plots/CaCu_MS}
  \includegraphics[trim=0cm 0cm 0.5cm 1cm, clip=true, width=0.325\textwidth]{./LEGO/plots/CaCu_SP}
  \caption[Pulse shapes due to a \ac{SSE}, \ac{MSE} and a slow pulse event ]{\ac{SSE} (left), \ac{MSE} (middle) and a slow pulse event (right) in a \ac{BEGe} detector. The charge pulse as recorded by the \ac{FADC} is shown in blue and the calculated current pulse (\equationname~\ref{eqn:differentiation}) in red. The \textit{energy} $E$ and the \textit{amplitude of the current pulse} $A$ are indicated. }
  \label{fig:PulseShapes}
\end{figure}

In the next section the physical prerequisites of Compton coincidence measurements are describe, which make it possible to select \ac{SSE} event samples from confined regions in a \ac{HPGe} detector. The experiment presented in the following is based on single Compton interactions of $^{137}$Cs photons with a scattering angle of $90^{\circ}$. \\

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% IDEA FOR EXPERIMENTAL SETUP
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Single Compton events}
\label{sec:LEGOComptonEvents}

$^{137}$Cs has only one prominent $\gamma$-line, with an energy of $661.657\,$keV ($\approx662\,$keV in the following) and a branching ratio of $R_B = (84.99 \pm 0.20)\,\%$ (see \figurename~\ref{fig:DecaySchemeCs137}). The interaction cross section of photons in germanium, as a function of energy and depending on the interaction mechanism, is shown in \figurename~\ref{fig:Crossection}. The $^{137}$Cs $\gamma$ energy is indicated with a black vertical line. At this energy, Compton scattering is the dominant interaction process of photons with germanium. 

\subsection{Topology}

In Compton scattering energy is transfered from a $\gamma$-photon to a shell electron of an atom (see \sectionname~\ref{sec:physics_compton}). The energy of the scattered photon and the energy transferred to the electron, for an incident photon energy of $662\,$keV, are listed in \tablename~\ref{tab:compton}. Different scattering angles are tabulated. For a scattering angle of $90^{\circ}$ an energy of $373\,$keV is transfered to the shell electron. \\

The stopping power of germanium for electrons at $373\,$keV is about $31\,$MeV$\,$cm$^2$/g \cite{ESTAR}. Thus, the scattered electron has a maximal range of about
\begin{equation}
 r_{\mathrm{CSDA}} / \rho_{\mathrm{Ge}} = 0.2\,\mathrm{g}\,\mathrm{cm}^{-2} / 5.323\,\mathrm{g}\,\mathrm{cm}^{-3} \approx 0.4\,\mathrm{mm}
\end{equation}

This limit is smaller region than was derived for \ac{0nbb} events (see \equationname~\ref{eqn:0nbbrange}). Thus, a single Compton event has \ac{SSE} event topology and can be studied as a prototype for \ac{0nbb} events. \\

\vspace{1cm}
\begin{table}[h]
 \centering
 \caption[ Photon and electron energies in single Compton scattering ]{ Energies of single Compton scattered photon $E_{\gamma}'$ and transferred energies to electron $E_e$ for different scattering angles and an incident photon energy of $662\,$keV. }
 \label{tab:compton}
 \begin{tabular}{ccc}
  \hline
  \hline
  scattering angle [deg] & $E_{\gamma}'$ [keV] & $E_e$ [keV] \\
  \hline
  90 & 288 & 373 \\
  60 & 402 & 260 \\
  45 & 480 & 182 \\
  \hline 
  \hline
 \end{tabular}
\end{table}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0.1cm, clip=true, width=0.8\textwidth]{./LEGO/plots/crossection_v2}
  \caption[Interaction cross sections of photons in Germanium]{Interaction cross section of photons in Germanium depending on energy and interaction mechanism. The black vertical line indicates the $662\,$keV $^{137}$Cs $\gamma$-line \cite{NIST:XCOM}.}
  \label{fig:Crossection}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.8\textwidth]{./LEGO/plots/function_sketch}
  \caption[ Selection of confined Compton interactions ]{ The selection of a confined interaction region of single Compton interactions inside a \ac{BEGe} through tagging of the scattered photon and collimation is shown. }
  \label{fig:LEGO_function_sketch}
\end{figure}


\clearpage

\subsection{Selection}

Photons can interact in various ways and multiple times inside a detector (see \chaptername~\ref{sec:interactions}). From all those possible interactions and combinations of interactions we want to filter only single Compton events; and only from specifically selected interaction regions. \\

To select Compton events it is important to tag the scattered photons and measure their energy using additional detectors; triggering only on coincidences eliminates the major part of background events. The dynamics of the Compton effect provides a simple tool to ensure that only one interaction took place: The energies for a given scattering angle are fixed (see \sectionname~\ref{sec:physics_compton}). Therefore, by choosing the right energies for the respective scattering angle (see \tablename~\ref{tab:compton}), we select \textit{single Compton events}. \\

The selection of scattered photons originating from a \textit{distinct interaction region} is ensured by collimation. The experimentally most practical scattering angle of $90^{\circ}$ is chosen which has the advantage that the additional detectors are easy to mount, and the scanned region is the same for all of them. \\  

A simplified schematic of the experimental setup can be seen in \figurename~\ref{fig:LEGO_function_sketch}. A beam collimated $^{137}$Cs source is installed below a \ac{BEGe} detector. Slit collimated \ac{Coax} detectors are installed at a Compton scattering angle of $\beta = 90^{\circ}$ with respect to the incident photon beam to detect the scattered photons. \\

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% EXPERIMENT ITSELF
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Experimental setup}
\label{sec:LEGOExpSetup}

A detailed sketch of the experimental setup is shown in \figurename~\ref{fig:LEGO_setup_sketch}. A top view on the left and a side view on the right show a \ac{BEGe} detector, mounted top-down in the middle of the setup. Four \ac{Coax} detectors are facing the \ac{BEGe} under an angle of $90^{\circ}$. Lead collimators are placed between the \ac{BEGe} and the \ac{Coax} detectors; their aperture is variable and selects photons scattered under $90^{\circ}$ with respect to the incident photon beam. A collimator is mounted below the \ac{BEGe} which holds the $^{137}$Cs source. \\

A close up of the setup can be found on the left side of \figurename~\ref{fig:StiltsCollimation}. The \ac{BEGe} is mounted top-down in the middle of the setup and three \ac{Coax} detectors (out of four possible) are mounted on a table platform tagging the scattered photons. The source is held by a standard source collimator which is shown on the right side of the same figure. \\

The whole experimental setup is shown in \figurename~\ref{fig:LEGO_foto}. The various parts are explained in the following. 

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.95\textwidth]{./LEGO/plots/setup_sketch}
  \caption[Sketch of Compton coincidence setup top and side view]{Sketch of top view (left) and side view (right) of the Compton coincidence experimental setup. Germanium detectors are shown in blue, vacuum cryostats as dotted volumes, lead collimators as wavy blocks and the $^{137}$Cs source is drawn in red.}
  \label{fig:LEGO_setup_sketch}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0.1cm 0cm 0.1cm 0.5cm, clip=true, height=5.4cm]{./LEGO/plots/pic/Table_pic_v2} \hspace{2mm}
  \includegraphics[trim=9cm 10cm 5cm 25cm, clip=true, height=5.4cm]{./LEGO/plots/pic/StdCollimator_lifted}
  \caption[Close up of experimental setup for Compton coincidence measurements]{Close up of the coincidence measurement setup (left) with the \ac{BEGe} detector in the middle and three \ac{Coax} detectors measuring the scattered photons and the standard source collimator (right).}
  \label{fig:StiltsCollimation}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=10cm 5cm 10cm 10cm, clip=true, width=0.95\textwidth]{./LEGO/plots/pic/LEGO_all_v1}
  \caption[Full experimental setup for Compton coincidence measurements]{Picture of the full experimental setup for Compton coincidence measurements with \ac{LN} dewar on the left, table with detectors in the middle and \ac{DAQ} system in a crate on the right side. }
  \label{fig:LEGO_foto}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, height=6.5cm]{./LEGO/plots/pic/sCollimator_closed} \hspace{2mm}
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, height=6.5cm]{./LEGO/plots/pic/sCollimator_open}
  \caption[Collimator for $780\,$MBq $^{137}$Cs source]{ Closed (left) and open (right) source collimator designed to shield a $780\,$MBq $^{137}$Cs source. The hole in the table has been covered for source installation to prevent it from falling down. }
  \label{fig:LEGO_sourcecollimator}
\end{figure}


\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 3cm 0cm 3cm, clip=true, width=0.9\textwidth]{./LEGO/plots/PORTASORGENTE_v2.pdf}
  \caption[Technical drawing of the new source collimator]{Technical drawing of the new source collimator. It can host a strong $^{137}$Cs source with an activity of about $780\,$MBq. Provided by Matteo Turcato. }
  \label{fig:LEGOSourceCollimatorNew}
\end{figure}


\newpage
\subsection{Source collimation}
\label{sec:LEGOSourceAndCollimator}

Two different collimators were designed for different types of sources: 

\begin{itemize}
 \item \textbf{Standard collimator} \\
 A simple collimator (see \figurename~\ref{fig:StiltsCollimation}) can hold a standard $^{137}$Cs source with a point-like activity of about $350\,$kBq. The activity is sealed inside a small plastic tile of dimensions $20\times10\times1.9\,$mm$^3$. The collimator has a length of $8\,$cm which can be extended to $16\,$cm and a square collimation of $1.5\,$mm or $3\,$mm. The collimator can be lifted in order to prevent divergence of the photon beam. It is mounted on a movable slide controlled by precision motors with a positioning reproducibility better than $1\,$mm.
 \item \textbf{Collimator for a strong \texorpdfstring{$^{137}$Cs}{137Cs} source} \\ 
 The source is collimated and the angular acceptance of the \ac{Coax} detectors is reduced with collimators, hence, the expected event rate is very low.
 We use a strong $^{137}$Cs source which has an activity of about $780\,$MBq, augmenting the rate, in order to be able to measure within an acceptable time frame. To shield the strong $^{137}$Cs source the standard source collimator is not thick enough and too difficult to handle. The absorption and scattering of photons in lead was studied in order to choose an adequate thickness for a collimator (see \tablename~\ref{tab:LEGO_abs}). A dedicated collimator with a side thickness of $57\,$mm was produced and installed. Pictures of the collimator can be found in \figurename~\ref{fig:LEGO_sourcecollimator}, while \figurename~\ref{fig:LEGOSourceCollimatorNew} shows a detailed technical drawing. It can be opened and closed from a distance in order to minimize personal risk due to exposure to radiation. An extension with a smaller diameter has been added on top of the collimator which adds $35\,$mm to a total length of $100\,$mm. The incident collimation measures $1\,$mm in diameter. \\
\end{itemize}

Using \equationname~\ref{eqn:gammaattenuation} with $\rho_{\mathrm{Pb}} = 11.35\,\mathrm{g}/\mathrm{cm}^3$, $\mu_{\mathrm{photo}}(\mathrm{Pb},662\,\mathrm{keV}) = 6.017\cdot10^{-2}\,\mathrm{cm}^2/\mathrm{g}$ and $\mu_{\mathrm{Compton}}(\mathrm{Pb},662\,\mathrm{keV}) = 4.347\cdot10^{-2}\,\mathrm{cm}^2/\mathrm{g}$ \cite{NIST:XCOM} the survival fraction of $662\,$keV photons for different lead thicknesses can be calculated. Some values are listed in \tablename~\ref{tab:LEGO_abs}. \\

\begin{table}[h]
\centering
\caption[ Photon survival fraction in lead ]{ Photon survival fractions of photoelectric absorption (photo), Compton scattering (Compton) and the total attenuation (total) of $662\,$keV photons in lead. $d$ denotes the lead thickness and $A_s$ the equivalent surviving activity for an incident activity of $780\,$MBq. }
\label{tab:LEGO_abs}
 \begin{tabular}{crrrr}
 \hline
 \hline
 d [cm] & photo [\%] & Compton [\%] & total [\%] & $A_s$ [MBq]\\
 \hline
 3 & 12.9 & 22.8 & 2.9 & 22.9 \\
 4 & 6.5 & 13.9 & 0.9 & 7.0 \\
 5 & 3.3 & 8.5 & 0.3 & 2.2 \\
 6 & 1.7 & 5.2 & 0.1 & 0.7 \\
 \hline
 \hline
 \end{tabular}
\end{table}


\newpage
\subsection{Automatic filling system}

Germanium detectors have to be operated at cryogenic temperatures. All detectors are mounted in vacuum cryostats connected to dewar vessels, which contain \ac{LN}, by a cold finger. The \ac{Coax} detectors, mounted on the table platform, have very small dewars with a volume of $3\,$l only. They have to be filled within a time interval of $\sim16\,$h, which makes manual filling unfeasible. \\

Therefore, all dewar vessels have been connected to an automatic filling system controlled by a Keysight\footnote{Former Agilent} Data Acquisition Unit\footnote{34970A Data Acquisition / Data Logger Switch Unit}. The unit has been programmed to read the values of temperature sensors inside the vacuum cryostats of each detector. Moreover, it reads the temperature of all valves in the automatic filling system and manages an opening and closing sequence in order to fill all dewars in a predefined time interval. \\

Originally, the filling interval was set to $14\,$h; after a couple of months of stable operation the interval was changed to $16\,$h. The system can also be managed remotely via a \ac{GUI} and detectors can be manually excluded from refilling via the \ac{GUI}. \\

The \ac{LN} is provided by a storage tank with a total volume of about $180\,$l. This vessel has to be filled manually in a five day interval if all detectors are connected.


\subsection{Low and high voltage supply and safety shutdown}
%TODO ASK LUCIAN FOR inhibit signal logic TTL??
The \ac{PreAmp}s of all detectors are powered by \ac{SpecAmp}s\footnote{\ac{Coax}: Silena 7611/L Spectroscopy Amplifier}\footnote{\ac{BEGe}: Ortec 762 Spectroscopy Amplifier}, with a \ac{LV} of $6\,$V. \\

The \ac{Coax} detectors use negative \ac{HV} and the \ac{BEGe} positive \ac{HV} (see \tablename~\ref{tab:alldetectors}). This is provided by two programmable \ac{HV} modules\footnote{CAEN N1471H: NIM HV Power Supply High Accuracy Module}.\\

Each detector has an \ac{HV} inhibit signal output which changes its voltage level if the crystal becomes too warm; this happens typically above $110\,$K. All \ac{HV} inhibit signals are collected in a dedicated unit which further connects to the \ac{HV} modules. If one detector is sending the \ac{HV} inhibit signal the unit sends a shut down signal to the \ac{HV} modules in order to ramp down all detector \ac{HV}s; it is assumed that none of the detectors has been refilled. \\

The Keysight unit can provide a shutdown trigger with a programmable temperature trigger level. In this manner the shutdown can be triggered at a lower temperature than with the \ac{HV} inhibit signals. \\

Moreover, the \ac{HV} is also shut down in case of power failure or malfunction of the Keysight unit, or if the power on the \ac{HV} handling unit fails. \\

If a detector has to be warmed up the \ac{HV} shutdown trigger can be suppressed for the respective channel, by means of a physical switch on the \ac{HV} handling unit. 


\subsection{Three dimensional accessibility}

The Compton table has three degrees of freedom
\begin{itemize}
 \item[$\boldsymbol{y}$] The source with its collimator can be moved along the y-axis to select a position along the diameter of the \ac{BEGe} detector.
 \item[$\boldsymbol{\theta}$] The \ac{BEGe} can be rotated along the z-axis.
\end{itemize}

By changing the $\boldsymbol{y}$ and $\boldsymbol{\theta}$ parameter the full top surface of the BEGe can be scanned. Last
\begin{itemize}
 \item[$\boldsymbol{z}$] The height of the table platform on which the detector collimators and \ac{Coax} detectors are mounted can be raised and lowered.
\end{itemize}

By changing the height of the table a scanning height inside the \ac{BEGe} detector is chosen. A full three-dimensional scan can be performed using all three degrees of freedom. \\

The $\boldsymbol{z}$-movement has to be performed manually, all other movements can also be controlled remotely. The precision of the table height is about $\pm0.5\,$mm and is read from a measure which is installed on the side of the table (see \figurename~\ref{fig:LEGO_position}). The precision motors controlling the $\boldsymbol{y}$- and $\boldsymbol{\theta}$-movements have a reproducibility better than $1\,$mm and $1^{\circ}$.

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, height=8cm]{./LEGO/plots/Table_height_measure_v3} 
  \caption[Measure of scanning table height]{Measure installed on the side of the scanning table platform to read its height.}
  \label{fig:LEGO_position}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.99\textwidth]{./LEGO/plots/topscan_fine_20150714_v3} \\
  \caption[\ac{BEGe} top scan in Compton coincidence setup]{Top scan of the \ac{BEGe} detector inside the Compton coincidence setup using a $^{137}$Cs source. Plotted is the rate of $662\,$keV $\gamma$s versus the source position given by the precision motor which moves the collimator. The \ac{BEGe} center is indicated. }
  \label{fig:Cs137_TopScan}
\end{figure}


\begin{figure}[p]
\centering
\includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.47\textwidth]{./LEGO/plots/pic/Na22source_gatecalib_open_v2} \hspace{3mm}
\includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.47\textwidth]{./LEGO/plots/pic/Na22source_gatecalib_closed}
  \caption[$^{22}$Na source installed inside a detector collimator for position calibration]{$^{22}$Na source inside a detector collimator; with the collimator open (left) and closed (right). This setup is used for detector position calibration (\sectionname~\ref{sec:poscalibration}) and external trigger gate calibration (\sectionname~\ref{sec:gatecalibration}). The collimator aperture is equal to the thickness of the $^{22}$Na source which measures $\sim1.9\,$mm.}
  \label{fig:Na22_Sandwitch}
\end{figure}

\begin{figure}[p]
\centering
\includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.99\textwidth]{./LEGO/plots/lateralscan_20150714_v3}
  \caption[\ac{BEGe} lateral scan in Compton coincidence setup]{Lateral scan of \ac{BEGe} detector inside the Compton coincidence setup using a $^{22}$Na source. Plotted is the rate of $511\,$keV $\gamma$s versus the table height given by the measure at the side of the table.}
  \label{fig:Na22_SideScan}
\end{figure}


\afterpage{\clearpage}

\subsection{Position calibration of source and table}
\label{sec:poscalibration}

Position calibrations were performed in order to align the source position and the table height to the desired scanning region in the \ac{BEGe}. \\

A $^{137}$Cs source was installed in the source collimator, and the rate of the $662\,$keV photons was measured with the \ac{BEGe} in dependence of the $\boldsymbol{y}$-position of the source collimator. The result of this top scan can be found in \figurename~\ref{fig:Cs137_TopScan}. The center of the \ac{BEGe} along the $\boldsymbol{y}$-movement of the source collimator was determined to be $(53 \pm 1)\,$mm. \\

For the table height calibration a $^{22}$Na source was placed inside one of the detector collimators as can be seen in \figurename~\ref{fig:Na22_Sandwitch}. As $^{22}$Na decays via $\beta^+$ it emits a prominent $511\,$keV $\gamma$-line due to annihilation photons. The rate of the $511\,$keV $\gamma$s from the $^{22}$Na source was measured with the \ac{BEGe} in dependence of the table height $\boldsymbol{z}$. In \figurename~\ref{fig:Na22_SideScan} the result of this lateral scan can be seen. The table cannot be lifted higher than $120\,$mm, hence, this is the last point scanned. The middle of the detector with respect to table height $\boldsymbol{z}$ was determined to be $(101\pm1)\,$mm. Thus, subtracting half of the BEGe height $40.7/2\,\mathrm{mm} \approx 20\,\mathrm{mm}$ from this value we find its lower surface at a $\boldsymbol{z}$-value of $101\,\mathrm{mm} - 20\,\mathrm{mm}) = 81\,\mathrm{mm}$. \\

% To estimate the position of the detector center we compare scan positions that show a similar rate or features on the detector edges. The pairs found in the top scan are [$19\,$mm,$87\,$mm] [$16\,$mm,$91\,$mm] and [$18\,$mm,$88\,$mm]. We find the top center at $(53\pm1)\,$mm if we suppose an uncertainty of the single values of $\pm2\,$mm which is a conservative estimate. We don't need to know the position more precisely as we need only indicative positions of the detector zone we are scanning. \\
% 
% Analyzing the side scan is slightly more difficult as we are not able to make a full lateral scan; the table cannot be lifted higher than $120\,$mm. In the lateral scan we find pairs [$81\,$mm,$120\,$mm] and [$85\,$mm,$118\,$mm] and the lateral detector center at $(101\pm1)\,$mm again assuming an uncertainty of the single values of $\pm2\,$mm. \\


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% EXTERNAL TRIGGER LOGIC AND CALIBRATION 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{DAQ and trigger}
\label{sec:LEGOtriggerlogic}

We us an \ac{FADC}, with four channels and a sampling frequency of $100\,$MHz, to digitize the detector signals. For a trigger generation we demand coincidence of the \ac{BEGe} and at least one of the \ac{Coax} detectors $\mathrm{BEGe} \wedge ( \mathrm{Coax1} \vee \mathrm{Coax2} \vee \ldots$. To reduce the number of random coincidences an external trigger logic was designed and implemented.

\subsection{External trigger logic}

The \ac{FADC} can generate a trigger gate on its own. A fixed trigger threshold is set, the gate is opened when the signal rises above threshold and closes when it falls back below threshold. Consequently, the length of the internal trigger gate depends on the trigger threshold and the signal height. \\

The first approach to trigger on coincidences was to set the internal trigger logic to a multiplicity of two channels. However, in this manner a lot of random coincidences are recorded. The real coincidences from single Compton events are expected at a fixed and short trigger time delay between the \ac{BEGe} and one \ac{Coax} detector. \\

The solution is the installation of a \ac{DTU} which generates a leading edge trigger with adjustable gate size, using the trigger gate generated by the \ac{FADC} as input signal. The calibration of the \ac{DTU} gate size is described in the following \sectionname~\ref{sec:gatecalibration}. Ultimately, the external trigger gate is set to a length of $2\,\upmu$s. \\

A sketch of the full external trigger logic can be found in \figurename~\ref{fig:External_Trigger_Logic}. The \ac{FADC} we are using has only one internal trigger output. To trigger on coincidences we need a trigger gate for the \ac{BEGe} as well as for the \ac{Coax} detectors. Hence, two \ac{FADC}s are used: The first one only generates a trigger gate for the \ac{BEGe} detector; in \figurename~\ref{fig:External_Trigger_Logic} it is called DIGI0. The second \ac{FADC} (DIGI1) creates a trigger gate if one of the \ac{Coax} detector triggers. Both gates are shortened by the \ac{DTU} and finally we demand a coincidence by combining both with an AND logic. This external trigger is lead back to DIGI1 which subsequently writes all traces on disk. \\

An example of a random coincidence which would be recorded using the internal trigger logic only, but is excluded by the external \ac{DTU} trigger logic, is shown in \figurename~\ref{fig:ExternalTrigger}. \\

\begin{figure}[p]
 \begin{center}
  \includegraphics[trim=0cm 0mm 0cm 0cm, clip=true, width=0.8\textwidth]{./LEGO/plots/external_trigger.pdf} 
  \caption[Sketch of external trigger logic]{External trigger logic. Digi0 creates trigger gate for BEGe, Digi1 creates trigger gate for the coaxial detectors if either of them is above threshold. The \ac{DTU} adjusts the gate length to a chosen value using a leading edge trigger. The DTU gates are combined in a logic AND to get only  coincident events. Coincidence logic: $\mathrm{BEGe} \wedge (\mathrm{Coax}1 \vee \mathrm{Coax}2 \vee \mathrm{Coax}3)$. }
  \label{fig:External_Trigger_Logic}
 \end{center}
\end{figure}

\begin{figure}[p]
 \begin{center}
  \includegraphics[trim=0cm 0mm 0cm 0cm, clip=true, width=0.8\textwidth]{./LEGO/plots/ExternalTrigger}
  \caption[ External trigger generation ]{ Example of a random coincidence which would be recorded using the internal trigger logic (Trigger int) but excluded by the external Trigger logic (Trigger ext).  }
  \label{fig:ExternalTrigger}
 \end{center}
\end{figure}

\begin{figure}[p]
 \begin{center}
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./LEGO/plots/Na22Calibration_sketch}
   \caption[Sketch of $^{22}$Na \ac{DTU} gate calibration measurement setup]{Sketch of $^{22}$Na \ac{DTU} gate calibration measurement setup. Not up to scale. A $^{22}$Na source is installed inside a detector collimator. $^{22}$Na decays via $\beta^+$ and the subsequently emitted annihilation $\gamma$s can be measured in coincidence.}
  \label{fig:Na22CalibSketch}
 \end{center}
\end{figure}

\begin{figure}[p]
 \begin{center}
  \includegraphics[trim=0cm 0mm 1.3cm 0.5cm, clip=true, width=0.95\textwidth]{./LEGO/plots/Na22_GateSizeCalib}
  \caption[Trigger time difference for different \ac{DTU} gate sizes]{Trigger time difference for different \ac{DTU} gate sizes divided by measurement real-time. A Peak containing true coincidences on top of flat background of random coincidences is observed. Any \ac{DTU} gate size shorter than $\sim1.3\,\upmu$s cuts a part of true coincidences. }
  \label{fig:Na22Cal}
 \end{center}
\end{figure}

\clearpage
\subsection{Trigger gate calibration}
\label{sec:gatecalibration}

To calibrate the trigger gate size on the \ac{DTU} we use a Na$^{22}$ source. Na$^{22}$ is decaying via $\beta^+$ and the emitted positron annihilates with an electron. Two annihilation photons of $511\,$keV each are emitted back-to-back. They can be measured in coincidence using the external trigger logic described before. We measure coincidences of one \ac{Coax} detector and the \ac{BEGe} with the source installed in a detector collimator (\figurename~\ref{fig:Na22_Sandwitch}), as was done for the lateral position calibration. A sketch of the setup can be seen in \figurename~\ref{fig:Na22CalibSketch}. \\

The measurement is repeated for \ac{DTU} gate sizes of $0.4\,\upmu$s, $0.6\,\upmu$s, $1\,\upmu$s and $2\,\upmu$s. Histograms of the trigger time difference $\Delta \mathrm{Trigger} = \mathrm{Trigger}_{\mathrm{BEGe}} - \mathrm{Trigger}_{\mathrm{Coax}}$ are plotted in \figurename~\ref{fig:Na22Cal}. All bin contents are divided by the real-time of the respective measurement for normalization. \\

An asymmetric peak with a mode of roughly $1\,\upmu$s on a flat background can be seen. The background contains random uncorrelated coincidences while the peak contains truly correlated events. The peak of true coincidences is asymmetric as $\Delta \mathrm{Trigger}$ depends mostly on the relation between the trigger threshold and the shapes of the traces which are asymmetric by themselves and contain single as well as multiple Compton events. If the \ac{DTU} gate size is too short, $<1.2\,\upmu$s, real coincidences are cut from the distribution. \\

The \ac{DTU} gate size calibration is performed for all coincident detectors. They behave all very similar and a \ac{DTU} gate size of $2\,\upmu$s was determined to be sufficiently large for all of them, leaving some freedom for baseline drifts, different trigger thresholds and different measurement positions. Individual plots can be found in \appendixname~\ref{appendix:DTUgatecalib}. \\

\begin{table}[p]
\centering
\caption[List of $^{137}$Cs coincidence measurements]{List of $^{137}$Cs coincidence measurements taken with a $780\,$MBq source. For all measurements the rotation angle was fixed at $\theta = 0^{\circ}$. The measurements presented were performed in the second half of 2015.}
\label{tab:allCs137p_measuerements}
  \begin{tabular}{rccccccc}
    \hline\hline
      & start & real & detector & table height & source pos. & BEGe & \\
    Run & date & time [h] & coll. [mm] & $\boldsymbol{z}$ [mm] & $\boldsymbol{y}$ [mm] & HV [kV] & Coax \\
    \hline
    $1^a$ & 0715 & 18.0 & 5 & 90 & 53 & 4.0 & 1 \\ % c0_CC3_c1_CC1_Cs137p_coinc_0715_163917.data
    $1^b$ & 0716 & 26.9 & 5 & 90 & 53 & 4.0 & 1 \\ % c0_CC3_c1_CC1_Cs137p_coinc_0716_103637.data
    $2^a$ & 0717 & 33.4 & 5 & 100 & 85 & 4.0 & 1 \\ % c0_CC3_c1_CC1_Cs137p_x850_coinc_0717_140421.data
    $2^b$ & 0721 & 7.0 & 5 & 100 & 85 & 4.0 & 1 \\ % c0_CC3_c1_CC1_Cs137p_coinc_h100_x850_0721_123428.data
    $2^c$ & 0722 & 49.4 & 5 & 100 & 85 & 4.0 & 1 \\ % c0_CC3_c1_CC1_Cs137p_coinc_h100_x850_0722_095342.data
    3 & 0724 & 3.6 & 5 & 115 & 53 & 4.0 & 1 \\ % c0_CC3_c1_CC1_Cs137p_coinc_h115_x530_0724_112039.data
    \hline
    4 & 0923 & 13.1 & 3 & 100 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_Cs137p_4500V_h100_x530_coinc_0923_180033.data
    5 & 0924 & 13.9 & 3 & 100 & 53 & 5.0 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_Cs137p_5000V_h100_x530_coinc_0924_125740.data
    6 & 0925 & 13.5 & 3 & 105 & 85 & 5.0 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_Cs137p_5000V_h105_x850_coinc_0925_140854.data
    7 & 0928 & 10.4 & 3 & 115 & 85 & 5.0 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_Cs137p_5000V_h115_x850_coinc_0928_144611.data
    \hline
    8 & 1022 & 12.3 & 1 & 120 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x53mm_h120mm_dc1mm_sc1mm_Cs137p_coinc_1022_163651.data
    9 & 1026 & 12.3 & 1 & 118 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x53mm_h118mm_dc1mm_sc1mm_Cs137p_coinc_1026_171400.data
    10 & 1027 & 12.3 & 1 & 115 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x53mm_h115mm_dc1mm_sc1mm_Cs137p_coinc_1027_101307.data
    11 & 1028 & 12.4 & 1 & 102 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x53mm_h102mm_dc1mm_sc1mm_Cs137p_coinc_1028_112640.data
    12 & 1029 & 20.9 & 1 & 89 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x53mm_h89mm_dc1mm_sc1mm_Cs137p_coinc_1029_114459.data
    13 & 1031 & 21.0 & 1 & 86 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x53mm_h86mm_dc1mm_sc1mm_Cs137p_coinc_20151031_194619.data
    \hline
    14 & 1102 & 20.5 & 3 & 86 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x53mm_h86mm_dc3mm_sc1mm_Cs137p_coinc_1102_163413.data
    15 & 1103 & 21.4 & 3 & 117 & 53 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x53mm_h117mm_dc3mm_sc1mm_Cs137p_coinc_1103_130702.data
    16 & 1104 & 26.4 & 3 & 100 & 86 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x86mm_h100mm_dc3mm_sc1mm_Cs137p_coinc_1104_112301.data
    17 & 1107 & 25.4 & 3 & 82 & 85 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x85mm_h82mm_dc3mm_sc1mm_Cs137p_coinc_1107_102238.data
    18 & 1109 & 23.7 & 3 & 85 & 83 & 4.5 & 1,2,4 \\ % c0_CC3_c1_CC1_c2_CC2_c3_CC4_x83mm_h85mm_dc3mm_sc1mm_Cs137p_coinc_20151109_114946.data
    \hline\hline
  \end{tabular}
\end{table}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% ALL CUTS TO GET RID OF PILE-UP 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Data taking campaign}
\label{sec:LEGOdata}

$^{137}$Cs coincidence measurements were taken with the standard collimator and a standard $^{137}$Cs source. However, the measurement time for one scanning position in order to see coincidences was about one week. After installation of the $780\,$MBq $^{137}$Cs source and its collimator, measurement time went down to about one day per position. Various locations were scanned with different detector collimation and different \ac{BEGe} \ac{HV}. \\

A list of measurements taken with the $780\,$MBq $^{137}$Cs source can be found in \tablename~\ref{tab:allCs137p_measuerements} and the positions scanned are visualized in \figurename~\ref{fig:ScanpointsCs137}. Run14 will be shown in the following for illustration purpose. \\

\clearpage
\section{Data processing and selection}
\label{sec:LEGOdataprocessing}

All data, taken with the \ac{FADC} \ac{DAQ} system, are processed in the same manner as described in \sectionname~\ref{sec:DAQ}, using a multi-tier approach (see \appendixname~\ref{appendix:LEGOdecoder}). \\

A number of quality cuts are applied in order to get rid of \textit{unphysical} and \textit{pile-up} events, events with \textit{very noisy \ac{BL}} and \textit{random coincidences}. Only events which satisfy the following requirements have been kept
\begin{itemize}
    \item Over/Underflow-cut: The dynamic range of the \ac{FADC} has not to be exceeded.
    \item IsGood: No error occurred during processing.
    \item $\sigma_{\mathrm{BL}}$-cut: The distribution of standard deviation of the restored \ac{BL} $\sigma_{\mathrm{BL}}$ is fit for each run using a Gaussian fit function. All events with $\sigma_{\mathrm{BL}} > \mu_{\mathrm{Gauss}} + 3\,\sigma_{\mathrm{Gauss}}$\footnote{ $\mu_{\mathrm{Gauss}}$ and $\sigma_{\mathrm{Gauss}}$ are the centroid and standard deviation of the Gaussian fit function. } are discarded.
    \item TriggerNumber-BEGe: The number of triggers found in the \ac{BEGe} trace has to be one, using a fixed trigger threshold.
    \item TriggerNumber-Coax: The number of triggers found in any \ac{Coax} trace has to be either smaller than two, or the second trigger has to have at least a distance of $6\,\upmu$s from the first one.
    \item $\Delta \mathrm{Trigger}$-cut: $0\,\upmu < \Delta \mathrm{Trigger} = \mathrm{Trigger}_{\mathrm{BEGe}} - \mathrm{Trigger}_{\mathrm{Coax}} < 1.2\,\upmu$s.
\end{itemize}
The most stringent cut is the $\sigma_{\mathrm{BL}}$-cut. This cut excludes noisy events and events with a poorly restored \ac{BL} which can be due to pile-up. 
\enlargethispage{1cm}
\vspace{5mm}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 5cm 1cm, clip=true, width=0.9\textwidth]{./LEGO/plots/Scanpoints}
  \caption[Scanned points using the $780\,$MBq $^{137}$Cs source]{Scanned points using the $780\,$MBq $^{137}$Cs source with different detector collimation and \ac{BEGe} \ac{HV}. }
  \label{fig:ScanpointsCs137}
 \end{center}
\end{figure}

\clearpage

The effects of the quality cuts on uncalibrated energy spectra is exemplary shown in \figurename~\ref{fig:Cuts}, for the \ac{BEGe} and \ac{Coax}1 data of Run14. The dark blue spectra contain all events with no quality cuts applied, the light blue spectra include all cuts except for the $\sigma_{\mathrm{BL}}$-cut and in the spectra shown in magenta also the $\sigma_{\mathrm{BL}}$-cuts is applied. \\

Note that the $\sigma_{\mathrm{BL}}$-cut restores the resolution of $\gamma$-lines in the \ac{BEGe} spectrum and has little to no effect in the spectrum of \ac{Coax}1. The reason is most probably the high activity of the $^{137}$Cs source and, therefore, high amount of pile-up events in the \ac{BEGe} detector. The energy reconstruction for pile-up events is mostly poor and worsens the energy resolution. The \ac{Coax} detectors show much less pile-up as they are not directly in the $\gamma$ beam of the $^{137}$Cs source. \\

Finally, the energy is calibrated for each detector by means of calibration curves, calculated using dedicated $^{60}$Co calibration spectra. This was explained in \sectionname~\ref{sec:energycalibration}. \\
\enlargethispage{2cm}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 3cm 1.2cm, clip=true, width=0.85\textwidth]{./LEGO/plots/cuts_c0_CC3_20151102_163413}
  \includegraphics[trim=0cm 0mm 3.3cm 1cm, clip=true, width=0.85\textwidth]{./LEGO/plots/cuts_c1_CC1_20151102_163413}
  \caption[Impact of standard quality cuts on uncalibrated energy spectra ]{ Run14 uncalibrated energy spectra of \ac{BEGe} (top) and \ac{Coax}1 (bottom). The $\sigma_{\mathrm{BL}}$-cut restores the resolution of $\gamma$-lines in the \ac{BEGe} spectrum and has little to no effect in the spectrum of \ac{Coax}1. }
  \label{fig:Cuts}
 \end{center}
\end{figure}

\clearpage
\section{Compton coincidences}

In the top \figurename~\ref{fig:ScatterplotBEGeCC1} the calibrated energy of \ac{Coax}1 $E_{\mathrm{Coax1}}$ is plotted versus the calibrated energy of the \ac{BEGe} $E_{\mathrm{BEGe}}$. The $^{137}$Cs $\gamma$-line is visible as a vertical line for $E_{\mathrm{BEGe}} \approx 662\,\mathrm{keV}$. The Compton coincidences appear as a diagonal line at $E_{\mathrm{BEGe}} + E_{\mathrm{Coax1}} \approx 662\,$keV. The two lines mark the sum spectrum which is plotted in the bottom \figurename~\ref{fig:ScatterplotBEGeCC1}. To check the goodness of the energy calibration the sum spectrum is fit using a Gaussian fit function for the Compton coincidences and an \ac{ERFC} function to describe the background (see \equationname~\ref{eqn:GaussErfcBackground}). The centroid is found at $(662.1 \pm 0.1)\,$keV which means the energy calibration is accurate within $\approx 0.5\,$keV. \\
\enlargethispage{2cm}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 2cm 0.8cm, clip=true, width=0.9\textwidth]{./LEGO/plots/scatterplot_BEGe_CC1_20151102_163413}
  \includegraphics[trim=0cm 0mm 3.5cm 1.5cm, clip=true, width=0.9\textwidth]{./LEGO/plots/histo_sumfit_BEGe_CC1_20151102_163413}
  \caption[Calibrated scatter plot and sum energy spectrum of Run14 data ]{ Scatter plot (top) and sum energy histogram (bottom) of calibrated \ac{BEGe} and \ac{Coax}1 energies, for $^{137}$Cs coincidence measurement Run14. All quality cuts are applied. The sum energy of $E_{\mathrm{BEGe}} + E_{\mathrm{Coax1}} \approx 662\,$keV is indicated, in the top figure, by two diagonal lines. In the bottom figure, the result of a fit with a Gaussian on an \ac{ERFC} background is shown. The centroid of the Gaussian is shifted by $\approx0.5\,$keV with respect to the expected value of $661.657\,$keV.}
  \label{fig:ScatterplotBEGeCC1}
 \end{center}
\end{figure}
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A full simulation of the experimental setup has been developed and implemented in the Geant4 \cite{RefWorks:113} based \ac{MC} simulation framework MaGe \cite{RefWorks:85}. It contains a detailed description of the detector and source geometries, materials and shielding and has been used to optimize the setup and evaluate the expected event rates. Moreover, the energy and spatial distributions of \ac{SCE} events with respect to background events have been studied to optimize the analysis cuts. 

\section{Setup implementation}
\label{sec:LEGOMCSetup}

The geometry implemented in MaGe contains all important parts of the setup (schematics in \figurename~\ref{fig:LEGO_implementation}): the detectors with their encapsulations, the detector and source collimators, the table platform on which the \ac{Coax} detectors are mounted, the \ac{BEGe} holder and the source geometry. \\

As the \ac{Coax} detectors face the \ac{BEGe} at a scattering angle of $90^{\circ}$ their holders have not been implemented in the setup. Detector contact layer effects have not been taken into consideration, e.g. loss of charge carriers due to recombination in the lithium diffused surface. \\

\begin{figure}[p]
\centering
\includegraphics[trim=0cm 0cm 0cm 0cm, clip=true,width=0.4\textwidth]{./LEGO/plots/LEGO_MC_top_woTable} \hspace{3mm}
\includegraphics[trim=0cm 0cm 0cm 0cm, clip=true,width=0.54\textwidth]{./LEGO/plots/LEGO_MC_side_woTable}
 \caption[Compton coincidence setup \acs{MC} implementation in MaGe]{ \ac{MC} geometry top view (left) and side view (right). For better visibility, the vacuum cryostats of the \ac{Coax} detectors and the table platform are not shown. The \ac{BEGe} aluminum cryostat is displayed in blue, the \ac{BEGe} detector is drawn in red and its holder in green. The black structures are the lead source and detector collimators and the \ac{Coax} detectors are shown in gray. Below the source collimator the orange nylon vessel that holds the source is shown. For details of the source implementation see \figurename~\ref{fig:LEGO_Cs137_source}.}
\label{fig:LEGO_implementation}
\end{figure}

Some geometry details can be varied at run time. A short description of the \ac{MC} options can be found in \appendixname~\ref{appendix:MCoptions}. 

\subsection{\texorpdfstring{$^{137}$Cs}{137Cs} source implementation}

The geometry of the strong $^{137}$Cs source used for the coincidence measurements is not point-like. A realistic implementation of the source geometry in MaGe is shown in \figurename~\ref{fig:LEGO_Cs137_source}. The source itself is embedded in a cylindrical ceramic which measures about $3\,$mm in height and diameter. It is encapsulated in a stainless-steel container, which is held by a nylon vessel for better handling. 

\begin{SCfigure}[1][p]
 \centering
 \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, height=6cm]{./LEGO/plots/LEGO_MC_Cs137_white}
 \caption[Realistic \acs{MC} implementation of strong $^{137}$Cs source geometry]{Realistic implementation of the strong $^{137}$Cs source geometry. From inside out: in magenta the activity $3\,$mm in height and diameter, a stainless steel sealing in blue and the outer nylon vessel in orange.}
 \label{fig:LEGO_Cs137_source}
\end{SCfigure}

\clearpage
\subsection{Setup optimization}

In order to see if important details of the setup are missing in the MaGe representation an uncollimated $^{137}$Cs spectrum, taken with a standard point-like source with an activity of about $380\,$kBq, was compared to simulation.\\

The spectra can be seen in \figurename~\ref{fig:MC_finetuning}; two \ac{MC} spectra are shown which are normalized to the measurement by adjusting the height of the Compton edge at $\approx478\,$keV to the measurement. The \ac{MC} spectrum shown in red takes the copper holder of the \ac{BEGe} detector in consideration, the spectrum shown in green does not. \\

As can be seen, the inclusion of the \ac{BEGe} copper holder in the simulation changes the shape of the spectrum between $100\,$keV and $250\,$keV. The shape of the simulated spectrum including the holder is in much better agreement with the measurement. In the energy region below $70\,$keV both \ac{MC} spectra are still not in a very good agreement with the measurement. This energy region is, however, not important in the following: all \ac{FADC} trigger thresholds are set to $\approx 150\,$keV. 

\vspace{1cm}

\begin{figure}[h]
\centering
\includegraphics[trim=0.4cm 0cm 1.5cm 1cm, clip=true,width=0.9\textwidth]{./LEGO/plots/MC_fine_tuning_Cs137_uncollimated}
 \caption[Uncollimated $^{137}$Cs spectrum comparison of measurement and \acs{MC}]{ BEGe uncollimated $^{137}$Cs spectrum. Measurement in blue, \ac{MC} simulation without the BEGe copper holder in green and with the holder shown in red. }
\label{fig:MC_finetuning}
\end{figure}


\newpage
\section{Energy distribution of single Compton events}
\label{sec:LEGO_SingleComptonDistribution}

The simulation provides a tool to study the energy distribution of \ac{SCE} events, considered as \textit{signal events}, and multiple Compton events, which will be labeled \textit{background} in the following. What we define here as signal events, namely \ac{SCE} events, is only a part of signal-like events. In reality all events which deposit energy in a volume smaller than the spatial resolution of the \ac{BEGe} detector are to be considered signal-like, also if energy is deposited through multiple Compton scatterings. This implies that the signal to background ratio in the data will differ from what is estimated here with \ac{MC} simulations. The signal to background ratio has to be ultimately evaluated for real data. \\

In this section we will look at a simulation for a detector collimation of $10\,$mm, restricting the angular acceptance of the \ac{Coax} detectors, a source collimation of $1.5\,$mm and a scanning height of $1\,$cm. The scanning height is measured from the lower edge of the \ac{BEGe} detector. The collimators are placed as close as possible to the \ac{BEGe} vacuum cryostat and the observation angle is $90^{\circ}$. Only events releasing energy in the \ac{BEGe} and at least one of the \ac{Coax} detectors are saved on disc, equivalent to the external trigger logic.\\

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CONFIGURATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   string BEGE = "LEGO";
%   string MEAS = "Cs137_C1C2C3C4_SH1cm_COLL10mm0deg_CFlag";
%   string SourceType = "Cs137"; //HS7like PTBPointlike
%   Double_t SourceCollimatorLength = 80.; //mm
%   Double_t SourceBeamWidth = 1.5; //mm
%   Double_t ScanningHeight = 1.; //cm
%   Double_t ScanningAngle = 0.; //deg
%   string CollimatorMaterial = "lead"; //lead, copper, gold
%   Double_t CollimatorPosition = 0.; //mm
%   Double_t CollimatorOpening = 10.; //mm
%   Double_t BEGElow = 10.; //keV
%   Double_t COAXlow = 10.; //keV
%   Double_t COAXup = 700.; //keV
%   Double_t thetaDelta = 5.; //deg opening of gamma cone
%   //Int_t LCType = 1; // 0=none, 1=lead, 2=lead+copper
%   Int_t numOfEvents = 1e8;
%   string ComptonFlags = "true";
% SIMULATION wo BEGe Holder


In \figurename~\ref{fig:Scatterplot_SingleCompton} a scatter plot of the energy released in the \ac{BEGe} and in one of the \ac{Coax} detectors is shown. 
The distribution is split in \ac{SCE} events, drawn in red, and background shown in blue. A diagonal line is clearly visible at a sum of energies of $662\,$keV which corresponds to events in which the full $\gamma$ energy is released in the two detectors. A band of \ac{SCE} events at \ac{BEGe} energy $(373 \pm 30)$\,keV can be noticed; it corresponds to events with a scattering angle of $\sim90^{\circ}$ with respect to the incident photon beam, where the energy of the scattered photon is not fully contained in the \ac{Coax} detector.

\vspace{5mm}

\begin{figure}[h]
 \centering
 \includegraphics[trim=0cm 0cm 3cm 1cm, clip=true, width=0.9\textwidth]{./LEGO/plots/Energy_BEGe_CC1_10mm0deg_CFlag}
 \caption[\ac{BEGe} energy versus \ac{Coax}1 energy from \ac{MC} simulation]{\ac{BEGe} energy versus \ac{Coax}1 energy from \ac{MC} simulation. Single Compton (signal) events are shown in red and background events in blue.}
 \label{fig:Scatterplot_SingleCompton}
\end{figure}

\newpage
The \ac{BEGe} energy spectrum of all events, regardless of the \ac{Coax} detector in coincidence, is plotted in \figurename~\ref{fig:BEGeEnergy_SingleCompton}. Both the distribution of \ac{SCE} and background are shown; they differ from each other in their shape. In the \ac{SCE} spectrum a peak is clearly seen at an energy of $373\,$keV as expected for a \ac{SCE} scattering at an angle of $\sim90^{\circ}$. The distribution of background events is much broader. \\

Calculating the signal to background ratio from the two distributions (see \figurename~\ref{fig:SB_SingleCompton}) an energy cut for the \ac{BEGe} detector can be defined as
\begin{equation}
 352\,\mathrm{keV} < E_{\mathrm{BEGe}} < 388\,\mathrm{keV}
 \label{eqn:BEGeEnergyCut}
\end{equation}

corresponding to a signal to background ratio above one. \\

The respective signal and background energy spectra for one \ac{Coax} detector, without any energy cut applied, can be found in \figurename~\ref{fig:CC1Energy_NoCut}. As for the BEGe detector the spectral distribution of signal events displays a peak of Gaussian form whereas the distribution of background events is broader. Events with zero energy are events which deposit energy in a different \ac{Coax} detector. \\

In the \ac{Coax} background spectrum at $\sim74\,$keV a line is observed which coincides with lead x-Ray fluorescence energies. As all collimators are made of lead this is a plausible explanation for its appearance in the spectrum. Also in the \ac{BEGe} spectrum lead fluorescence lines are observed but their relative strength is much lower. \\

The same \ac{Coax} energy spectra but with the \ac{BEGe} energy cut (\equationname~\ref{eqn:BEGeEnergyCut}) applied can be seen in \figurename~\ref{fig:CC1Energy_BEGeCut}. 

\vspace{2mm}
\begin{figure}[h]
 \centering
 \includegraphics[trim=0cm 0cm 2.5cm 0.1cm, clip=true, width=0.9\textwidth]{./LEGO/plots/Energy_BEGe_SigBkG_noCut}
 \caption[\ac{BEGe} signal and background spectrum without energy cuts]{ \ac{BEGe} energy spectrum of \ac{SCE} events and background; no energy cut is applied.}
 \label{fig:BEGeEnergy_SingleCompton}
\end{figure}

\newpage
In the signal distribution we find a peak on a flat background and define an energy cut for the \ac{Coax} detectors  
\begin{equation}
 E_{\mathrm{Coax}} > 272\,\mathrm{keV}
 \label{eqn:CoaxEnergyCut}
\end{equation}

as indicated in \figurename~\ref{fig:CC1Energy_BEGeCut} by a vertical line. We require that \textit{at least one of the \ac{Coax} detectors} satisfies this condition. This energy cut will be called \textit{\ac{Coax} energy cut} in the following.\\

The impact of the \ac{Coax} energy cut on the \ac{BEGe} signal to background ratio is presented in \figurename~\ref{fig:SB_SingleCompton_CCXCut}. The ratio improves at all energies selected with the \ac{BEGe} energy cut. \\
\enlargethispage{3cm} \vspace{-3mm}
\begin{figure}[H]
 \centering
 \includegraphics[trim=0cm 0cm 3cm 0.6cm, clip=true, width=0.85\textwidth]{./LEGO/plots/SigBkg_BEGe_noCut_Threshold_10mm0deg_CFlag}
 \caption[\ac{BEGe} signal to background ratio as a function of energy]{\ac{BEGe} signal to background ratio as a function of energy. The signal and background equality where $\mathrm{S/B} = 1$ is marked with a black horizontal line. This defines the \ac{BEGe} energy cut, indicated by two red vertical lines.  }
 \label{fig:SB_SingleCompton}
\end{figure}
\vspace{-5mm}
\begin{figure}[H]
 \centering
 \includegraphics[trim=0cm 0cm 3.2cm 1cm, clip=true, width=0.85\textwidth]{./LEGO/plots/Energy_CC1_SigBkG_noCut}
 \caption[\ac{Coax} signal and background spectrum without energy cuts]{\ac{Coax} energy spectrum for \ac{SCE} events and background; no energy cut is applied.}
 \label{fig:CC1Energy_NoCut}
\end{figure}

\begin{figure}[h]
 \centering
 \includegraphics[trim=0cm 0cm 3.5cm 1cm, clip=true, width=0.95\textwidth]{./LEGO/plots/Energy_CC1_BEGeCut}
 \caption[\ac{Coax} signal and background spectrum with \ac{BEGe} energy cut applied]{\ac{Coax} energy spectrum for \ac{SCE} events and background. The \ac{BEGe} energy cut is applied. A lower energy cut chosen for the \ac{Coax} detectors is indicated by a vertical line. }
 \label{fig:CC1Energy_BEGeCut}
\end{figure}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 4.7cm 1.1cm, clip=true, width=0.95\textwidth]{./LEGO/plots/SB_BEGe_CCXCut_10mm0deg_CFlag}
  \caption[\ac{BEGe} signal to background ratio comparison]{\ac{BEGe} signal to background ratio comparison; in blue without energy cuts and in red with the \ac{Coax} energy cut applied.}
  \label{fig:SB_SingleCompton_CCXCut}
\end{figure} 

\clearpage
\section{Interaction region and confinement}
\label{sec:LEGO_InteractionRegion}

In this section we take a close look at the interaction region of signal and background events we have selected with the energy cuts introduced in \sectionname~\ref{sec:LEGO_SingleComptonDistribution}. In \figurename~\ref{fig:LEGO_InteractionRegion_all} the hit distribution of all events, only signal and only background events can be seen respectively; no energy cuts were applied. The position of the \ac{BEGe} and two \ac{Coax} detectors is indicated in the uppermost figure. In the following figures the position of the detectors is the same as illustrated here. We observe that only by collimation the signal events are not well confined. \\

As already outlined the, \ac{BEGe} energy cut is chosen according to the signal to background ratio as a function of energy. As the first interaction happens in the \ac{BEGe} detector this is the first energy cut implemented. In \figurename~\ref{fig:LEGO_InteractionRegion_BEGeCut} the hit distributions are shown as before, but with the \ac{BEGe} energy cut applied. As can be seen, the confinement of all events is much better than before. \\

We add the \ac{Coax} energy cut for the coincidence detectors in \figurename~\ref{fig:LEGO_InteractionRegion_BEGeCutDAQCut}. The cut further improves the confinement of all events. \\ \vspace{2mm}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_noCut_10mm0deg_CFlag_v2}
  \includegraphics[trim=0cm 0cm 0.7cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_noCut_Signal_10mm0deg_CFlag}
  \includegraphics[trim=0cm 0cm 0.7cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_noCut_Background_10mm0deg_CFlag}
  \caption[Hit distributions without energy cut]{Hit distribution side view for \textit{all events} (top), \textit{signal events} (middle) and \textit{background events} (bottom); no energy cuts were applied.}
  \label{fig:LEGO_InteractionRegion_all}
\end{figure}

\newpage
The hit distribution of signal and background in the \ac{BEGe} detector after all energy cuts can be seen in \figurename~\ref{fig:SB_ZDistribution}, projected on the $z$-axis, and in \figurename~\ref{fig:SB_XDistribution}, projected on the $x$-axis. Each hit has been assigned a weight equal to its energy deposition. The detector and source collimation windows are indicated in red. \\

In the $z$-projection, $69\%$ of signal energies are deposited within the $10\,$mm wide detector collimation window, whereas almost $100\%$ can be found within $20\,$mm corresponding to twice the collimation window. In $x$, the energy distribution is a bit more compact. $83\%$ of signal energy is deposited within $x = \pm 0.75$mm which corresponds to the source collimation; $97\%$ can be found within $x = \pm 1.5$mm which corresponds to twice the source collimation diameter. 
In $x$-projection as well as in $z$-projection, the spatial distribution of the background is found to be very similar to the signal distribution. \\

\vspace{1cm}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 0.7cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_BEGeCut_10mm0deg_CFlag}
  \includegraphics[trim=0cm 0cm 0.7cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_BEGeCut_Signal_10mm0deg_CFlag}
  \includegraphics[trim=0cm 0cm 0.7cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_BEGeCut_Background_10mm0deg_CFlag}
  \caption[Hit distributions with \ac{BEGe} energy cut]{Hit distribution side view for \textit{all events} (top), \textit{signal events} (middle) and \textit{background events} (bottom). The \ac{BEGe} energy cut is applied (see \equationname~\ref{eqn:BEGeEnergyCut}).}
  \label{fig:LEGO_InteractionRegion_BEGeCut}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0.7cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_BEGeCutDAQCut_10mm0deg_CFlag}
  \includegraphics[trim=0cm 0cm 0.7cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_BEGeCutDAQCut_signal_10mm0deg_CFlag}
  \includegraphics[trim=0cm 0cm 0.7cm 0cm, clip=true, width=\textwidth]{./LEGO/plots/HitDist_xz_BEGeCutDAQCut_background_10mm0deg_CFlag}
  \caption[Hit distributions with \ac{BEGe} and \ac{Coax} energy cuts]{Hit distribution side view for \textit{all events} (top), \textit{signal events} (middle) and \textit{background events} (bottom).  The \ac{BEGe} energy cut (\equationname~\ref{eqn:BEGeEnergyCut}) and the \ac{Coax} energy cut (\equationname~\ref{eqn:CoaxEnergyCut}) are applied.}
  \label{fig:LEGO_InteractionRegion_BEGeCutDAQCut}
\end{figure}

\clearpage

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 3cm 1cm, clip=true, width=0.95\textwidth]{./LEGO/plots/ZDistribution_BEGe_Signal_10mm0deg_CFlag}
  \caption[$Z$-projection of signal and background energy distribution in the \ac{BEGe}]{ $Z$-projection of signal and background spatial distribution in the \ac{BEGe}. Each hit has been assigned a weight equal to its energy deposition. The detector collimation window is indicated by a red band and the \ac{BEGe} $z$ dimension (height) by two vertical lines.  }
  \label{fig:SB_ZDistribution}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 3.5cm 1cm, clip=true, width=0.95\textwidth]{./LEGO/plots/XDistribution_BEGe_Signal_10mm0deg_CFlag}
  \caption[$X$-projection of signal and background energy distribution in the \ac{BEGe}]{ $X$-projection of signal and background spatial distribution in the \ac{BEGe}. Each hit has been assigned a weight equal to its energy deposition. The source collimation diameter is indicated by a red band and the \ac{BEGe} $x$ dimension (diameter) by two vertical lines. }
  \label{fig:SB_XDistribution}
\end{figure}


\clearpage
\section{Energy cuts}
\label{sec:LEGOMCCuts}

Summarizing \sectionname~\ref{sec:LEGO_SingleComptonDistribution} and \sectionname~\ref{sec:LEGO_InteractionRegion}, we have defined energy cuts for the \ac{BEGe} detector and the \ac{Coax} detectors in order to select signal events from a confined interaction region. \\

In the \ac{MC} simulation pile-up events and random coincidences are not considered. Thus, above the sum energy of $662\,$keV no events are found in the \ac{MC} spectra. As was shown before (see \figurename~\ref{fig:ScatterplotBEGeCC1}), this is different for real data. Therefore, we introduce an additional cut on the \ac{BEGe} and \ac{Coax} sum energy for data analysis. The sum energy spectra are fit with a Gaussian fit function modeling the background by an \ac{ERFC} and the cut is defined as 
\begin{equation}
 662\,\mathrm{keV} - 3\sigma < E_{\mathrm{BEGe}} + E_{\mathrm{Coax}} \equiv E_{\mathrm{Sum}} < 662\,\mathrm{keV} + 3\sigma
\end{equation}

where $\sigma$ is the standard deviation of the Gaussian. An example of the fit was already shown in \figurename~\ref{fig:ScatterplotBEGeCC1}. \\

Summarizing, all energy cuts we apply are the following 

\begin{listliketab}\setlength{\parskip}{0em}
\centering
  \begin{tabular}{rll}
  \textbullet & \textbf{\ac{BEGe} energy cut} & $352\,\mathrm{keV} < E_{\mathrm{BEGe}} < 388\,\mathrm{keV}$ \\
  \textbullet & \textbf{\ac{Coax} energy cut} & $E_{\mathrm{Coax}} > 272\,$keV \\
  \textbullet & \textbf{Sum energy cut} & $662\,\mathrm{keV} - 3\sigma < E_{\mathrm{Sum}} < 662\,\mathrm{keV} + 3\sigma$  \\
  \end{tabular}
\end{listliketab}

\figurename~\ref{fig:LEGOEnergyCuts} shows a scatter plot of the \ac{BEGe} and \ac{Coax}1 energies for Run14; energy cuts are indicated in red. \\

Applying all energy cuts to simulation, we expect a reduction in the \ac{BEGe} energy spectrum as is shown in \figurename~\ref{fig:Energy_AfterCuts}. The demonstrated energy spectra were obtained applying all energy cuts to the usual simulation with detector collimation of $10\,$mm, source collimation of $1.5\,$mm etc.. \\

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.95\textwidth]{./LEGO/plots/Scatterplot_BEGe_CC1_energycuts_20151102_163413}
  \caption[Scatter plot of the \ac{BEGe} and \ac{Coax}1 energy in Run14]{ Scatter plot of the \ac{BEGe} and \ac{Coax}1 energy for Run14; all standard quality cuts are applied. The \ac{BEGe} energy cut is indicated by two vertical lines, the \ac{Coax} energy cut by one horizontal line and the sum energy cut by two diagonal lines. }
  \label{fig:LEGOEnergyCuts}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 2.6cm 0.5cm, clip=true, width=0.95\textwidth]{./LEGO/plots/Energy_BEGe_SigBack_afterCuts_10mm0deg_CFlag}
  \caption[\ac{BEGe} simulated energy spectrum after all energy cuts]{ \ac{BEGe} simulated energy spectrum; after \ac{Coax} and sum energy cuts in dark blue and  with the \ac{BEGe} energy cut applied in light blue. The expected background contribution is indicated in red.}
  \label{fig:Energy_AfterCuts}
\end{figure}

\afterpage{\clearpage}
\section{Comparing Monte Carlo simulations with measurements}
\label{sec:LEGOMCComparison}

To be able to compare \ac{MC} simulations with measurements some general considerations have to be made. The \ac{MC} simulations do not contain pile-up or random coincidences, and in order to save simulation time we do not simulate the full solid angle of incident photons from the $^{137}$Cs source. In the next subsections we explain how the number of expected events is calculated from \ac{MC} simulation.

\subsection{Solid angle calculation}

In order to save simulation time, only a part of the solid angle of incident photons from the $^{137}$Cs source is simulated. The respective solid angle fraction can be calculated, dividing the surface of the corresponding spherical sector
\begin{equation}
 S_\mathrm{C} = 2\pi r^2 (1-\cos\alpha)
\end{equation}

by the surface of the whole sphere 
\begin{equation}
 S_\mathrm{S} = 4\pi r^2 
\end{equation}

In this manner the solid angle fraction
\begin{equation}
 \Omega_\mathrm{f}(\alpha) = \frac{S_\mathrm{C}}{S_\mathrm{S}} = \frac{1-\cos\alpha}{2}
\end{equation}

is obtained. The opening angle $\alpha$ is measured from the vertical position as is shown in \figurename~\ref{fig:Calotta}. \\

We find $\Omega_\mathrm{f}(5^{\circ}) \approx 1.9 \cdot 10^{-3}$ and $\Omega_\mathrm{f}(1^{\circ}) \approx 7.6 \cdot 10^{-5}$.

\begin{figure}[b]
 \centering
 \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.4\textwidth]{./LEGO/plots/calotta3}
 \caption[Opening angle $\alpha$ in the solid angle fraction calculation]{Opening angle in solid angle fraction calculation.}
 \label{fig:Calotta}
\end{figure}

\subsection{Rate calculation}
\label{sec:LEGO_Rate}

The expected \ac{SCE} rate depends upon the scanning position and collimation. For a specific configuration it can be calculated from \ac{MC} simulation as follows:
\begin{equation}
R = \frac{N_{\mathrm{coinc}}\cdot\Omega_\mathrm{f}\cdot R_\mathrm{b}}{R_{\mathrm{sim}}} \\
\label{eqn:expectedrate}
\end{equation}

with the solid angle fraction $\Omega_\mathrm{f}$, the branching ratio $R_\mathrm{b} = 0.8499\pm0.0020$ \cite{RefWorks:114} of the $662\,$keV $\gamma$-line and the observed number of events, $N_{\mathrm{coinc}}$. The simulated rate $R_{\mathrm{sim}} \cong A_{\mathrm{sim}} \cdot \Delta t_{\mathrm{sim}}$ corresponds to a combination of source activity $A_{\mathrm{sim}}$ and measurement time $\Delta t_{\mathrm{sim}}$ and has the unit [Bq$\,$s]. \\

For the simulation discussed before --- with a source collimation of $1.5\,$mm, a detector collimation of $10\,$mm, an observation angle of $90^{\circ}$ and a scanning height of $1\,$cm --- we expect an event rate of 
\begin{equation*}
    R = \frac{9411\,\mathrm{cts} \cdot 1.9 \cdot 10^{-3} \cdot 0.85}{10^{10}\,\mathrm{Bq\,s}} \approx (5.26 \pm 0.05) \,\frac{\mathrm{cts}}{\mathrm{MBq\,day}}
\end{equation*}

using four coincident detectors and a simulation opening angle of $5^{\circ}$. The expected signal to background ratio is $S/B = 7052/2359 \approx 3.0 \pm 0.1$. See also \figurename~\ref{fig:Energy_AfterCuts} for the expected background contribution.

\subsection{Expected number of events}

The number of expected coincidences $N_{\mathrm{exp}}$ is given by
\begin{equation}
 N_{\mathrm{exp}} = R \cdot A \cdot T_{\mathrm{R}} \cdot f_{\mathrm{D}} \cdot \frac{N_\mathrm{D}}{4} 
 \label{eqn:Nexp}
\end{equation}

where $R$ is the expected rate calculated using \equationname~\ref{eqn:expectedrate}, $A$ is the source activity, $T_{\mathrm{R}}$ is the real time of the measurement and $N_\mathrm{D}$ is the number of \ac{Coax} detectors in coincidence. $f_{\mathrm{D}}$ denotes the fraction of data which is discarded by quality cuts and is not accounted for in the simulation. \\

It shall be noted here that the cumulative fraction $f_{\mathrm{D}}\cdot N_\mathrm{D}/4$ only holds if the source position is central; for all detectors the fraction of events discarded by the quality cuts is different. In the case of a non central source position the expected number of events should be calculated using
\begin{equation}
 N_{\mathrm{exp}} = A \cdot T_{\mathrm{R}} \cdot \sum_{i=1}^{N_{\mathrm{D}}} R_i f_{\mathrm{D},i},    
\end{equation}

where $R_i = N_{\mathrm{coinc},i} \cdot \Omega_f \cdot R_b/ N_{\mathrm{sim}}$ and $f_{\mathrm{D},i}$ is the part of events, $N_{\mathrm{coinc},i}$, in coincidence with detector $i$ and discarded by the quality cuts listed above. \\

In general, $f_{\mathrm{D},i}$ is difficult to obtain and is not constant in energy. Therefore, we take $f_{\mathrm{D},i} = 1$ in the following and keep in mind that the obtained expected number of events $N_{\mathrm{exp}}$ is only qualitative. The important information obtained from simulation is the energy and spatial distribution of events. \\

A comparison of the measured and expected rate, $R$, and number of coincidences, $N_{\mathrm{exp}}$, for all central measurements of the data taking campaign presented in \sectionname~\ref{sec:LEGOdata} can be found in the next chapter in \tablename~\ref{tab:LEGOCutSummary}. In the next \sectionname~\ref{sec:CompRun14} a comparison of simulation and measurement is demonstrated, using data of Run14. 

\subsection{Exemplary comparison of measurement and simulation}
\label{sec:CompRun14}

For each measurement of the data taking campaign a proper \ac{MC} simulation was run. Combining \equationname~\ref{eqn:expectedrate} and \equationname~\ref{eqn:Nexp} a normalization factor can be calculated in order to scale the \ac{MC} spectra to match respective measured ones 
\begin{equation}
 \frac{ N_{\mathrm{exp}} }{ N_{\mathrm{coinc}} } = \frac{\Omega_f\cdot R_b}{R_{\mathrm{sim}}} \cdot A \cdot T_{\mathrm{R}} \cdot \frac{N_D}{4}
 \label{eqn:normalization}
\end{equation}

For Run14 a simulation with an opening angle $\alpha = 1^{\circ}$ and $R_{\mathrm{sim}} = 10^{10}\,$Bq$\,$s --- primary $\gamma$ particles with an energy of $662\,$keV --- was performed. The measurement real time of Run14 is $T_{\mathrm{R}} = 73833\,\mathrm{s} \approx 20.5\,$h and the source activity is $A \approx 780\,$MBq. A normalization factor of $N_{\mathrm{exp}} / N_{\mathrm{coinc}} \approx 0.28$ for three \ac{Coax} detectors in coincidence is calculated. \\

The energy spectrum of the \ac{BEGe}, after all quality cuts, and the respective spectrum, extracted from the normalized \ac{MC} simulation, are shown in \figurename~\ref{fig:Run14MCMeas}. A peak is observed which is due to \ac{SCE}. \\

The measured peak is a little broadened and between $420\,$keV and $520\,$keV the measured background is slightly elevated with respect to the simulation. Considering that the energy resolution is not included in the \ac{MC}, the simulation provides a good description of the measurement. The \ac{BEGe} energy cuts could be slightly loosened to take the finite energy resolution into account. In the following, however, all energy cuts are kept as defined in \sectionname~\ref{sec:LEGOMCCuts}. Thus, a small part of \ac{SCE} events is most probably lost. 

\vspace{2cm}

\begin{figure}[h]
 \centering
 \includegraphics[trim=0cm 0cm 2.8cm 1cm, clip=true, width=0.9\textwidth]{./LEGO/plots/20151102_Run14_MC_meas_CC3_energytotal}
 \caption[ Measured and simulated BEGe energy spectra in the Run14 configuration ]{ Measured and simulated \ac{BEGe} energy spectra in the Run14 configuration. All quality cuts are applied to the measurement and the \ac{MC} spectrum is normalized using \equationname~\ref{eqn:normalization}. All events with a sum energy of $662 \pm 20\,$keV are plotted. }
 \label{fig:Run14MCMeas}
\end{figure}
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The data taking is described in \sectionname~\ref{sec:LEGOdata}. Measurements were taken with different detector collimation windows, at different scanning heights, with different source positions and with different \ac{HV} applied on the \ac{BEGe} detector. In the following chapter the analysis flow of these measurements is briefly described. Important parameters, which describe the shape of pulses, are introduced and for each measurement an average pulse is constructed and compared. Finally, a comparison to another method of collecting \ac{SSE} samples, using uncollimated $^{228}$Th measurements, is made. 

\section{Analysis flow}
\label{sec:LEGOMeasAnalysisFlow}

The aim is to purify the data collected in the measurement campaign as much as possible to obtain clean \ac{SSE} event samples from localized regions inside the \ac{BEGe} detector. The following procedure is applied for all runs separately

\begin{itemize}
 \item The standard quality cuts are applied; see \sectionname~\ref{sec:LEGOdataprocessing}.
 \item The energy calibration is carried out; as was explained in \sectionname~\ref{sec:energycalibration}.
 \item If possible, energy cuts are applied. In some measurements there are not enough coincidence events to define an energy cut on the sum energy of the \ac{BEGe} and \ac{Coax} detectors. In Run3 and Run7 to Run11, no peak in the sum energies is observed. These measurements are not further processed and excluded in the following. 
 \item An A/E cut is applied, which is introduced in the next \sectionname~\ref{sec:AEcut}.
 \item An average pulse is built from the final event sample of \ac{BEGe} traces. This procedure will be explained in \sectionname~\ref{sec:averagepulse}.
\end{itemize}

\figurename~\ref{fig:LEGOScanpointsRemaining} shows the remaining runs of the measurement campaign after having excluded Run3 and Run7 to Run11. \\

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 5cm 1cm, clip=true, width=0.95\textwidth]{./LEGO/plots/Scanpoints_remaining2}
  \caption[Remaining scan points of the measurement campaign]{ Remaining runs of the measurement campaign after measurements with too little statistics, Run3 and Run7 to Run11, were discarded. }
  \label{fig:LEGOScanpointsRemaining}
\end{figure}

\begin{table}[p]
 \centering
 \caption[ Summary table of data reduction by quality and energy cuts. ]{ Summary table of data reduction by quality and energy cuts. The run index is given in the same color as in \figurename~\ref{fig:LEGOScanpointsRemaining} and [$\boldsymbol{y}$,$\boldsymbol{z}$] are the source position and table height in [mm,mm]. For each run the total number of events collected $N_{\mathrm{tot}}$, the fraction of events discarded by the quality cuts $f_{\mathrm{Q}}$ and events surviving the energy cut $N_{\mathrm{EC}}$ are listed. The expected rate $R$ and expected number of events, $N_{\mathrm{exp}}$, for central scanning positions are calculated from simulations (see \sectionname~\ref{sec:LEGO_Rate}f). }
 \label{tab:LEGOCutSummary}
 \begin{tabular}{rccrrcc}
 \hline\hline
Run & [$\boldsymbol{y}$,$\boldsymbol{z}$] & $N_{\mathrm{tot}}$ & $f_{\mathrm{Q}}$ & $N_{\mathrm{EC}}$ & $R$ [cts/(MBq$\,$d)] & $N_{\mathrm{exp}}$ \\
\hline
{\color{green}$1^a$} & [53,90] & 135751 & 0.42 & 767 & $ 5.03 \pm 0.05 $ & $734 \pm 8 $ \\
{\color{green}$1^b$} & [53,90] & 202978 & 0.43 & 1205 & $ 5.03 \pm 0.05 $ & $ 1099 \pm 12 $ \\
{\color{green}$2^a$} & [85,100] & 222000 & 0.44 & 5013 & & \\
{\color{green}$2^b$} & [85,100] & 40370 & 0.45 & 381 & & \\
{\color{green}$2^c$} & [85,100] & 294039 & 0.46 & 2575 & & \\
\hline
{\color{red}4} & [53,100] & 500000 & 0.22 & 508 & $ 1.41 \pm 0.03 $ & $ 451 \pm 9 $ \\
5 & [53,100] & 500000 & 0.20 & 611 & $ 1.41 \pm 0.03 $ & $ 477 \pm 10 $ \\
6 & [85,105] & 500000 & 0.22 & 1340 & & \\
\hline
{\color{blue}12} & [53,89] & 500000 & 0.28 & 156 & $ 0.19 \pm 0.01 $ & $ 98 \pm 5 $ \\
{\color{blue}13} & [53,86] & 500000 & 0.28 & 130 & $ 0.21 \pm 0.01 $ & $ 108 \pm 6 $ \\
\hline
{\color{red}14} & [53,86] & 495033 & 0.26 & 889 & $ 1.84 \pm 0.03 $ & $ 921 \pm 16 $ \\ 
{\color{red}15} & [53,117] & 500000 & 0.32 & 246 & $ 1.02 \pm 0.02 $ & $ 531 \pm 12 $ \\ 
{\color{red}16} & [86,100] & 453801 & 0.25 & 1803 & & \\ 
{\color{red}17} & [85,82] & 500000 & 0.24 & 1934 & & \\ 
{\color{red}18} & [83,85] & 500000 & 0.26 & 2697 & & \\ 
\hline\hline
  \end{tabular}
\end{table}

\clearpage
A summary of the data reduction by quality and energy cuts is given in \tablename~\ref{tab:LEGOCutSummary}. Furthermore, the expected event rate and expected number of \ac{SCE} events from simulation for central source positions are listed. The \ac{MC} simulation predicts a number of events $N_{\mathrm{exp}}$ which is on the same order of magnitude as the measured numbers. However, in some cases a difference in expected and measured number of events larger than $50\%$ is observed; e.g. for Run15 and Run12. This can have various reasons: The \ac{BEGe} geometry was implemented without the slight cone shape and loss of events due to surface layer effects has been neglected in the \ac{MC} simulations. The MC spectra do not include effects of broadening due to the finite energy resolution of the detectors. Event loss due to noisy data and corrections for offsets in the energy calibration were not considered.  \\


\section{Improvement of single site event selection with A/E\texorpdfstring{$\,$}{}-\texorpdfstring{$\,$}{}cut}
\label{sec:AEcut}

The event samples selected by quality and energy cuts can be purified further. To discard remaining \ac{MCE} and improve the selection of \ac{SSE} events we define an additional cut on the A/E parameter which is defined as

\begin{itemize}
 \item A/E parameter: The amplitude of the current pulse divided by the energy of an event. Spatially well separated hits are seen as separated peaks of current pulses whereas the energy is reconstructed for the whole event. Hence, for a \acf{MSE} the amplitude of the current pulse is lower than for a \acf{SSE} at the same energy. A/E is expected to be constant for \ac{SSE} events in particular as we select a narrow window in energy. Hence, we expect a well defined peak in the A/E distribution for \ac{SSE} events.
\end{itemize}

The A/E distribution of each run, after having applied quality and energy cuts, is fitted using the Gaussian plus \ac{ERFC} fit function (\equationname~\ref{eqn:GaussErfcBackground}). The fitted distribution of Run14 can be seen in \figurename~\ref{fig:LEGOAECut}. The cut is defined as
\begin{equation}
  \mu - 3\sigma < A/E < \mu + 3\sigma
\end{equation}

Only events inside the central peak region are kept.

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 3.5cm 1cm, clip=true, width=0.9\textwidth]{./LEGO/plots/AEfit_20151102_163413}
  \caption[Fit of A/E distribution after quality and energy cuts]{ Fit of A/E distribution after quality and energy cuts. The marked regions are the side bands we use to estimate the number of background events in the central \ac{SSE} region. }
  \label{fig:LEGOAECut}
\end{figure}
\begin{table}[p]
 \centering
 \caption[ Summary table of \ac{SSE} and \ac{BKG} content after A/E$\,$-$\,$cut ]{ Summary table of \ac{SSE} and \ac{BKG} content after the A/E$\,$-$\,$cut is applied. The scanning height H$_{\mathrm{S}}$ is given with respect to the \ac{BEGe} top surface at $\boldsymbol{z} = 81\,$mm. For each run "pos" indicates: $c$ for central, and $b$ for source positions close to the \ac{BEGe} border. For all measurements the \ac{SSE} to \ac{BKG} ratio improves with the cuts: $R_\mathrm{SSE}^a > R_\mathrm{SSE}^\mathrm{b}$. }
 \label{tab:LEGOMeasSummary}
 \begin{tabular}{ccc|rrr|r}
 \hline\hline
 & & & \multicolumn{3}{c|}{after cuts} & before cuts \\
Run & H$_{\mathrm{S}}$ [mm] & pos & $N_{\mathrm{SSE}}$ & $N_\mathrm{BKG}$ & $R_\mathrm{SSE}^\mathrm{a}$ & $R_\mathrm{SSE}^\mathrm{b}$ \\ 
\hline
$1^a$ & 9 & c & 498 & 32 & $15.6\pm3.0$ & $2.10\pm0.04$ \\ % 0.005 \\
$1^b$ & 9 & c & 785 & 48 & $16.4\pm2.6$ & $1.97\pm0.03$ \\ % 0.004 \\
$2^a$ & 19 & b & 4465 & 78 & $57.2\pm6.7$ & $2.65\pm0.03$ \\ % 0.004 \\
$2^b$ & 19 & b & 349.5 & 4.5 & $77.7\pm37.3$  & $2.95\pm0.08$ \\ % 0.004 \\
$2^c$ & 19 & b & 2284.5 & 46.5 & $49.1\pm7.4$  & $2.45\pm0.03$\\ % 0.004 \\
\hline
4 & 19 & c & 316 & 30 & $10.5\pm2.2$ & $3.52\pm0.03$ \\ 
5 & 19 & c & 405.5 & 33.5 & $12.1\pm2.3$ & $3.10\pm0.03$ \\ 
6 & 24 & b & 1146 & 27 & $42.4\pm8.5$ & $5.22\pm0.04$ \\ 
%7 & 500000 & 0.30 & & \multicolumn{4}{c}{No peak in sum spectrum}\\
\hline
12 & 8 & c & 94 & 5 & $18.8\pm9.1$ & $3.12\pm0.03$ \\ % 0.005 \\
13 & 5 & c & 102.5 & 2.5 & $41.0\pm26.9$ & $3.14\pm0.03$ \\ % 0.005 \\
\hline
14 & 5 & c & 766 & 20 & $38.3\pm8.9$ & $3.16\pm0.03$ \\ 
15 & 36 & c & 52 & 10 & $5.2\pm2.1$ & $3.09\pm0.03$ \\ 
16 & 19 & b & 1590 & 33 & $48.2\pm8.6$ & $4.31\pm0.03$ \\ 
17 & 1 & b & 1821 & 15 & $121.4\pm31.7$ & $4.19\pm0.03$ \\ 
18 & 4 & b & 2513.5 & 33.5 & $75.0\pm13.2$ & $3.88\pm0.03$ \\ 
\hline\hline
  \end{tabular}
\end{table}

\afterpage{\clearpage}

\subsection{Single site event to background ratio}

The side bands in \figurename~\ref{fig:LEGOAECut} are marked in gray. We can estimate the number of \ac{SSE} events $N_{\mathrm{SSE}}$ in the sample by subtracting the \acf{BKG} estimated from these side bands
\begin{equation}
 N_{\mathrm{BKG}} = \frac{1}{2} \cdot \left( \sum_{ i\,=\,\mathrm{bin}(\mu-6\sigma) }^{ \mathrm{bin}(\mu-3\sigma) } b_i + \sum_{ j\,=\,\mathrm{bin}(\mu+3\sigma) }^{ \mathrm{bin}(\mu+6\sigma) } b_j \right) 
\end{equation}

from the counts inside the peak region
\begin{equation}
 N_{\mathrm{SSE}} = \sum_{ i\,=\,\mathrm{bin}(\mu-3\sigma) }^{ \mathrm{bin}(\mu+3\sigma) } b_i - N_{\mathrm{BKG}} 
\end{equation}

with the bin number $\mathrm{bin}(x)$ at energy $x$ and the bin content $b_{i/j}$ of bin $i/j$. \\

The \ac{SSE} to \ac{BKG} ratio 
\begin{equation}
 R_{\mathrm{SSE}} = \frac{ N_{\mathrm{SSE}} }{ N_{\mathrm{BKG}} } \pm \frac{ (N_{\mathrm{SSE}}+N_{\mathrm{BKG}}) }{ N_{\mathrm{BKG}}}  \sqrt{ \frac{1}{(N_{\mathrm{SSE}}+N_{\mathrm{BKG}})} + \frac{1}{N_{\mathrm{BKG}}}} 
\end{equation}

gives an estimate of the purity of \ac{SSE} event samples ultimately selected by all data cuts including the A/E$\,$-$\,$cut. \\

A summary of $R_{\mathrm{SSE}}$ estimated before, $R_{\mathrm{SSE}}^\mathrm{b}$, and after cuts, $R_{\mathrm{SSE}}^\mathrm{a}$, for all remaining runs can be found in \tablename~\ref{tab:LEGOMeasSummary}. The same side band regions were used for background estimation before as well as after cuts. For all runs we find $R_{\mathrm{SSE}}^\mathrm{a} > R_{\mathrm{SSE}}^\mathrm{b}$ which means the applied cuts improve the purity of all event samples.


\subsection{Systematic behavior}

The ratio $R_{\mathrm{SSE}}^\mathrm{a}$ after cuts is plotted in \figurename~\ref{fig:LEGOMeasTRENDS} for two sets of measurements taken with $3\,$mm detector collimation. Runs with a central source position $Set_1 = \{ 4, 5, 14, 15 \}$ are shown in red whereas measurements close to the \ac{BEGe} border $Set_2 = \{6, 16, 17, 18\}$ are shown in blue. $R_{\mathrm{SSE}}^\mathrm{a}$ decreases exponentially with increase of scanning height for both data sets. $R_{\mathrm{SSE}}^\mathrm{a}$ is systematically lower for central source positions from $Set_1$ than for those close to the \ac{BEGe} border in $Set_2$. \\

We find the same behavior in the simulations comparing the ratio of \ac{SCE} events to \ac{MCE} events (see \figurename~\ref{fig:LEGOMeasMCTRENDSgraph}). \\

Both the decrease of $R_{\mathrm{SSE}}^\mathrm{a}$ with the increase of the scanning height as well as the lower $R_{\mathrm{SSE}}^\mathrm{a}$ for central source positions with respect to positions close to the border of the \ac{BEGe} can be explained by the behavior of \ac{SCE} with respect to \ac{MCE}. With increasing scanning height more \ac{SCE} are attenuated whereas the number of \ac{MCE} stays the same as can be seen in \figurename~\ref{fig:zSCEMCE}. The figure shows the $z$-projection of the energy deposited inside the \ac{BEGe} detector. Both the distribution of \ac{SCE} and \ac{MCE} are shown for the three \ac{MC} simulations corresponding to experimental settings of Run6, Run16 and Run18. Supposing that each event deposits roughly the same amount of energy in the \ac{BEGe} --- which is ensured by the applied energy cuts --- the energy deposition is directly proportional to the number of events. In the same manner a decrease of \ac{SCE} can be observed for central source positions whereas the number of \ac{MCE} events remains stable (see \figurename~\ref{fig:xSCEMCE}). \\

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./LEGO/plots/trends_v3}
  \caption[ \ac{SSE} event to \ac{BKG} ratio as a function of the scanning height ]{ $R_{\mathrm{SSE}}^\mathrm{a}$ for runs with a detector collimation of $3\,$mm in two samples as a function of the scanning height, measured from the \ac{BEGe} top at $\boldsymbol{z} = 81\,$mm. The red points show runs with a central source position (Run4, 5, 14, 15), whereas blue points show runs with a source position close to the \ac{BEGe} border (Run6, 16, 17, 18).  }
  \label{fig:LEGOMeasTRENDS}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.95\textwidth]{./LEGO/plots/singleCE_multiCE}
  \caption[ \ac{MC} \ac{SCE} to \ac{MCE} ratio in dependence of the scanning height ]{ SingleCE to \ac{MCE} ratio from \ac{MC} simulation as a function of the scanning height measured from the \ac{BEGe} top at $\boldsymbol{z} = 81\,$mm. Central source positions are shown in red and source positions close to the \ac{BEGe} border are drawn in blue. }
  \label{fig:LEGOMeasMCTRENDSgraph}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 3cm 1cm, clip=true, width=0.95\textwidth]{./LEGO/plots/zpos_BEGe_border_DC3mm}
  \caption[ $Z$-projection of the energy deposited inside the \ac{BEGe} detector ]{ $Z$-projection of the energy deposited inside the \ac{BEGe} detector. Distributions of \ac{SCE} and \ac{MCE} are shown for the three \ac{MC} simulations corresponding to experimental settings of Run6, Run16 and Run18. }
  \label{fig:zSCEMCE}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 3cm 1cm, clip=true, width=0.95\textwidth]{./LEGO/plots/yzpos_BEGe_top_DC3mm}
  \caption[ $X$-projection of the energy deposition inside the \ac{BEGe} detector ]{ $X$-projection of the energy deposition inside the \ac{BEGe} detector of \ac{SCE} and \ac{MCE} for two \ac{MC} simulations which correspond to the experimental settings of Run14 and Run18. }
  \label{fig:xSCEMCE}
\end{figure}

\clearpage
The exponential drop of the \ac{SSE} to \ac{BKG} ratio $R_{\mathrm{SSE}}^\mathrm{a}$ implies an upper limit on the scanning height for any scanned \ac{HPGe} detector depending on the desired \ac{SSE} to \ac{BKG} ratio. This limit depends also on the detector diameter. \\

The \ac{SSE} to \ac{BKG} ratio from measurement is about ten times higher than the \ac{SCE} to \ac{MCE} ratio calculated from simulation. This ratio depends strongly on the spatial resolution of the \ac{BEGe} detector and on the spatial distance of the \ac{MCE}. 

\section{Selection confinement}

From \figurename~\ref{fig:zSCEMCE} and \figurename~\ref{fig:xSCEMCE} the localization of the selected events can be estimated. For a source collimation of $1\,$mm a localization of roughly $2\,$mm in $x$ (and equally in $y$) is achieved. This coincides with the previously estimated factor of two for source collimation and localization of events. The localization in $z$ is roughly $10\,$mm for a detector collimation of $3\,$mm. This is slightly worse than the previously estimated factor of two because the detector collimators are placed at about $8\,$cm distance from the \ac{BEGe} cryostat; this distance was previously set to zero.


\section{Pulse shape discrimination parameters}

To evaluate the goodness of selection of the quality and energy cuts and the A/E$\,$-$\,$cut we compare two other parameters which depend on the pulse shape:

\begin{itemize}
 \item Rise time: The time in which pulses rise from 10\% to 90\% of their full height. We expect a peak for \ac{SSE} events as their rise time should be constant within one measurement.
 \item Asymmetry: Defining the integral on the left side of the global maximum in the current pulse as $A_\mathrm{L}$ and respectively on the right side $A_\mathrm{R}$. We define the asymmetry as $(A_\mathrm{L} - A_\mathrm{R}) / (A_\mathrm{L} + A_\mathrm{R})$. Again, we expect a peak for \ac{SSE} events as their asymmetry should be very similar within one measurement.
\end{itemize}

Comparing the rise time and asymmetry distributions of Run14 before and after cuts (\figurename~\ref{fig:LEGORiseTimedist} and \figurename~\ref{fig:LEGOAsymmdist}) we note that the distribution after all cuts are applied is very narrow. The cuts eliminate all events in the side bands where background events are expected.

% 
% \begin{figure}[p]
% \centering
%   \includegraphics[trim=0cm 0cm 1.5cm 1cm, clip=true, width=0.8\textwidth]{./LEGO/plots/AEdist_compare_20151102_163413}
%   \caption[A/E distribution before and after quality and energy cuts]{ A/E distribution before and after quality and energy cuts of Run14. The cuts remove more events in the side bands improving \ac{SSE} to \ac{BKG} ratio significantly. }
%   \label{fig:LEGOAEdist}
% \end{figure}

\section{Average pulse construction}
\label{sec:averagepulse}

All \ac{BEGe} events surviving the quality, the energy and finally also the A/E$\,$-$\,$cut are used to create an average pulse. The baseline of each event is fitted with an exponential to correct eventual pile-up and baseline offset. The properly corrected baselines are flat and have an average value of $0\,$ch. Trigger time offsets are corrected and all traces of one run are summed to build the average pulse. In this manner we create a representative trace for each measurement. To compare average pulses of different measurements, the height of all average pulses is normalized and time shifts are corrected. This ensures that all average pulses have the same height and that all of them are aligned in time at half their full height. Pulse height corrections are small, as the pulse height scales with energy and the \ac{BEGe} energy cuts are narrow. Time shifts depend on \ac{DAQ} settings for pre-trigger fraction and trace length. All average pulses presented in the following were corrected in this manner. \\

We define a slow rise and a fast rise part of traces as can be see in \figurename~\ref{fig:LEGOMeas_Rep}. This is useful when comparing the shape of average pulses for different experimental settings. \enlargethispage{2cm}

\begin{figure}[H]
\centering
  \includegraphics[trim=0cm 0cm 2.5cm 1cm, clip=true, width=0.86\textwidth]{./LEGO/plots/20151102_risetime}
  \caption[Rise time distribution before and after quality and energy cuts]{ Rise time distribution before and after quality and energy cuts, and after the A/E$\,$-$\,$cut, of Run14. The distribution becomes narrower and zero events are observed in the side bands. }
  \label{fig:LEGORiseTimedist}
\end{figure}
\begin{figure}[H]
\vspace{-1mm}
\centering
  \includegraphics[trim=0cm 0cm 2.9cm 1cm, clip=true, width=0.86\textwidth]{./LEGO/plots/20151102_asymmetry}
  \caption[Asymmetry distribution before and after quality and energy cuts]{ Asymmetry distribution before and after quality and energy cuts, and after the A/E$\,$-$\,$cut, of Run14. After the application of all cuts a narrower asymmetry distribution is observed, and zero events in the side bands remain. }
  \label{fig:LEGOAsymmdist}
\end{figure}

\clearpage

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.8\textwidth]{./LEGO/plots/reproducability_DC5mm_center_v3}
  \includegraphics[trim=0cm 0cm 2.6cm 1cm, clip=true, width=0.8\textwidth]{./LEGO/plots/reproducability_DC5mm_side}
  \caption[Comparison of Run1 and Run2 sub measurement average pulses]{ Comparison of average pulses from sub measurements in Run1 (top) and Run2 (bottom). }
  \label{fig:LEGOMeas_Rep}
\end{figure}

\begin{figure}[p]
\centering
  \includegraphics[trim=0cm 0cm 3cm 1cm, clip=true, width=0.8\textwidth]{./LEGO/plots/residual_comparison}
  \caption[Comparison of average pulse residuals in Run1 and Run2]{ Comparison of average pulse residuals in Run1 and Run2. In blue residuals of two sub measurements of Run1 in red of sub measurements of Run1 and Run2. In the slow rise part of traces residuals are negligible for equal measurement setups, whereas measurements with different configuration show significant differences in the slow rise. }
  \label{fig:LEGOMeas_Residuals}
\end{figure}

\clearpage
\section{Reproducibility}

To test the reproducibility of average pulses the sub measurements of Run1 and Run2 are compared to each other (see \figurename~\ref{fig:LEGOMeas_Rep}). \\

The differences in each bin (residuals) of the two sub measurements of Run1 are shown in blue in \figurename~\ref{fig:LEGOMeas_Residuals}. In the fast rise residuals up to $30\,$ch are observed whereas in the slow rise part the difference is $5\,$ch at maximum. 

The same \figurename~\ref{fig:LEGOMeas_Residuals} shows the residuals between the two sub measurements Run$1^{\mathrm{a}}$ and Run$2^{\mathrm{b}}$ (histogram in red). Much higher residuals --- up to $60\,$ch --- can be observed at the beginning of the slow rise. The residuals of the fast rise part are comparable to the residuals of Run1. \\

We conclude: The average pulses remain stable for measurements with the same experimental settings. The residuals in the fast rise are due to the finite sampling frequency of the \ac{FADC}, which results in slight misalignments of the traces. The position information is contained in the slow rise. As events are chosen from within a narrow energy window, the form of the average pulse depends only on the electric field configuration which the charge carriers traverse, on their trajectory through the detector (see \sectionname~\ref{chapter:signalformation}). The fast rise is being measured when the charges pass the region close to the read out electrode, where the weighting field is high. Independently of the point of energy deposition, charges pass that region just before being collected on the read out contact. The slow rise instead depends on the detector location where energy was deposited. 

\section{Pulse shape comparison}

The average pulse shape changes depending on the scanned interaction region and the inverse bias \ac{HV} on the \ac{BEGe} detector. In \figurename~\ref{fig:LEGOMeas_comp_5000V} differences of the average pulse shape depending on the interaction region at $4.5\,$kV as well as at $5.0\,$kV \ac{BEGe} \ac{HV} are clearly observed. \\

Changing the \ac{BEGe} \ac{HV} also affects the pulse shape as can be seen in \figurename~\ref{fig:LEGOMeas_comp_HV}. \\ 

We observe a faster rise for pulses with higher bias \ac{HV} on the \ac{BEGe} detector. The rise time for Run2$^{\mathrm{a}}$ with $\mathrm{HV} = 4\,$kV is on average more than $200\,$ns longer than for Run6 with $\mathrm{HV} = 5\,$kV  as can be seen in \figurename~\ref{fig:LEGOMeas_compRiseTime}. A rise in drift velocity of charge carriers with augmented \ac{HV} is a well known phenomenon (see \chaptername~11 in \referencename~\cite{RefWorks:1}), which is observed here by shorter pulse rise times. \\

In the central region of the \ac{BEGe} we find a number of pulses which have higher asymmetry with respect to other locations (see \figurename~\ref{fig:LEGOMeas_compAsymm}). This is seen both at $\mathrm{HV} = 4\,$kV as well as at $\mathrm{HV} = 5\,$kV. \\

\newpage
A possible explanation is a contribution induced by the electrons to the current signal of the read out electrode. Moving charges induce mirror charges on the electrodes and are therefore visible in the current signal; the induced charge is proportional to the strength of the weighting field and their drift velocity (\equationname~\ref{eqn:currentpulse}). In the \ac{BEGe} center the weighting field is higher than in outer regions. The electrons are not instantly collected on the $n^+$ contact and can thus contribute to the current signal.

\vspace{1cm}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 3cm 0.5cm, clip=true, width=0.9\textwidth]{./LEGO/plots/compare_DC3mm_4500V}
  \includegraphics[trim=0cm 0cm 3cm 0.5cm, clip=true, width=0.9\textwidth]{./LEGO/plots/compare_DC3mm_5kV}
  \caption[ Average pulse comparison of different detector regions ]{ Average pulse comparison for different detector regions and the same $HV = 4.5\,$kV (top), $HV = 5\,$kV (bottom). The detector collimation is $3\,$mm for all measurements which are shown. }
  \label{fig:LEGOMeas_comp_5000V}
\end{figure}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 3cm 0.5cm, clip=true, width=0.9\textwidth]{./LEGO/plots/compare_CD3mm_center_HV}
  \includegraphics[trim=0cm 0cm 3cm 0.5cm, clip=true, width=0.9\textwidth]{./LEGO/plots/compare_HV_side}
  \caption[ Average pulse comparison for different \ac{BEGe} \ac{HV} ]{ Average pulse comparison for different \ac{BEGe} \ac{HV} in central source positions (top) and source positions close to the \ac{BEGe} border (bottom). }
  \label{fig:LEGOMeas_comp_HV}
\end{figure}

\begin{figure}[p]
\centering
\vspace{-2mm}
  \includegraphics[trim=0cm 0cm 2.4cm 1cm, clip=true, width=0.85\textwidth]{./LEGO/plots/risetime_compHV}
  \caption[ Rise time distributions for $4\,$kV and $5\,$kV \ac{BEGe} \ac{HV} ]{ Rise time distribution for $4\,$kV and $5\,$kV \ac{BEGe} detector \ac{HV}. The rise time for Run2$^{\mathrm{a}}$ with $HV = 4\,$kV is on average more than $200\,$ns longer than for Run6 with $HV = 5\,$kV. }
  \label{fig:LEGOMeas_compRiseTime}
\end{figure}
\begin{figure}[p]
\centering
\vspace{-1mm}
  \includegraphics[trim=0cm 0cm 3.6cm 1cm, clip=true, width=0.85\textwidth]{./LEGO/plots/Asymmetry_5kV}
  \includegraphics[trim=0cm 0cm 3.6cm 1cm, clip=true, width=0.85\textwidth]{./LEGO/plots/Asymmetry_comp_4kV_v2}
  \caption[ Asymmetry distributions for $4\,$kV and $5\,$kV \ac{BEGe} \ac{HV}]{ Asymmetry distribution for different detector regions at $5\,$kV (top) and $4\,$kV (bottom) \ac{BEGe} \ac{HV}. In the \ac{BEGe} center a number of pulses with higher asymmetry are observed in comparison to other detector regions. }
  \label{fig:LEGOMeas_compAsymm}
\end{figure}


\clearpage
\section{Signal to background ratio in \texorpdfstring{$^{228}$Th}{228Th} measurement}
\label{sec:Th228Meas}

Samples of \ac{SSE} events can be also collected using uncollimated $^{228}$Th measurements. In the decay chain of $^{228}$Th we find $^{208}$Tl which emits the most energetic $\gamma$-line that can be found in nature with $2614.5\,$keV. At this energy pair production is the dominant process of photon interaction with matter. The positron which is created in this process thermalizes and subsequently annihilates with an electron, emitting two photons back-to-back with an energy of $511\,$keV each. Either photon can escape the detector and the respective energy is missing. Three characteristic lines can be see in $^{228}$Th spectra. The \ac{FEP} of the $^{208}$Tl line at $2614.5\,$keV, the \ac{SEP} at $2103.5\,$keV and the \ac{DEP} at $1592.5\,$keV. \\

If both photons escape the detector the remaining energy is released in a very small volume thus events in the \ac{DEP} are \ac{SSE} events. The probability of both photons escaping the detector is highest on the detector surface and especially high in its corners. Hence, the spatial distribution of \ac{DEP} events is very inhomogeneous. \\

A $^{228}$Th measurement was conducted with the \ac{BEGe} detector at $HV = 5$kV with a measurement real time of about $3\,$h. The distribution of A/E versus the calibrated energy can be seen in \figurename~\ref{fig:Th228AoE}. The \ac{SSE} events emerge as a horizontal band. To estimate the background contribution in the \ac{DEP} line we fit the A/E distribution of $(1592\pm5)\,$keV (see \figurename~\ref{fig:Th228DEP}) with a Gaussian fit function and allow for a low energy tail (\equationname~\ref{eqn:LEGO_tailfitfunction}). As for the $^{137}$Cs coincidence measurements, the contribution is estimated from the two side bands left and right of the Gaussian; we find a \ac{SSE} to background ratio of $(11759-747)/747 = 14.7 \pm 0.6$. 
\vspace{2mm}

\begin{figure}[h]
\centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.95\textwidth]{./LEGO/plots/CC3_Th228_20150917_184132_AoE.pdf}
  \caption[ A/E versus calibrated energy of a $^{228}$Th measurement ]{ A/E versus calibrated energy of a $^{228}$Th measurement recorded with the \ac{BEGe} detector. The \ac{SSE} events are visible as a horizontal band and the \ac{DEP} with the highest \ac{SSE} contribution at an energy of $1592\,$keV. }
  \label{fig:Th228AoE}
\end{figure}

\newpage
A low energy tail was not observed in the A/E distribution of the $^{137}$Cs measurement, shown in \figurename~\ref{fig:LEGOAECut} and the \ac{SSE} to background ratio achieved with the $^{137}$Cs measurements is always higher except for Run4, Run5 and Run15 (see \tablename~\ref{tab:LEGOMeasSummary}). Note that these measurements were central scans and the contribution of \ac{SSE} events from the detector center in a $^{228}$Th measurement is negligible. The best \ac{SSE} to background ratio estimated is $121.4\pm31.7$ in Run17. \\

\vspace{1cm}

\begin{figure}[H]
\centering
  \includegraphics[trim=0cm 0cm 2cm 1cm, clip=true, width=0.95\textwidth]{./LEGO/plots/DEPpm5_Fit_20150917_184132}
  \caption[ $^{228}$Th A/E distribution fit of the \ac{DEP} line ]{ $^{228}$Th A/E distribution of the \ac{DEP} line. A Gaussian plus low energy tail fit is shown in red. The two side bands used to estimate the \ac{SSE} to background ratio are shown as gray bands. }
  \label{fig:Th228DEP}
\end{figure}
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As already mentioned in \chaptername~\ref{chapter:intro_gerda} background control is essential for low background experiments. All contributions have to be understood in order to minimize and estimate them. One important background component in \gerda\ is the $\beta$ continuum of $^{42}$K, daughter of $^{42}$Ar which is naturally present in the cryo \ac{LAr} of the \gerda\ setup. \\

The specific activity of $^{42}$Ar in the \gerda\ \ac{LAr} was estimated in a Bayesian binned maximum likelihood approach. The analysis and result is presented in the following.

\section{Production mechanism of \texorpdfstring{$^{42}$Ar}{42Ar}}
\label{sec:production}

The abundance of $^{42}$Ar in natural \ac{LAr} depends on the production of $^{42}$Ar. \\

As pointed out in \cite{RefWorks:81} $^{42}$Ar can be produced via double neutron capture by $^{40}$Ar
\begin{equation}
  ^{40}\text{Ar} + n \longrightarrow\, ^{41}\text{Ar} + n \longrightarrow\, ^{42}\text{Ar}
\end{equation}

They estimate the natural $^{42}$Ar abundance from both naturally occurring neutrons and neutrons which are produced in nuclear explosions and come to an estimate of $^{42}$Ar/$^{40}\text{Ar} = 7.4 \cdot 10^{-22}$ corresponding to $A(^{42}\text{Ar}) \approx 7.4\,\upmu$Bq/kg (see \appendixname~\ref{app:aractivity}) for the latter as dominant mechanism. \\

However, they do not consider the cosmic-ray production of $^{42}$Ar in the upper atmosphere via the reaction 
\begin{equation}
  ^{40}\text{Ar} + \alpha \longrightarrow\, ^{42}\text{Ar} + 2\,p
\end{equation}

which could be about three orders of magnitude higher and therefore the main production mechanism for $^{42}$Ar \cite{RefWorks:80}. The authors estimate the ratio $^{42}$Ar/$^{40}$Ar to be roughly $10^{-20}$ in the atmosphere. This would correspond to an activity of $A(^{42}\text{Ar})\approx100\,\upmu$Bq/kg. The assumptions made in both references are more of qualitative nature and the calculated values can only be rough estimates. \\


\section{Previous measurements}
\label{sec:Barabash}

Before the \ac{0nbb} decay experiment \gerda\ was built, a proposal \cite{RefWorks:89} was made. It states an upper limit of the $^{42}$Ar specific activity in \ac{LAr} of $43\,\upmu$Bq/kg \cite{RefWorks:90} (see also \appendixname~\ref{app:aractivity}). This value would suggest a lower cross section for cosmic-ray production of $^{42}$Ar as assumed by \cite{RefWorks:80}. Now that \gerda\ has concluded Phase I data taking, this value can be checked. In fact first tests revealed that the background from $^{42}$Ar is a lot higher than expected \cite{RefWorks:194} from the proposal. \enlargethispage{2cm}


\section{Methodology}

$^{42}$Ar decays via $\beta^-$ decay to $^{42}$K which further decays to $^{42}$Ca via another $\beta^-$ decay with an endpoint of $3525.45\,$keV (see \figurename~\ref{fig:Ar42decay} and \figurename~\ref{fig:K42decay}). \\

As the energy spectrum of electrons from a beta decay is continuous, this decay contributes also at lower energies to the background in \gerda, especially in the region of interest around $Q_{\upbeta\upbeta}^{0\upnu} \approx 2039\,$keV. All other unstable isotopes of Argon apart from $^{42}$Ar can be neglected as source of background around $Q_{\upbeta\upbeta}^{0\upnu}$ because either their lifetime is short and they have already decayed, e.g. $^{41}$Ar has a lifetime of ca. $110\,$min, or the endpoint energy of the decay, $Q_{\upbeta\upbeta}$, is lower than $Q_{\upbeta\upbeta}^{0\upnu}$, e.g. $^{39}$Ar has an endpoint energy of $Q_{\upbeta\upbeta} = 565\,$keV \cite{NuDat}.

\vspace{-4mm}
\begin{figure}[H]
  \centering
  \includegraphics[trim=0.2cm 0.2cm 0.2cm 0.2cm, clip=true, width=0.6\textwidth]{./Ar42/plots/Ar42_decayscheme}\\
  \caption[Decay scheme of $^{42}$Ar ]{Decay scheme of $^{42}$Ar taken from \cite{RefWorks:83}.}
  \label{fig:Ar42decay}
\end{figure}
\begin{figure}[H]
\vspace{-8mm}
  \centering
  \includegraphics[trim=0.2cm 0.2cm 0.2cm 0.2cm, clip=true, width=0.7\textwidth]{./Ar42/plots/K42_decayscheme}
  \caption[Decay scheme of $^{42}$K]{Decay scheme of $^{42}$K taken from \cite{RefWorks:83}.}
  \label{fig:K42decay}
\end{figure}

\newpage

The \gerda\ \ac{LAr} has been underground since November 2007. With the lifetime of $^{42}$Ar being $(32.9\pm1.1)\,$y (measured in 1965) \cite{NUBASE2012} and the lifetime of $^{42}$K being $(12.360 \pm 0.01)\,$h, they are in secular equilibrium. This means the specific activity of $^{42}$Ar and $^{42}$K are the same. \\

In the following, the specific activity of $^{42}$Ar is calculated by estimating the activity of $^{42}$K using a selection of \gerda\ Phase I data. We use a $\gamma$-line of the $^{42}$K spectrum which has an energy of $(1524.65\pm0.03)\,$keV and perform a binned maximum likelihood fit using the \acf{BAT} \cite{RefWorks:88}. Finally the calculated specific activity is corrected for the half-life of $^{42}$Ar in order to be comparable to other measurements and theoretical values and limits. \vspace{2mm}


\section{Distribution of \texorpdfstring{$^{42}$K}{42K}}

To estimate the specific activity of $^{42}$K in the \gerda\ \ac{LAr} we have to make assumptions about its distribution inside the \ac{LAr} and here it starts to become tricky: As $^{42}$K is born in a $\beta^-$ decay it is born as a positive ion namely as $^{42}$K$^+$. The detectors are operated at \ac{HV}, typically with $4\,$kV inverse bias, which creates strong electric fields and under the influence of electric fields ions are drifted. Without further measures the distribution of $^{42}$K would surely be inhomogeneous. \\

A lot of effort was put in making most of the \ac{LAr} volume as field-free as possible by deploying small, electrically grounded copper cylinders around the detectors and by shielding the \ac{HV} cables. These so called \ac{MS} additionally form a physical barrier for $^{42}$K$^+$ ions. \vspace{2mm}

\section{Efficiencies}

The detection efficiency is a very crucial ingredient in the activity determination as it is fully anti correlated to the specific activity itself. It is determined with a \ac{MC} Simulation assuming a specific distribution of $^{42}$Ar in \ac{LAr} inside \gerda. The simulation program we use is called MaGe; it is Geant4 based and is developed by the \gerda\ and \textsc{Majorana} experiments in a collaborative effort \cite{RefWorks:86,RefWorks:85}.


\subsection{Simulation}
\label{sec:simulations}

The \gerda\ setup (see \sectionname~\ref{chapter:intro_gerda}) is available as MaGe \cite{RefWorks:85} geometry for \ac{MC} simulations. A cylinder of $^{42}$K decays was simulated centered on the respective detector string. It is large enough in order not to miss important contributions to the efficiency of the detectors. A height of $2.10\,$m and a radius of $1\,$m were chosen according to a previous study \cite{BLDiplomaThesis}. In the following we call the incident simulated particles \textit{primaries} and their starting position the \textit{primary vertex}. \\

In \figurename~\ref{fig:vertexedep} all primaries are plotted that deposit energy in at least one of the detectors. The simulation contains only the one string arm in the configuration starting from Run34 (see \appendixname~\ref{app:runsetup}). Decays outside the simulated volume are considered as a systematic uncertainty (see \sectionname~\ref{sec:systematics}). \\

The simulated volume is split in four parts as can be seen in \figurename~\ref{fig:simsketch}. The volume inside the \ac{MS}, and the volume outside the \ac{MS} which is split in top, bottom and tube volumes. The distribution of $^{42}$K decays outside the \ac{MS} is assumed to be homogeneous and the distribution of decays inside the \ac{MS} can be varied in order to study systematic effects on the efficiency. Finally, the simulations from inside the \ac{MS} and those from outside the \ac{MS} can be combined without re-simulating the latter. \enlargethispage{2cm} \vspace{1mm}

\begin{figure}[H]
  \centering
  \includegraphics[trim=0cm 0cm 0.5cm 1cm, clip=true, width=0.7\textwidth]{./Ar42/plots/vertexZvertexX_edep_v3}
  \caption[Primary vertex positions with energy deposition in the \ac{BEGe}s]{Vertex positions of primaries which deposit energy in at least one of the \ac{BEGe} detectors.}
  \label{fig:vertexedep}
\end{figure}
\begin{figure}[H]
  \centering
  \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.5\textwidth]{./Ar42/plots/sketch}
  \caption[\ac{LAr} cylinder in which $^{42}$K decays are simulated]{\ac{LAr} cylinder in which $^{42}$K decays are simulated. The cylinder is split in four separate volumes in order to be able to simulate different distributions inside the Mini-Shroud (MS) and combine them later.}
  \label{fig:simsketch}
\end{figure}

\newpage
In each of the above said volumes a total number of $10^9$ decays were simulated using Decay0 \cite{RefWorks:87} to create the primary vertices in order to account for correlations in $\gamma$ cascade emissions. The spectrum of primary particles is plotted in \figurename~\ref{fig:primaryspec}. \\

As a crosscheck of the Monte Carlo simulation a rough estimate of the branching ratio $R_{\mathrm{B}}(1525\,\text{keV})$ of the $1525\,$keV $\gamma$-line was performed. From $1500\,$keV to $1550\,$keV the spectrum is binned in 51 bins. Dividing in three regions of equal size we estimate the background using side bands and subtract it from the central region which contains the $\gamma$-line.
\begin{align}
  \begin{split}
  R_{\mathrm{B}}(1525\,\text{keV}) & = \frac{ \sum_{i=18}^{34} n_i - \left( \sum_{i=1}^{17} n_i + \sum_{i=35}^{51} n_i \right) }{N_{\mathrm{tot}}}  \\ & = (18.071\pm0.001)\cdot10^{-2}
  \end{split}
\end{align}
 
The number of entries in bin $i$ is denoted as $n_i$ and $N_{\mathrm{tot}}$ is the total number of simulated decays. The calculated value is in accordance with the literature value of $R_{\mathrm{B}}^{\mathrm{lit}}(1525\,\text{keV}) = (18.08 \pm 0.09) \cdot10^{-2}$ \cite{RefWorks:83}. 


\subsection{Efficiency calculation}

We calculate the efficiency of the \gerda\ detectors, to detect $1525\,$keV $\gamma$s from $^{42}$K decays, by estimating the signal counts in the same manner as we estimated the branching ration $R_\mathrm{B}$. The detection efficiency is then given as as the number of signal counts divided by the total number of simulated decays. Last, the efficiencies are normalized with the simulated \ac{LAr} volume and expressed as the rate per day, seen for a specific activity of $1\,\upmu$Bq/kg.\\
\vspace{8mm}
\begin{figure}[H]
  \centering
  \includegraphics[trim=0cm 0cm 3cm 1cm, clip=true, width=0.9\textwidth]{./Ar42/plots/primaries}
  \caption[Primary spectrum of efficiency simulations]{Primary spectrum of the efficiency simulations containing $10^7$ primary decays.}
  \label{fig:primaryspec}
\end{figure}

\newpage

To extract the signal counts, the energy window [$1499\,$keV,$1550\,$keV] of the simulation output spectra is subdivided in three regions of same size. $B_1$ and $B_2$ are the sidebands and $M$ denotes the middle region which contains the $^{42}$K $\gamma$-line at $\approx1525\,$keV which we use to estimate the specific activity of $^{42}$Ar. Using the two side bands we estimate the background contribution in region $M$ and calculate the signal counts $S$ as follows
\begin{equation}
  S = M - \frac{B_1 + B_2}{2}
\end{equation}

We calculate the efficiency $\varepsilon$ by dividing $S$ by the number of simulated decays $N_\mathrm{sim}$ 
\begin{equation}
  \varepsilon = \frac{S}{N_\mathrm{sim}} 
\end{equation}

Effectively we are not calculating the efficiency on the full decay but on the $1525\,$keV line which we will denote as $\varepsilon_{15}$
\begin{equation}
  \varepsilon_{15} = \frac{S}{N_\mathrm{sim}\cdot R_\mathrm{B}}
\end{equation}

To estimate the uncertainty on the efficiency we have to take the branching ratio $R_{\mathrm{B}}$ of the $1525\,$keV line into account. The uncertainty, which is calculated using binomial statistics, is then
\begin{equation}
  \Delta\varepsilon_{15} = \sqrt{\frac{\varepsilon_{15}\,(1-\varepsilon_{15})}{N_\mathrm{sim}\cdot R_\mathrm{B}}} 
\end{equation}

The uncertainty on the total efficiency $\varepsilon$ is therefore 
\begin{align}
  \Delta\varepsilon & = \sqrt{ \left( \frac{\partial\varepsilon}{\partial\varepsilon_{15}}\cdot \Delta\varepsilon_{15} \right)^2 +
		\left( \frac{\partial\varepsilon}{\partial R_\mathrm{B}}\cdot \Delta R_\mathrm{B} \right)^2 } \\
  \frac{ \Delta\varepsilon }{ \varepsilon } & = \sqrt{ \left( \frac{\Delta\varepsilon_{15}}{\varepsilon_{15}} \right)^2 + \left( \frac{\Delta R_{\mathrm{B}}}{R_{\mathrm{B}}} \right)^2 } 
\end{align}

If we neglect the uncertainty on the branching ratio $\Delta R_{\mathrm{B}}$ for $N_{\mathrm{sim}}\rightarrow\infty$ this tends to
\begin{equation}
 \frac{ \Delta\varepsilon }{ \varepsilon } \approx \frac{ \Delta\varepsilon_{15} }{ \varepsilon_{15} } = \sqrt{\frac{\varepsilon_{15}\,(1-\varepsilon_{15})}{N_\mathrm{sim}\cdot R_\mathrm{B} \cdot \varepsilon_{15}^2 }} = \sqrt{\frac{(1-\varepsilon_{15})}{S}} \stackrel{ N_{sim}\rightarrow\infty }{\longrightarrow }
 \frac{1}{\sqrt{S}}
\end{equation}

With $R_{\mathrm{B}} = 0.1808 \pm 0.009$ \cite{RefWorks:83} and $\Delta\varepsilon / \varepsilon \approx 10^{-2}$ though, the uncertainty on the branching ratio can not simply be neglected but contributes with approximately $10\,\%$ to the total uncertainty. In the following $\Delta\varepsilon$ contains this contribution. In the final analysis the efficiency enters as the rate per day which is seen by the respective detector for an $^{42}$Ar activity of $1\,\upmu\mathrm{Bq/kg}$. Therefore, we define the normalized efficiency $\varepsilon_\mathrm{n}$ as
\begin{equation}
\varepsilon_\mathrm{n} = \varepsilon \cdot m_\mathrm{LAr} \cdot f_\mathrm{n}
\end{equation}

With the \ac{LAr} mass $m_\mathrm{LAr}$, which is given by the density of \ac{LAr} $\rho_\mathrm{LAr} = 1.39\,\mathrm{g/cm}^3$ multiplied by its volume $V_\mathrm{LAr}$
\begin{equation}
  m_\mathrm{LAr} = \rho_\mathrm{LAr} \cdot V_\mathrm{LAr}
\end{equation}

and the normalization factor
\begin{equation}
f_\mathrm{n} = 1\,\frac{\upmu\mathrm{Bq}}{\mathrm{kg}} \cdot 8.64\cdot 10^4\,\frac{\mathrm{s}}{\mathrm{d}} = 8.64\cdot 10^{-2}\, \frac{\mathrm{decays}}{\mathrm{kg}\,\mathrm{d}}
\end{equation}

efficiencies of complementary simulations $i$ can be combined by simply summing them up
\begin{equation}
\label{eqn:summing}
E_\mathrm{n} = \Sigma_i \varepsilon_{\mathrm{n},i}
\end{equation}

provided there is no overlap of the simulated \ac{LAr} volume and if the single values are normalized. Supposing that complementary simulations are uncorrelated we add up the uncertainties on the single efficiencies in quadrature to obtain the combined uncertainty
\begin{equation}
\Xi_\mathrm{n} = \sqrt{\Sigma_i \Delta\varepsilon_{\mathrm{n},i}^2} 
\end{equation}

All simulations with their normalization factors are listed in \tablename~\ref{tab:sim}. In order to ensure that the volume splitting, which was described in \sectionname~\ref{sec:simulations}, leads to a reasonable result for the efficiencies, for detector string 3 (S3) a simulation without volume splitting as well as with volume splitting was done. S3 contains three detectors; their efficiencies for the split simulation and the full volume simulation are compared in \tablename~\ref{tab:effCross}. 
\vspace{1cm}
\begin{table}[H]
\centering
\caption[List of simulations and normalization factors]{List of simulations and normalization factors. The normalization factor for inhomogeneous distributions inside the \ac{MS} is the same as for the homogeneous distribution because a priori we do not know the real distribution and assume a homogeneous one.}
\label{tab:sim}
 \begin{tabular}{cccccr}
 \hline\hline
  \# & string & position & $V\,$[cm$^3$] & $m\,$[kg] & $m \, f_\mathrm{n}$\\
  \hline
  1 & S1 & top & 2543330 & 3535 & 305.444 \\
  2 & S1 & bottom & 2544630 & 3537 & 305.600 \\
  3 & S1 & tube & 1500070 & 2085 & 180.152 \\
  4 & S1 & hom & 3285.45 & 4.57 & 0.395 \\
  5 & S1 & near BEGe & - & - & hom \\
  6 & S1 & near \ac{MS} & - & - & hom \\
  \hline
  7 & S2 & all & 6591250 & 9162 & 791.583 \\
  \hline
  8 & S3 & all & 6591360 & 9162 & 791.596 \\
  9 & S3 & top & 2543320 & 3535 & 305.443 \\
  10 & S3 & bottom & 2544630 & 3537 & 305.600 \\
  11 & S3 & tube & 1500600 & 2086 & 180.216 \\
  12 & S3 & hom & 2746.51 & 3.82 & 0.330 \\
  13 & S3 & near BEGe & - & - & hom \\
  14 & S3 & near \ac{MS} & - & - & hom \\
  \hline
  15 & S4 & all & 6591280 & 9162 & 791.586 \\
  \hline
  16 & S1 & AC & 6591070 & 9162 & 791.561 \\
  \hline\hline
 \end{tabular}
\end{table}


\begin{table}[p]
\centering
\caption[Comparison of complete and split efficiency simulations]{Comparison of complete (all) and split efficiency simulations (hom). The split simulation has four different volume parts which are added like described in \equationname~\ref{eqn:summing}. The difference $\Delta = ( \varepsilon_\mathrm{n}(\text{hom}) - \varepsilon_\mathrm{n}(\text{all}) ) / \varepsilon_\mathrm{n}(\text{hom})$ is well within the uncertainty bounds.}
\label{tab:effCross}
 \begin{tabular}{cccc}
 \hline\hline
 & hom & all & \\
 name & $\varepsilon_\mathrm{n}$ [$10^{-3}/$d] & $\varepsilon_\mathrm{n}$ [$10^{-3}/$d] & $\Delta [\%]$ \\
 \hline
  RGI & $3.75 \pm 0.03$ & $3.75 \pm 0.06$ & -0.08 \\
  ANG4 & $4.27 \pm 0.03$ & $4.20 \pm 0.06$ & 1.64 \\
  RGII & $3.90 \pm 0.03$ & $3.86 \pm 0.06$ & 1.01 \\
% RGI & 3.7485 & 2.8275 & 3.7514 & 5.7604 & -0.08 \\
% ANG4 & 4.2698 & 3.0497 & 4.1986 & 6.1322 & 1.64 \\
% RGII & 3.8950 & 2.9582 & 3.8555 & 5.8483 & 1.01 \\
  \hline\hline
 \end{tabular}
\end{table}

\begin{table}[p]
\centering
\caption[Efficiencies of all Phase I detectors]{Efficiencies of all Phase I detectors with the list of simulations which were combined to calculate them. The values indicated with \textit{hom} are used as central value and the \textit{nearDet} and \textit{nearMS} values are used to estimate a systematic uncertainty due to the inhomogeneity of $^{42}$K decays (see \sectionname~\ref{sec:systematics}).}
\label{tab:efficiencies}
 \begin{tabular}{ccccc}
 \hline\hline
 & hom & nearDet & nearMS & \\
 name & $\varepsilon_\mathrm{n}$ [$10^{-3}/$d] & $\varepsilon_\mathrm{n}$ [$10^{-3}/$d] & $\varepsilon_\mathrm{n}$ [$10^{-3}/$d] & sim list\\
 \hline
 GD32B & $1.03 \pm 0.01$ & $1.01 \pm 0.01$ & $0.94 \pm 0.01$ & 1-6 \\
 GD32C & $1.10 \pm 0.01$ & $1.22 \pm 0.01$ & $1.02 \pm 0.01$ & 1-6 \\
 GD32D & $1.07 \pm 0.01$ & $1.19 \pm 0.01$ & $0.98 \pm 0.01$ & 1-6 \\
 GD35B & $1.20 \pm 0.01$ & $1.32 \pm 0.01$ & $1.12 \pm 0.01$ & 1-6 \\
 GD35C & $0.87 \pm 0.01$ & $0.87 \pm 0.01$ & $0.80 \pm 0.01$ & 1-6 \\
 ANG3 & $4.23 \pm 0.06$ & - & - & 15 \\
 ANG5 & $5.24 \pm 0.07$ & - & - & 15 \\
 RGIII & $4.08 \pm 0.06$ & - & - & 15 \\
 RGI & $3.75 \pm 0.03$ & $3.57 \pm 0.03$ & $3.59 \pm 0.03$ & 9-14 \\
 ANG4 & $4.27 \pm 0.03$ & $4.81 \pm 0.03$ & $4.10 \pm 0.03$ & 9-14 \\
 RGII & $3.90 \pm 0.03$ & $3.97 \pm 0.03$ & $3.77 \pm 0.03$ & 9-14 \\
 GTF112 & $6.15 \pm 0.08$ & - & - & 7 \\
 ANG2 & $5.43 \pm 0.07$ & - & - & 7 \\
 ANG1 & $1.44 \pm 0.03$ & - & - & 7 \\
 \hline
 GTF45 & $5.02 \pm 0.07$ & - & - & 16 \\
 GTF32 & $4.83 \pm 0.07$ & - & - & 16 \\
 \hline\hline
 \end{tabular}
\end{table}

\clearpage
\subsection{Systematic uncertainty of efficiencies}

To account for the systematic uncertainty due to the unknown distribution of the $^{42}$K inside the \ac{MS}, this distribution was varied as can be seen in \figurename~\ref{fig:simsketch}. Three different configurations were simulated: A homogeneous distribution to calculate the central value of the efficiencies, a distribution very close to the detectors (\textit{nearDet}) and one with decays only in a thin tube close to the walls of the \ac{MS} (\textit{nearMS}). The last two give an upper and a lower bound on the efficiencies. The values are listed in \tablename~\ref{tab:efficiencies}. \\


% \section{Comparison with manufacturer efficiencies}
% 
% For different $\gamma$ energies, source distances and source geometries the detector efficiency changes. However, the fraction between efficiencies should stay the same as they mainly reflect the active volume of the detector. \\
% 
% The manufacturer of the BEGe detectors \textsc{Canberra} measured their relative efficiencies to which we compare. A $^{60}$Co spectrum was taken centered on the end-cap of the detector cryostat at $25\,$cm source distance from the end-cap. The lifetime is $T = 1000\,$s for each spectrum. The relative efficiency $\varepsilon_M$ was then calculated according to
% 
% \begin{equation}
%  \varepsilon_\mathrm{M} = \frac{N_{1333}}{T\cdot A_\mathrm{s}} \cdot \frac{1}{\varepsilon_{\mathrm{NaI}}} \cdot 100
% \end{equation}
% 
% Where $N_{1333}$ is the number of counts in the $1333\,$keV $^{60}$Co peak, $T$ is the measurement lifetime, $A_\mathrm{s}$ is the source activity and $\varepsilon_{\mathrm{NaI}} = 1.2\cdot10^{-3}$ is the efficiency of a sodium iodide (NaI) detector at $25\,$cm source distance. \\
% 
% The investigated $^{42}$K $\gamma$ line has a very similar energy to the $^{60}$Co $\gamma$ line that has been used to calculate $\varepsilon_\mathrm{M}$. The efficiency should not be influenced by energy but only by source geometry and distance. In \tablename~\ref{tab:Co60efficiencies} the fraction $Q_{Mn} = \varepsilon_\mathrm{M}/\varepsilon_\mathrm{n}$ is listed for all BEGe detectors used in \gerda\ Phase I. This fraction is expected to be more or less constant. In the same table all values are compared to GD32B 
% 
% \begin{equation}
%  \Delta^{\text{GD32B}} = \left( Q_{\mathrm{Mn}}^{\text{GD32B}}-Q_{\mathrm{Mn}} \right) / Q_{\mathrm{Mn}}^{\text{GD32B}} 
% \end{equation}
% 
% We see the largest difference to $Q_{\mathrm{Mn}}^{\text{GD32B}}$ comparing to GD35C which was however excluded from analysis. For all other detectors the difference is less than $2\,\%$. 

\section{Energy resolution}

From calibration data between 2012-07-08 and 2013-03-20 the full width at half maximum (FWHM) at $1525\,$keV was extracted for each calibration run and BEGe detector. Similar for the two AC coupled detectors GTF45 and GTF32 the resolution was determined from calibration data between 2011-11-09 and 2012-05-22. The median and $68\%$ interval are tabulated on the left side of \tablename~\ref{tab:res1}. Detailed plots can be found in \appendixname~\ref{app:resolution}. The energy resolution of the ANG, RG and GTF112 detectors are given on the right side of \tablename~\ref{tab:res1}. They were taken from an internal \gerda\ publication \cite{GSTR1}. 

% \begin{table}[H]
% \centering
% \caption[Comparison of efficiencies with manufacturer values]{Comparison of manufacturer relative $^{60}$Co efficiencies and efficiencies from Monte Carlo simulations for the five BEGe detectors.}
% \label{tab:Co60efficiencies}
%  \begin{tabular}{cccc}
%   detector & $\varepsilon_\mathrm{M}$ & $Q_{\mathrm{Mn}}$ [$10^3$] & $\Delta^{\text{GD32B}}$ [$\%$] \\ \hline
%   GD32B & 33.67 & 32.78 & 0 \\
%   GD32C & 36.2 & 32.79 & -0.03 \\
%   GD32D & 35.65 & 33.41 & -1.94 \\
%   GD35B & 39.97 & 33.18 & -1.24 \\
%   GD35C & 29.75 & 34.24 & -4.45 \\
%  \end{tabular}
% \end{table}

\vspace{1cm}

\begin{table}[H]
 \centering
 \caption[ Median FWHM at $1525\,$keV from calibration data ]{Left side: Median FWHM at $1525\,$keV from calibration data plotted in \figurename~\ref{fig:res1} and \figurename~\ref{fig:resGTF1}. The uncertainty is given as the smallest interval containing $68\%$ of values around the median value and $\sigma$ is simply FWHM divided by 2.35. Right side: Previously evaluated energy resolutions of ANG, RG and GTF112 detectors (see \tablename~9 in \cite{GSTR1}). ANG1 and RG3 are not considered in this analysis.}
 \label{tab:res1}
  \begin{tabular}{ccc|ccc}
  \hline\hline
  detector & FWHM [keV] & $\sigma$ [keV] & detector & FWHM [keV] & $\sigma$ [keV] \\
  \hline
  GD32B & $2.42\pm0.03$ & $1.03\pm0.01$ & GTF112 & 3.64 & 1.55 \\
  GD32C & $2.41\pm0.04$ & $1.02\pm0.02$ & ANG2 & $3.93\pm0.03$ & $1.67\pm0.01$ \\ 
  GD32D & $2.51\pm0.04$ & $1.07\pm0.02$ & ANG3 & $4.37\pm0.14$ & $1.86\pm0.06$ \\ 
  GD35B & $3.24\pm0.11$ & $1.38\pm0.05$ & ANG4 & $4.00\pm0.08$ & $1.70\pm0.03$ \\ 
  GD35C & $2.64\pm0.06$ & $1.12\pm0.03$ & ANG5 & $3.95\pm0.12$ & $1.68\pm0.05$ \\ 
  GTF45 & $7.17\pm1.47$ & $3.05\pm0.62$ & RG1 & $4.23\pm0.25$ & $1.80\pm0.11$ \\ 
  GTF32 & $7.46\pm1.20$ & $3.18\pm0.51$ & RG2 & $4.67\pm0.24$ & $1.99\pm0.10$ \\ 
%   GD32C & $2.41\pm0.04$ & $1.02\pm0.02$ & ANG2 & 4.48 & 1.91 \\ 
%   GD32D & $2.51\pm0.04$ & $1.07\pm0.02$ & ANG3 & 4.31 & 1.83 \\ 
%   GD35B & $3.24\pm0.11$ & $1.38\pm0.05$ & ANG4 & 4.22 & 1.90 \\ 
%   GD35C & $2.64\pm0.06$ & $1.12\pm0.03$ & ANG5 & 3.94 & 1.68 \\ 
%   GTF45 & $7.17\pm1.47$ & $3.05\pm0.62$ & RG1 & 4.22 & 1.79 \\ 
%   GTF32 & $7.46\pm1.20$ & $3.18\pm0.51$ & RG2 & 4.66 & 1.98 \\ 
  \hline\hline
  \end{tabular}
\end{table}

\newpage
\section{Bayesian analysis}

We use Bayes' theory to perform a binned maximum likelihood fit to the spectral shape of the $^{42}$K $\gamma$-line and to estimate the $^{42}$Ar specific activity in the \gerda\ LAr. \\

Poisson statistics expresses the probability of a discrete random variable $k$ with an average rate $\lambda$
\begin{equation}
 P(k|\lambda) = \frac{\lambda^k e^{-\lambda} }{k!}
\end{equation}

The likelihood to observe $n_i$ events in the $i^\text{th}$ bin of a histogram for $\lambda_i$ events expected is given by
\begin{equation}
 P(\stackrel{\rightarrow}{n}|\lambda) = \prod_i \frac{\lambda_i^{n_i} e^{-\lambda_i} }{n_i!}
\end{equation}

In the case of multiple detectors with index $j$ the combined likelihood has the following form
\begin{equation}
 P(\stackrel{\rightarrow}{n}|\lambda) = \prod_j\prod_i \frac{\lambda_{ij}^{n_{ij}} e^{-\lambda_{ij}} }{n_{ij}!}
\end{equation}

The global posterior \ac{pdf}
\begin{equation}
P(\lambda|\stackrel{\rightarrow}{n}) = \frac{P(\stackrel{\rightarrow}{n}|\lambda)\cdot P(\lambda) }{ P(\stackrel{\rightarrow}{n} )}
\end{equation}

has to be marginalized over all nuisance parameters $p_m$ in order to obtain the posterior \ac{pdf} for the parameter of interest $A$
\begin{equation}
P(\lambda(A)|\stackrel{\rightarrow}{n}) = \int P(\lambda(A,p_m)|\stackrel{\rightarrow}{n})\ \mathrm{d}p_m
\end{equation}

where $m = 1, 2 \ldots M$ and $M$ is the total number of nuisance parameters. Note that here $\lambda$ depends on the nuisance parameters $p_m$ and the parameter of interest $A$ so $\lambda = \lambda(A,p_m)$. \\

Using the law of total probability we can express
\begin{equation}
P(\stackrel{\rightarrow}{n}) = \int P(\stackrel{\rightarrow}{n}|\lambda) P(\lambda)\, \mathrm{d}\lambda
\end{equation}

And as all parameters are assumed to be independent we can rewrite the prior probability
\begin{equation}
P(\lambda) = P(\lambda(A,p_m)) = P(A) \prod_m P(p_m)
\end{equation}

The prior probability $P(\lambda)$ contains all our knowledge about the parameters. As it factorizes completely we can choose the prior conditions of each parameter separately. The last thing we have to do is define the model $\lambda$.


\subsection{Choice of prior distributions}

The prior distribution should reflect our degree of belief in a free fit parameter. If a fit tells us that we have a negative number of background counts we would not believe this result because it is not physical. Thus, in the prior distribution of the background index we exclude values below zero. A prior distribution should be normalizable otherwise it is called an improper prior. A common distribution we chose is a gaussian distribution of a parameter giving preference to the central value with some uncertainty. Having no value of preference is reflected in a so called non informative prior. A flat prior in a large enough closed range is quasi non informative and is also normalizable. The range should be large enough to cover all the posterior distribution without cutting it.


\subsection{Building the likelihood}
\label{sec:flatbackground}

We want to approximate the $^{42}$K $\gamma$-line with a Gaussian on a flat background. In this model the number of expected events in the $i^{\text{th}}$ bin are expressed by
\begin{equation}
\lambda_{ij} = A \, \varepsilon_j \, T_j \int_{\Delta E_i} \frac{1}{\sqrt{2\pi}\,\sigma_j} \exp\left(-\frac{(E-(\mu+\Delta\mu_j))^2}{2\sigma_j^2}\right) \mathrm{d}E' + T_j \int_{\Delta E_i} B_j \,\mathrm{d}E'
\end{equation}

The specific activity $A$ is common to all detectors and is the parameter of interest. The fit parameters for each detector $j$ are the efficiency $\epsilon_j$, the resolution $\sigma_j$ at $1525\,$keV, the $\gamma$-line shift $\Delta\mu_j$ and the background index $B_j$. They are all nuisance parameters, which means they are free parameters of the fit but we are not interested in their posterior \ac{pdf}. The lifetimes $T_j$ and the common $\gamma$-line energy $\mu = 1524.65\,$keV are fixed. All parameters and their type of prior \ac{pdf} are listed in \tablename~\ref{tab:parameters}. In the following we refer to this model as \textit{flat background model}. \\
 
As each detector has four free fit parameters in this model, fitting the spectra of 13 detectors the number of nuisance parameters is $M = 13 \cdot 4 = 52$. All input values of Gaussian and fixed parameters are listed in \tablename~\ref{tab:priors}. For the $\gamma$-line shift $\Delta\mu_j$ we use a Gaussian prior \ac{pdf} with the same parameters for all detectors: As most probable value we choose no shift $\Delta\mu_j = 0$ and a reasonable assumption for the width of the prior \ac{pdf} is the energy resolution of the detectors $\Delta\Delta\mu_j = \sigma_j$.


\subsection{Building the refined likelihood}
\label{sec:erfcbackground}

The statistics of the Phase I data is good enough to see a difference between the background level at the right and the left side of the $\gamma$-line. A refined model accounts for this difference modeling the background with an inverse error function. This adds another parameter to the model and we have now a flat background and the step size as additional parameter for the fit. In order to be more controllable we express the step size by the difference between the left and the right background level. Like this, it is easier to prohibit for example a negative background level. 

\newpage
With $\mu' = \mu+\Delta\mu_j$ we get 
\begin{align}
\begin{split}
\lambda_{ij} = &\ A \, \varepsilon_j \, T_j \int_{\Delta E_i} \frac{1}{\sqrt{2\pi}\,\sigma_j} \exp\left(-\frac{(E-\mu')^2}{2\sigma_j^2}\right) \mathrm{d}E' \\
    &\ + T_j \int_{\Delta E_i} B^{\text{left}}_j + \frac{B^{\text{right}}_j - B^{\text{left}}_j}{2} \cdot \mathrm{erfc}\left( \frac{\mu' - E}{\sqrt{2}\cdot \sigma_j}  \right) \,\mathrm{d}E' 
% \lambda_{ij} = & A \cdot \varepsilon_j \cdot T_j \int_{\Delta E_i} \frac{1}{\sqrt{2\pi}\,\sigma_j} \exp\left(-\frac{(E-\mu')^2}{2\sigma_j^2}\right) dE \\
% & + B^{\text{left}}_j T_j (E_2 - E_1) + \frac{B^{\text{right}}_j - B^{\text{left}}_j}{2} \cdot T_j \cdot \int_{\Delta E_i} \mathrm{erfc}\left( \frac{\mu' - E}{\sqrt{2}\cdot \sigma_j}  \right) \,dE 
\end{split}
\end{align}

An example of such a function can be seen in \figurename~\ref{fig:erfcmodel}. In the following we refer to this model as \textit{erfc background model} or \textit{refined background model}. Also for this model the fit parameters, their types and fit ranges can be found in \tablename~\ref{tab:parameters}.

\vspace{2cm}

 \begin{table}[H]
 \centering
 \caption[Input values used for the likelihood fit]{Input values used for the likelihood fit. Although ANG1, RG3 and GD35C are not considered in this analysis, the values are listed for completeness.}
 \label{tab:priors}
  \begin{tabular}{ccccccc}
  \hline\hline
  channel & Detector & $T_j\,$[d] & $\sigma_j\,$[keV] & $\Delta\sigma_j\,$[keV] & $\epsilon_j\,[10^{-3}/$d] & $\Delta\epsilon_j\,[10^{-5}/$d] \\
  \hline
  0 & ANG1 & 0 & - & - & 1.4379 & 3.37 \\
  1 & ANG2 & 458.495 & 1.90594 & 0.05 & 5.4314 & 6.56 \\
  2 & ANG3 & 458.495 & 1.83291 & 0.05 & 4.2342 & 5.79 \\
  3 & ANG4 & 458.495 & 1.79515 & 0.05 & 4.2688 & 2.60 \\
  4 & ANG5 & 458.495 & 1.67741 & 0.05 & 5.2356 & 6.44 \\
  5 & RG1 & 458.495 & 1.79385 & 0.05 & 3.7485 & 2.52 \\
  6 & RG2 & 384.789 & 1.98221 & 0.05 & 3.8950 & 2.67 \\
  7 & RG3 & 0 & - & - & 4.0775 & 5.69 \\
  8 & GTF112 & 458.495 & 1.55 & 0.05 & 6.1542 & 6.99 \\
  9 & GD32B & 260.923 & 1.03018 & 0.05 & 1.0272 & 1.33 \\
  10 & GD32C & 284.385 & 1.02454 & 0.05 & 1.1040 & 1.29 \\
  11 & GD32D & 264.900 & 1.06700 & 0.05 & 1.0669 & 1.26 \\
  12 & GD35B & 284.385 & 1.38013 & 0.05 & 1.2045 & 1.37 \\
  13 & GD35C & 0 & 1.12414 & 0.05 & 0.8689 & 1.27 \\
  9 & GTF45 & 174.110 & 3.05259 & 0.05 & 5.0229 & 6.31 \\
  10 & GTF32 & 174.110 & 3.17652 & 0.05 & 4.8317 & 6.19 \\
  \hline\hline
  \end{tabular}
 \end{table}

\begin{figure}[p]
  \begin{center}
    \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.9\textwidth]{./Ar42/plots/Fit2}
    \caption[Gaussian function with inverse error function as background model]{Gaussian function with inverse error function as background model. The whole function is plotted in red while the background is plotted again in blue dashed to illustrate the background below the $\gamma$-peak.}
    \label{fig:erfcmodel}
  \end{center}
\end{figure} 

\begin{table}[p]
 \centering
 \caption[List of priors and their types]{List of priors and their types. If the symbol is indexed with a $j$ each detector has its own fit parameter, if not the parameter is common to all detectors. A fixed parameter is in that sense not a fit parameter but has a fixed value.}
 \label{tab:parameters}
  \begin{tabular}{ccccc}
  \hline\hline
  model & parameter & symbol & prior pdf type & range \\
  \hline
  \multirow{5}{*}{flat/erfc} & specific activity & A & flat & $[0:200]\,\upmu$Bq/kg \\
  & efficiency & $\varepsilon_j$ & Gaussian & $[0.09:1]\,10^{-2}\,$d$^{-1}$ \\
  & lifetime & $T_j$ & fixed & - \\
  & peak shift & $\Delta\mu_j$ & Gaussian & $[-2:2]\,$keV \\
  & resolution & $\sigma_j$ & Gaussian & $[0:4]\,$keV \\ \hline
  flat & background index & $B_j$ & flat & $[0:0.01]\,$keV$^{-1}$d$^{-1}$ \\ \hline
  \multirow{2}{*}{erfc}& background left & $B^\mathrm{left}_j$ & flat & $[0:0.01]\,$keV$^{-1}$d$^{-1}$ \\ 
  & background right & $B^\mathrm{right}_j$ & flat & $[0:0.01]\,$keV$^{-1}$d$^{-1}$ \\
  \hline\hline
  \end{tabular}
\end{table}

\clearpage
\subsection{The Bayesian Toolkit - BAT}

The likelihood fits are done using the \acf{BAT} version 0.9.4.1 \cite{RefWorks:88}. It is based on a marginalization using the Metropolis \ac{MCMC} algorithm. Four predefined levels of fit precision can be chosen \textit{kLow} (1 chain with $10^4$ iterations), \textit{kMedium} (5 chains with $10^5$ iterations each), \textit{kHigh} (10 chains with $10^6$ iterations each) and \textit{kVeryHigh} (10 chains with $10^7$ iterations each). The number of chains and iterations per chain can also be chosen manually using \textit{MCMCSetNChains} and \textit{MCMCSetNIterationsRun} which are methods of the \textit{BCEngineMCMC} class of \ac{BAT}. \\

Both models, the flat and the erfc background model, are implemented inside one C++ class which inherits from the \textit{BCModel} class of \ac{BAT}. Two methods have to be implemented in a BCModel: \textit{LogAPrioriProbability} which serves to calculate the natural logarithm (ln) of the prior probability $P(\lambda)$ and \textit{LogLikelihood} to calculated the ln of $P(\stackrel{\rightarrow}{n}|\lambda)$. To estimate $P(\stackrel{\rightarrow}{n}|\lambda)$ the respective model is integrated over each bin. The integral of the Gaussian part can be done using the error function which is defined as
\begin{equation}
 \mathrm{erf}(y) = \frac{2}{\sqrt{\pi}} \int_0^y e^{-t^2} \mathrm{d}t 
\end{equation}

Here $y = (E - \mu) / (\sqrt{2} \cdot \sigma)$. \\

Integrating the flat background model is trivial but the integration of the erfc background model has to be done numerically. We use the following approach
\begin{equation}
 \int_{E_1}^{E_2} \mathrm{erfc}(z) dz \approx \frac{ E_2 - E_1 } { n } \left[ \frac{ \mathrm{erfc}(E_1) + \mathrm{erfc}(E_2) }{2} + 
 \sum_{k=1}^{n-1} \mathrm{erfc}\left[ E_1 + \frac{k \cdot ( E_2-E_1 )}{n} \right]  \right] 
\end{equation}

Where $z = (\mu - E) / (\sqrt{2} \cdot \sigma)$ and $n$ which reflects the precision of the numerical integration was chosen as 1000.


\subsection{P-value estimation}

To calculated the p-value usually $P(\stackrel{\rightarrow}{n}) = \int P(\stackrel{\rightarrow}{n}|\lambda) P(\lambda)\, d\lambda$ has to be calculated for normalization. Apparently no algorithm is able to do this integration in our case but there is an elegant and fast method to estimate p-values which is described in the appendix of \cite{RefWorks:92}. Here, the p-value is estimated using the Metropolis-Hastings algorithm. This algorithm is based on \ac{MCMC} and is a method to obtain random samples of probability distributions for which direct sampling is difficult. As the counts in the fitted histograms are $\in \mathbb{N}_0$, a proposal distribution is chosen by the integer values just below $\lambda_{\text{best fit}}$ which is denoted by $\lfloor \lambda_{\text{best fit}} \rfloor$. In each sampling iteration each bin in each histogram is attempted to be randomly increased or decreased. The new value is randomly accepted or rejected and the probability is updated; values closer to $\lambda_{\text{best fit}}$ are more probable to be accepted. The likelihood of the new distribution, obtained with this methods, is compared to the likelihood of $\lambda_{\text{best fit}}$. Dividing the number of sampled distributions with a lower likelihood than $\lambda_{\text{best fit}}$ by the number of iterations gives the approximate p-value.


\subsection{Global and marginalized mode}

The global mode is the most probable fit parameter that is found by the \ac{MCMC} algorithm while marginalizing over the nuisance parameters. \ac{BAT} is not optimized to find the global mode and is "neither effective nor accurate" in doing so \cite{RefWorks:88}. Nevertheless we mostly give that value to have a reference as it turns out to be quite stable. The marginalized mode is the most probable value for a parameter after marginalizing over all nuisance parameters. We use the root version of Minuit \textit{TMinuit}  to find all modes and call the most probable of them the \textit{marginalized mode}. If the fit precision is high enough we obtain only one local mode in all posterior \ac{pdf}s in this analysis. Hence, this local mode and the marginalized mode coincide. The uncertainty given is the smallest interval containing at least 68\% of the posterior \ac{pdf} and the marginalized mode. \vspace{2mm}


\section{Data selection and run configurations}

A sketch and a table of the \gerda\ Phase I runs and their setup can be found in \appendixname~\ref{app:runsetup}. The Phase I \gerda\ setup consists of two so called arms. The first arm contains one string of detectors and the second arm consists of three detector strings. The configuration of the three string arm stays the same in all the Phase I run period. Run33, Run34 and Run35 were not included in the fits. Run33 is very unstable and in Run33 and Run34 the detector configuration was changed which leads to a higher background index for about $20\,$days. Run34 plus Run35 are about $32\,$days long which should be sufficient for the background index to decay to a normal level. Some of the detectors were unstable and had to be switched off after a while, which is why they were excluded in some later runs. The \ac{HV} configurations of each run can be found in detail in \tablename~\ref{tab:hvsetup}. All exclusions from this analysis are indicated.


\subsection{Data cuts}

Test pulser events and cosmic muon induced events are cut from the data; events with a detector multiplicity larger than 1 on the other hand are kept. The cut efficiency and therefore the detection efficiency would depend on which detector was included in the analysis. As the configuration of detectors suitable for analysis changes within the data sample, efficiencies would change for every run period. By including events with a detector multiplicity lager than 1 we keep one efficiency per detector. The respective data flags are listed in \tablename~\ref{tab:flags}. \vspace{2mm} \enlargethispage{2cm}

\begin{table}[hbt]
\centering
\caption[Event flags which can be used for data cuts]{Event flags which can be used for data cuts.}
\label{tab:flags}
  \begin{tabular}{ccc}
  \hline\hline
    flag & description & kept/cut \\
    \hline
    \textit{isVetoed} & muon induced event & cut \\
    \textit{isTP} & test pulser event & cut \\
    \textit{multiplicity} & number of det fired & kept \\
    \hline\hline
  \end{tabular}
\end{table}

\newpage
\section{Final fit result}

The final fit is done for all 13 detectors and Run25 to Run46 with the exception of Run33 to Run35. In \figurename~\ref{fig:posteriorpdf} the posterior \ac{pdf} of the specific Activity $A$ is plotted in the flat background model with fit precision \textit{kHigh} and the sum fit function can be seen in \figurename~\ref{fig:sumfit}. Global and marginalized modes of fits with different precision for both background models are listed in \tablename~\ref{tab:final}. The number of local modes found in the posterior distribution gives a measure of how smooth the distribution is and how meaningful the statistical uncertainty is. The uncertainty is only meaningful if just one local mode is found. In general, the erfc background model has a higher p-value and thus seems to describe the data better. However, within uncertainties all values are very well compatible. Thus, as final fit value we take the value obtained with the flat background model and with precision kHigh
\begin{equation}
 A = 91.5_{-2.7}^{+2.3}\,\upmu\mathrm{Bq/kg}
 \label{eqn:finalvalue}
\end{equation}

\begin{figure}[hbt]
  \centering
  \includegraphics[trim=0cm 0cm 3cm 0cm, clip=true, width=0.9\textwidth]{./Ar42/plots/A_zoom_K42model_NEW_FINAL_ALL_Multi_kHigh}
  \caption[Posterior pdf of specific activity $A$]{Posterior pdf of the specific activity $A$ in the flat background model with fit precision \textit{kHigh}.}
  \label{fig:posteriorpdf}
\end{figure} 

\vspace{3mm}

\begin{table}[H]
\centering
\caption[Final fit values of $A$ in both background models]{Final fit values of $A$ [$\upmu$Bq/kg] in both background models and different fit precisions. The marginalized mode A (marg) is the highest local mode of all \textit{modes} found. The uncertainties given are only meaningful if the number of local modes found is one.}
\label{tab:final}
  \begin{tabular}{cccccc}
  \hline\hline
    model & fit precision & A (marg) & modes & A (glob) & p-value\\ 
    \hline
    flat & \textit{kLow} & $89.9_{-0.3}^{+0.3}$ & 11 & $91.5 \pm 2.4$ & 0.39 \\
    flat & \textit{kMedium} & $91.1_{-2.3}^{+2.7}$ & 1 & $91.5 \pm 2.4$ & 0.39 \\
    flat & \textit{kHigh} & $91.5_{-2.7}^{+2.3}$ & 1 & $91.5 \pm 2.4$ & 0.39 \\
    \hline
    erfc & \textit{kLow} & $92.5_{-4.5}^{+1.5}$ & 1 & $91.5 \pm 2.4$ & 0.45 \\
    \hline\hline
  \end{tabular}
\end{table}
 

\begin{figure}[p]
  \centering
  \vspace{-2mm}
  \includegraphics[trim=0cm 0cm 2.9cm 1cm, clip=true, width=0.9\textwidth]{./Ar42/plots/sumfit}
  \caption[Sum histogram and combined fit function in the flat background model]{Sum histogram and combined fit function of all 13 detectors in the flat background model.}
  \label{fig:sumfit}
\end{figure} 

\begin{figure}[p]
  \begin{center}
    \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.49\textwidth]{./Ar42/plots/FIT_Comp_Modeloutput_ANG2_NEW_FINAL_kHigh2}
    \includegraphics[trim=0cm 0cm 0cm 0cm, clip=true, width=0.49\textwidth]{./Ar42/plots/FIT_Comp_Zoom_Modeloutput_ANG2_NEW_FINAL_kHigh2}
    \caption[Comparison of background models for ANG2 with fit precision \textit{kHigh}]{Comparison of background models for ANG2 with fit precision \textit{kHigh}. Left) Full range; Right) Zoom on the background region. The flat background model is plotted in red dashed while the error function model is drawn in blue.}
    \label{fig:compbackgroundmodel}
  \end{center}
\end{figure} 
 
% 2015-09-07 all values in this table are checked for 1000bins and no multiplicity cut
% ERFC: /nfs/gerda5/sturm/K42_BATfits_erfc/SINGLE_DET 
% FLAT: /nfs/gerda5/sturm/K42_BATfits/NEW_FINAL_DETECTORS_Multiplicity
\begin{table}[p]
\centering
\caption[Comparison of fit parameter $A$ for different fit precisions ]{Comparison of marginalized and global modes of fit parameter $A\,$[$\upmu\mathrm{Bq/kg}$] in both background models with different fit precisions for detector ANG2.}
\label{tab:compprecision}
 \begin{tabular}{cccccc}
 \hline\hline
  model & precision & A (marg) & modes & A (glob) & p-value \\
  \hline
  flat & \textit{kLow} & $93.5_{-5.3}^{+3.7}$ & 7 & $92.6 \pm 6.4$ & 0.50 \\
  flat & \textit{kMedium} & $92.7_{-6.3}^{+6.3}$ & 3 & $92.6 \pm 6.4$ & 0.50 \\
  flat & \textit{kHigh} & $93.5_{-7.3}^{+5.7}$ & 1 & $92.7 \pm 6.4$ & 0.50 \\
  flat & \textit{kVeryHigh} & $92.5_{-6.5}^{+7.5}$ & 1 & $92.6 \pm 6.4$ & 0.50 \\
  \hline 
  erfc & \textit{kLow} & $95.3_{-0.1}^{+1.3}$ & 13 & $92.7 \pm 6.4$ & 0.54 \\
  erfc & \textit{kMedium} & $92.7_{-5.5}^{+7.3}$ & 2 & $92.7 \pm 6.4$ & 0.54 \\
  erfc & \textit{kHigh} & $91.7_{-5.5}^{+7.5}$ & 1 & $92.7 \pm 6.4$ & 0.54 \\
  \hline\hline
 \end{tabular}
\end{table} 
 

\clearpage
\section{Crosschecks}

In this section we want to compare fit precisions and the two different background models introduced in \sectionname~\ref{sec:flatbackground} and \sectionname~\ref{sec:erfcbackground}. In addition, we fit different parts of the data to check for the stability of the final result. 

\subsection{Comparison of fit precisions}

In \tablename~\ref{tab:compprecision} the fitted specific activities for different fit precisions in both background models are listed for ANG2. All parameters are sampled with $1000\,$bins. Their ranges (see \tablename~\ref{tab:parameters}) are chosen such that no posterior distribution is cut. Note that the p-value is slightly higher for the refined background model and within uncertainties all values are well compatible. Also, already fit precision \textit{kHigh} is sufficiently smooth in order to obtain just one local mode and the marginalized mode is in very good agreement with the value for precision \textit{kVeryHigh}. 

\subsection{Comparison of flat and erfc background model}

In \tablename~\ref{tab:compbackground} we compare the specific activity for all detectors in the two background models with fit precision \textit{kHigh}.
Both models are compatible and well within uncertainties. Note that the p-value is systematically higher or equal for the erfc background model. \\

% TODO CHECK
\begin{table}[hbt]
\centering
\caption[Comparison of fit parameter $A$ of single detector fits]{Comparison of fit parameter $A\,$[$\upmu\mathrm{Bq/kg}$] of single detector fits in both background models and fit precision \textit{kHigh}.}
\label{tab:compbackground}
 \begin{tabular}{c|rrc|rrc}
 \hline\hline
  & \multicolumn{3}{c|}{flat background} & \multicolumn{3}{c}{erfc background} \\
  \hline
  detector & A (marg) & A (glob) & p-value & A (marg) & A (glob) & p-value \\
  \hline
  RG1 & $ 73.1 _{ -7.1 }^{+ 6.7 }$ & $ 72.9 \pm 6.7 $ & 0.30 & $ 72.1 _{ -6.1 }^{+ 7.7 }$ & $ 72.9 \pm 6.7 $ & 0.33\\
  RG2 & $ 101.9 _{ -8.1 }^{+ 9.3 }$ & $ 102.3 \pm 8.6 $ & 0.88 & $ 102.1 _{ -8.5 }^{+ 8.9 }$ & $ 102.3 \pm 8.6 $ & 0.88\\
    
  ANG2 & $ 93.5 _{ -7.3 }^{+ 5.7 }$ & $ 92.7 \pm 6.4 $ & 0.50 & $ 91.7 _{ -5.5 }^{+ 7.5 }$ & $ 92.7 \pm 6.4 $ & 0.54\\
  ANG3 & $ 91.3 _{ -6.9 }^{+ 7.5 }$ & $ 91.4 \pm 7.2 $ & 0.58 & $ 91.3 _{ -7.1 }^{+ 7.5 }$ & $ 91.4 \pm 7.2 $ & 0.59\\
  ANG4 & $ 74.3 _{ -5.3 }^{+ 7.7 }$ & $ 75.4 \pm 6.4 $ & 0.39 & $ 74.5 _{ -5.7 }^{+ 7.5 }$ & $ 75.4 \pm 6.4 $ & 0.40\\
  ANG5 & $ 100.1 _{ -5.3 }^{+ 8.5 }$ & $ 101.6 \pm 6.8 $ & 0.38 & $ 100.9 _{ -6.3 }^{+ 7.5 }$ & $ 101.6 \pm 6.8 $ & 0.39\\
  
  GTF112& $ 94.1 _{ -5.3 }^{+ 6.9 }$ & $ 94.7 \pm 6.0 $ & 0.52 & $ 94.3 _{ -5.7 }^{+ 6.5 }$ & $ 94.6 \pm 6.0 $ & 0.58\\
  GTF45 & $ 107.1 _{ -10.3 }^{+ 14.1 }$ & $ 109.0 \pm 12.2 $ & 0.25 & $ 106.5 _{ -11.1 }^{+ 13.1 }$ & $ 108.4 \pm 12.1 $ & 0.27\\
  GTF32 & $ 98.1 _{ -11.3 }^{+ 12.5 }$ & $ 98.9 \pm 11.8 $ & 0.69 & $ 96.5 _{ -10.3 }^{+ 13.1 }$ & $ 98.7 \pm 11.8 $ & 0.70\\

  GD32B & $ 119.9 _{ -20.9 }^{+ 21.9 }$ & $ 120.1 \pm 21.3 $ & 0.45 & $ 120.1 _{ -21.3 }^{+ 21.1 }$ & $ 120.1 \pm 21.3 $ & 0.45\\
  GD32C & $ 51.9 _{ -12.7 }^{+ 13.9 }$ & $ 51.9 \pm 13.1 $ & 0.50 & $ 52.3 _{ -13.5 }^{+ 13.3 }$ & $ 52.0 \pm 13.1 $ & 0.50\\
  GD32D & $ 89.7 _{ -18.1 }^{+ 18.9 }$ & $ 89.8 \pm 18.6 $ & 0.44 & $ 86.3 _{ -15.7 }^{+ 20.9 }$ & $ 89.9 \pm 18.6 $ & 0.44\\
  GD35B & $ 86.3 _{ -13.1 }^{+ 21.1 }$ & $ 89.7 \pm 17.1 $ & 0.58 & $ 88.5 _{ -16.5 }^{+ 17.5 }$ & $ 89.3 \pm 17.0 $ & 0.59\\
  \hline\hline
 \end{tabular} 
\end{table}

\newpage
Another issue we have to consider is computing time. The flat model is much less expensive than the refined model. It takes a full day fitting just one detector with precision \textit{kMedium} with the erfc model which takes just hours with precision \textit{kHigh} in the flat model. A combined fit with all 13 detectors has respectively 13 parameters more in the erfc model than in the flat model and is accordingly more expensive in computing time. \\

As fit parameters are compatible within uncertainties, the erfc model is preferable only for cosmetic reasons. Statistics is already good enough to see the different background levels on the right and on the left side of the $\gamma$-line by eye. Hence, the erfc model seems to represent the data better (see \figurename~\ref{fig:compbackgroundmodel}) although the difference is marginal in the calculated specific activity.


 
\subsection{Consistency checks} 
 
The fit result should be stable analyzing only parts of the data. We compare different run periods, detectors and detector strings. To save computing time, all comparisons are made using the flat background model with fit precision \textit{kHigh}. \\

To compare different run periods we split the data in parts which are large enough for the fit to converge. In \figurename~\ref{fig:comparerunperiods} the following run periods are compared to each other: Run25-32 ($174\,$d), Run36-39 ($90\,$d), Run40-42 ($88\,$d) and Run43-46 ($98\,$d). They all agree very well within $1\,\sigma$. \\

A comparison of the single detectors can be found in\figurename~\ref{fig:comparedetectors}. If we suppose that all posterior \ac{pdf}s are Gaussian six are compatible within $1\,\sigma$ with the final fit value, ten are compatible within $2\,\sigma$ and all are compatible within $3\,\sigma$. \\

The detector strings are all compatible well within $2\,\sigma$ (see \figurename~\ref{fig:comparestrings}).

% exchanged with kHigh Multi right errors
\vspace{3mm}
\begin{figure}[H]
  \begin{center}
    \includegraphics[trim=0cm 0cm 3cm 1.5cm, clip=true, width=0.85\textwidth]{./Ar42/plots/compare_X_ALL_MULTI}
    \caption[Stability of $A$ fitting data from different run periods]{Stability of $A$ fitting data from different run periods in the flat background model.}
    \label{fig:comparerunperiods}
  \end{center}
\end{figure}

% newest multiplicity > 1
% kHigh
\begin{figure}[p]
  \begin{center}
    \includegraphics[trim=0cm 0cm 3cm 1cm, clip=true, width=0.9\textwidth]{./Ar42/plots/compare_DET_MULTI}
    \caption[Stability of $A$ fitting single detector data]{Stability of $A$ fitting single detector data in the flat background model.}
    \label{fig:comparedetectors}
  \end{center}
\end{figure} 

% newest multiplicity > 1
% kHigh
\begin{figure}[p]
  \begin{center}
    \includegraphics[trim=0cm 0cm 3cm 1cm, clip=true, width=0.9\textwidth]{./Ar42/plots/compare_strings_multi}
    \caption[Stability of $A$ fitting data from single detector strings]{ Stability of $A$ fitting data from single detector strings in the flat background model. String 1 is plot in the GTF configuration (S1$\_$GTF; Run25$\,-\,$Run32) and in the BEGe configuration (S1$\_$BEGe; Run36$\,-\,$Run46)}
    \label{fig:comparestrings}
  \end{center}
\end{figure} 

\clearpage

\section{Systematic uncertainties}
\label{sec:systematics}

The systematic uncertainties considered are

\begin{itemize}
 \item \textbf{Active mass} As all Germanium detectors in the \gerda\ experiment are p-type they suffer non negligible efficiency loss due to the fact that the outer layer, which is Lithium diffused, is partly in-active. The thickness of this layer is only known with limited accuracy \cite{RefWorks:93}. 
 \item \textbf{Dimensions in MaGe} Size of geometry details can influence the detection efficiency. 
 \item \textbf{\ac{LAr} density} Also an uncertainty on the \ac{LAr} density affects the detection efficiency calculated using Monte Carlo simulation
 \item \textbf{Geometry details} Some details are only approximated and not implemented in full detail e.g. rounded corners of the detectors.
 \item \textbf{Decays outside sampling volume} As only a part of the \ac{LAr} volume is simulated we consider a systematic error for decays out side the simulated volume
 \item \textbf{Non-uniformity} Inside the Mini-Shroud the distribution of $^{42}$K decays is unknown. We consider two extreme cases to get a lower and an upper bound on the detection efficiency.
 \item \textbf{Geant4 physics} Deviations of cross-sections in the Monte Carlo simulation lead to an overall systematic uncertainty \cite{RefWorks:94} which has to be taken into consideration for the detection efficiency.
\end{itemize}

The uncertainty on the non uniformity of $^{42}$K decays inside the Mini-Shrouds is estimated by simulation of two extreme cases of the distribution. A sketch of these cases can be found in \figurename~\ref{fig:simsketch}. Outside the \ac{MS} we assume the decays to be distributed homogeneously, inside the \ac{MS} decays are simulated 

\begin{itemize}
\itemsep1pt
 \item[1)] Homogeneous to obtain a central value (\textit{hom})
 \item[2)] Very close to the \ac{MS} for a lower bound (\textit{nearMS}) 
 \item[3)] Very close to the detectors for an upper bound (\textit{nearDet})
\end{itemize}

The detection efficiencies of all considered cases were evaluated and can be found in \tablename~\ref{tab:efficiencies}.\\

An average variation of efficiencies was calculated and the BAT fit was repeated using the lower and the upper bound of values assuming the uncertainty to be correlated. The variation in $A$ from those fits was $\pm 4.4\,\%$. This value and all other systematic uncertainties considered can be found in \tablename~\ref{tab:uncertainties}. To obtain the final systematic uncertainty all values are summed in quadrature and the total uncertainty is multiplied by the final fit value. \\

\section{Correction for \texorpdfstring{$^{42}$Ar}{42Ar} lifetime}

The value for the specific activity calculated as described above is averaged over the whole data taking phase. In reality $A$ is exponentially decaying with the lifetime of $^{42}$Ar: $T_{1/2} = (32.9 \pm 1.1)\,$y \cite{RefWorks:83}. \\

We suppose to be calculating an average value of $A_\mathrm{a}$ in the considered data taking period
\begin{equation}
 A_\mathrm{a} = \frac{ A_0 } {t_2-t_1} \cdot \int_{t_1}^{t_2} \exp \left( -\frac{\ln(2)}{T_{1/2}}\cdot t \right) \mathrm{d}t
\end{equation}

Where $t_1$ is the start of Run25 and $t_2$ the end of Run46 after the \ac{LAr} was put under ground. We want to know $A_0$, the equilibrium specific activity of $^{42}$Ar in \ac{LAr} above ground. 
\begin{equation}
 A_0 = A_\mathrm{a} \cdot \frac{t_2-t_1}{ \int_{t_1}^{t_2} \exp \left( -\frac{\ln(2)}{T_{1/2}}\cdot t \right) \mathrm{d}t }
\end{equation}

The \ac{LAr} was put under ground the 9th November 2007, exactly four years before Run25 started the 9th November 2011. With $t_1 = 4\,\text{y}$, $t_2 - t_1 = 1.375\,$y and the final fit value $A_\mathrm{a}$ from \equationname~\ref{eqn:finalvalue} we obtain
\begin{equation}
\label{eqn:lifetimecorr}
 A_0 \approx ( 1.104 \pm 0.004 ) \cdot A_\mathrm{a} \\
\end{equation}

The uncertainty is due to the uncertainty in the $^{42}$Ar lifetime. The specific activity calculated with the BAT fit is about $10\,\%$ lower than it was when the \gerda\ \ac{LAr} was brought underground. The uncertainty on this lifetime correction is with $\approx0.4\,\%$ much lower than all other systematic uncertainties we consider in \sectionname~\ref{sec:systematics} and is therefore neglected in the following.

\vspace{1cm}

\begin{table}[h]
\centering
\caption[Considered systematic uncertainties]{ Considered systematic uncertainties of the specific activity. The correlation is considered with respect to the other detectors. }
\label{tab:uncertainties}
  \begin{tabular}{ccc}
  \hline\hline
    systematic & correlation & value [\%]\\
    \hline
    Active mass & no & 2.9 \\
    Dimensions in MaGe & no & 0.8 \\
    \ac{LAr} density & yes & 0.9 \\
    Geometry details & yes & 2.8 \\
    Decays outside sampling volume & yes & 0.9 \\
    Non-uniformity & yes & 4.4 \\
    Geant4 physics & yes & 4.0 \\
    & total & 7.3 \\
    \hline\hline
  \end{tabular}
\end{table}

\newpage
\subsection{Equilibrium specific activity of $^{42}$Ar above ground}
\label{sec:equilibriumactivity}

The final fit value (see \equationname~\ref{eqn:finalvalue}) for the decay of $^{42}$Ar is corrected using \equationname~\ref{eqn:lifetimecorr}. Finally, the systematic error is calculated with the values from \tablename~\ref{tab:uncertainties}. The final result for the equilibrium specific activity of $^{42}$Ar in \ac{LAr} is
\begin{equation}
 A_0 (^{42}\text{Ar}) = 101.0^{+2.5}_{-3.0} (\text{stat}) \pm 7.4 (\text{syst}) \,\upmu \mathrm{Bq/kg}
\end{equation}

\section{LArGe measurement}

Data from the \gerda\ test facility \ac{LArGe} has also been used to determine the $^{42}$Ar specific activity. A sample of \ac{LAr} enriched in the isotope $^{42}$Ar with known concentration was flushed into the \ac{LArGe} cryostat. One Germanium detector (GTF44) was used for the analysis, encapsulated in a copper shroud. The count rates in the $1525\,$keV $^{42}$K line were compared before and after flushing with the enriched \ac{LAr} for different \ac{HV} applied on the copper encapsulation. The final result was obtained by combining all values with a weighted average. The final result, uncorrected for the $^{42}$Ar decay time, is
\begin{equation}
A_{\mathrm{LArGe}} (^{42}\text{Ar}) = 65.6 \pm 3.7  (\text{stat}) \pm 13.5 (\text{syst}) \,\upmu \mathrm{Bq/kg}
\end{equation}

If we suppose that the \ac{LAr} inside \ac{LArGe} has been underground for about 3 years and 8 months, which is roughly the middle of their data taking period, we have to correct this value by about 8\% to be comparable with the final result of this analysis from \sectionname~\ref{sec:equilibriumactivity}. As corrected value we obtain
\begin{equation}
A_{\mathrm{LArGe}}^{\mathrm{corr}} (^{42}\text{Ar}) = 70.8 \pm 4.0  (\text{stat}) \pm 14.6 (\text{syst}) \,\upmu \mathrm{Bq/kg} 
\end{equation}

\section{Discussion}

The $^{42}$Ar specific activity obtained in this analysis is in very good agreement with the theoretical value quoted in \cite{RefWorks:80}. However, the theoretical value is a qualitative guess. It results incompatible with the result of a previous measurement introduced in \sectionname~\ref{sec:Barabash}, which found an upper limit of $43\,\upmu$Bq/kg. \\

The final result is only compatible within $1.8\,\sigma$ with the value obtained using \ac{LArGe} data. There is some tension between the two analysis. It could well be that the \ac{HV} cables which are connected to the detectors in the \gerda\ setup are not as well shielded as is assumed and residual electrical fields attract $^{42}$K to the surface of the Mini-Shroud. But, no evidence has been found for a higher count rate of detectors closer to the top of the Mini-Shroud where the cables are located. By convection $^{42}$K could be transported to the vicinity of the Mini-Shrouds and stay there due to an unknown mechanism. \\

Evaluating the count rate of the $^{42}$K line right after applying \ac{HV} on the detectors could give evidence for attraction of $^{42}$K ions. Run33 and Run34 are taken with a new detector configuration and are the sole candidates for such a study in the \gerda\ Phase I configuration. However, the count rate is so low that this study remains inconclusive. In the \ac{LArGe} setup with augmented $^{42}$Ar concentration a measurement like that would be possible but has never been performed. A \gerda\ like detector string should be deployed into \ac{LArGe} and after a stabilization period the detectors switched on. The number of counts in the $1525\,$keV line of $^{42}$K over time should give information about whether $^{42}$K gets attracted towards the detectors and about how well the \ac{MS} actually works as barrier and in closing the field lines of the electric field around the detectors in the Phase I setup. \\

In \gerda\ Phase II the analysis, presented in this chapter, can be refined with more statistics. It will substantially differ from this work as the \ac{MS} in Phase II is transparent and a new veto system is installed using \ac{LAr} scintillation light. 
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Finding \ac{0nbb} decay is one of the holy grails of experimental neutrino physics. Its existence would clarify some of the problems regarding neutrino particles that are still unsolved. All experiments searching for \ac{0nbb} decay are low background experiments looking for an extremely rare --- if existing --- phenomenon. Their sensitivity depends strongly on the expected background: events which can mimic \ac{0nbb} decay. Hence, the reduction of background is essential to all of them. Background can be suppressed in various ways: by selecting radio-pure construction material, passive shielding against external $\gamma$ and neutron radiation, by tagging cosmic muons using instrumented veto systems and by analyzing the form of pulses generated by signal events with respect to the background. \\

In the \gerda\ experiment \ac{0nbb} decay is searched for in the \ac{0nbb} candidate isotope $^{76}$Ge. \ac{HPGe} detectors, enriched in this isotope, serve as source and detector simultaneously. Recently, new detectors, of \ac{BEGe} type, were produced to be hosted in the second experimental phase. They have excellent properties for pulse shape analysis, which will be one of the key features of the \gerda\ Phase II background reduction. \\

To create algorithms which effectively reduce background, based on the pulse shapes, signal-like events are extensively studied. The main property of \ac{0nbb} events is given by their localized energy deposition inside the detector crystals. An energy deposition in a volume smaller than the spatial resolution of the detector is commonly referred to as \ac{SSE}. Hence, for studies of signal-like events pure samples of \ac{SSE}s are prepared and analyzed. 
Furthermore, the study of \ac{SSE}s permits to draw conclusions about the internal electric field properties of \ac{HPGe} detectors. Pulse shape simulations rely on a precise description of these electric fields and comparison to real data is necessary in order to validate and improve them. \\

The standard procedure in \gerda\ to obtain \ac{SSE} samples is the selection of events from a \ac{DEP}. They are observed in pair production processes if both created annihilation photons escape the detector volume. In that case the energy deposition is localized and in fact \ac{DEP}s are dominated by \ac{SSE}s. However, a part of hereby collected events is still due to background and the distribution of the selected events in the detector volume is extremely inhomogeneous. The probability for both annihilation photons to escape is largest on the detector surface and especially high in its corners. \\

For this work an experimental setup was built and optimized which is able to select pure samples of \ac{SSE}s from distinct locations inside a \ac{HPGe} detector: A test detector of \ac{BEGe} type was implemented in the setup. The event selection of this system is based on \ac{SCE} interactions, which meet the signal-like event condition, depositing energy in localized positions in the detector. In Compton scattering interactions, kinematics are defined by the scattering angle and the incident photon energy. \ac{SCE} interactions can, thus, be selected by tagging of the scattered photons and selection of the energies matching the scattering angle. A collimated photon beam, emitted by a $^{137}$Cs source, is used to irradiate the \ac{BEGe} detector. 
Additional \ac{HPGe} detectors, with a \ac{Coax} geometry, are used to tag the photons which are Compton scattered inside the \ac{BEGe} with a scattering angle of $90^{\circ}$ with respect to the incident photon beam. Their angular acceptance is restricted by collimation in order to select a specific region inside the \ac{BEGe} detector. The source can be moved, the \ac{BEGe} can be rotated and the height at which the \ac{Coax} detectors are placed with respect to the \ac{BEGe} can be varied. In this manner, three-dimensional scans of the full volume of the \ac{BEGe} detector can be made. \\

The dewar vessels of all detectors are connected to an automatized filling system and a safety \ac{HV} shut down prevents detector damage, in case a detector starts to warm up with its \ac{HV} supply switched on. A \ac{DAQ} system was assembled and tested which records the full event traces on disk. In order to record only true coincidences of the \ac{BEGe} and one of the \ac{Coax} detectors, a dedicated external trigger logic was designed and implemented. A calibration and optimization method for the external trigger was established and was successfully carried out. In order to augment the event rate a new collimator was designed and installed which can hold a $^{137}$Cs source with an activity of about $780\,$MBq. The collimator is very easy to handle and effectively shields radiation in order to reduce personal risk. \\

This work contains a detailed description of the experimental setup, its way of operation and the results of the testing campaign undertaken. \\

An extensive characterization of the detectors used in the setup was carried out. This was necessary in order to optimize the energy reconstruction algorithm, determine the detector depletion and operational voltages and the energy resolutions. Furthermore, it was important to test the stability of the detector baselines in order to operate the system under stable conditions over a long time period. The internal geometry of the \ac{BEGe} detector was studied in detail using a dedicated setup. Automatized fine grain surface scans give insight on the detector crystal geometry, the holder positioning and dimension, and on inhomogeneities of the outer contact layer. A comparison to a similar \ac{HPGe} detector of \ac{PPC} type was carried out. The fine grain surface scan can give valuable input to study the Compton coincidences in simulations. \\

A detailed description of the Compton coincidence setup was implemented in a \ac{MC} simulation framework. The simulations conducted allowed for an intense study of the energetic and spatial distribution of \ac{SCE} events with respect to \ac{MCE} interactions. The energy selection of the \ac{BEGe} as well as the \ac{Coax} detectors were optimized in order to select confined \ac{SCE} events. \\

In a measurement campaign several locations of the \ac{BEGe} detector were scanned at different \ac{HV} values. The signal to background of the event samples was further improved using a descriptive parameter of the pulse shape. The selection of \ac{SSE} samples with high purity was accomplished and the sample size of each location was large enough to compute average pulses for each scanned location. These average traces were found to be of high reproducibility. This enables a comparison of average pulses of \ac{BEGe} detector regions and different \ac{HV} values. Differences in the shape of the average pulse are observed when changing the scanned detector location or the \ac{HV} on the \ac{BEGe} detector. In particular it was found that the first part of the average pulse is most sensitive. The purity of the collected samples in function of the scanned location was analyzed and compared to the \ac{MC} simulations. Conclusions can be drawn on the limitations of Compton coincidence measurements conducted with this experimental setup. \\

Finally, the purity of \ac{SSE} samples was compared to the standard method used in the \gerda\ experiment. An uncollimated $^{228}$Th spectrum was recorded and the \ac{SSE} to background ratio of the \ac{DEP} from the $2.6\,$MeV $^{208}$Tl $\gamma$-line was analyzed. The purity of \ac{SSE} samples from the Compton coincidence measurements proved to be superior in the surface regions of the \ac{BEGe} detector where events from the \ac{DEP} are located. Moreover, the Compton setup permits to collect \ac{SSE}s from interior regions of the \ac{BEGe} to which the \ac{DEP} shows negligible sensitivity. \\

Future improvements of the Compton setup can be made by measuring at different scanning angles. The differential cross section for Compton scattering is larger for smaller scattering angles. This could augment the event rate and further improve the \ac{SSE} to background ratio of the collected event samples. \\

The results from a first comparison of average pulse shapes is promising. A prospective key point is a more detailed scanning measurement of a \ac{BEGe} detector and subsequent comparison to pulse shape simulations. The profile of the impurity concentration in a \ac{BEGe} could be fine-tuned based on such measurements and improve the reliability of pulse shape simulations. Other detector geometries can be studied with the setup in order to compare their \ac{PSD} power to the \gerda\ Phase II \ac{BEGe} detectors and possibly more adapt geometries could be found. \\

Returning to \ac{0nbb} experiments in general and the \gerda\ experiment in particular, another important aspect in rare event searches is the full decomposition and analysis of background contributions. One major background component in \gerda\ Phase I is the isotope $^{42}$Ar, which decays via $\beta^-$ decay in $^{42}$K. $^{42}$K further decays via a $\beta-$ decay with an endpoint energy above the endpoint of the \ac{2nbb} spectrum of $^{76}$Ge. Thus, the continuous energy spectrum of the electrons can deposit energy in the region of $Q_{\upbeta\upbeta}$ contributing to the expected background of the \gerda\ experiment. \\ 

The specific activity of $^{42}$Ar in the \gerda\ \ac{LAr} was analyzed using a Bayesian approach. The unique, highly radiopure environment of \gerda\ permits this type of study. Two fit models were implemented in a Bayesian Analysis Framework to fit a $\gamma$-line of $^{42}$K which is in secular equilibrium with $^{42}$Ar. A binned maximum likelihood fit with four (five for the second fit model) nuisance parameters per detector and a common parameter for the activity was performed and the result was analyzed for its stability. The detection efficiencies, which introduce a major systematic uncertainty to the result, were calculated by means of \ac{MC} simulations of part of the \gerda\ experimental setup. This permitted to study systematic effects introduced by inhomogeneities of the $^{42}$K distribution in the \ac{LAr} and provided a conservative estimate of the uncertainty on the efficiencies, which were then propagated to the activity. \\

This analysis is not only providing an estimate of the specific activity of $^{42}$Ar in the \gerda\ \ac{LAr}. Correcting the found value for the time the \ac{LAr} was kept under ground it can be compared to other experimental results, and furthermore, to theoretical calculations regarding production mechanisms of $^{42}$Ar in the atmosphere. This has been done as a last step of the analysis conducted in this work and the value is found compatible within $1.8\,\sigma$ with result found by the \gerda\ test facility LArGe and in very good agreement with a theoretical calculation based on a major production mechanisms of $^{42}$Ar. However, the theoretical value is only an educated guess. More precise calculations are needed to fully comprehend the implications of the experimental value calculated in this thesis. \\
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\chapter{Multi-tier data structure and decoder implementation}
\pagestyle{appendix}
\label{appendix:LEGOdecoder}

The \gerda\ analysis program transforms data in a multi-tier structure approach. Raw data is called the \textit{tier0} level data. A decoder step transforms tier0 level data in a compressed and rootified structure containing exactly the same information contained on tier0 level but compatible with all other \gerda\ analysis software. We call this the \textit{tier1} level. In the next step transforms are applied to the traces and parameters like energy, current pulse amplitude and rise time are extracted. This information is contained on the \textit{tier2} level of data analysis. Every higher analysis step is a higher level in the tier structure. E.g. the calibrated energy can be contained on a tier3 level. \\

In order to transform tier0 data into the tier1 rootified format an FADC specific decoder has to be implemented which reads the data from tier0 files and stores the event traces in a root tree. Also for data taken with the FADCs in this setup a dedicated decoder was implemented. The program Raw2MGDO has to be called with the option \textit{-c LEGO} for the $100\,$MHz $4\,$channel FADC. A version for a $500\,$MHz $8\,$channel FADC has also been implemented and can be called via \textit{-c LEGO$\_$DIGI8}. The filename is handed with the option \textit{-f}. FADC channels can be excluded from the transform with the \textit{-e} option and the pre-trigger fraction $f_{\mathrm{pre}}$ of the trace can be handed calling the \textit{-P} option. Per default all channels are processed with $f_{\mathrm{pre}} = 0.5$.

\begin{listliketab}
  \begin{tabular}{rll}
    \textbf{$\boldsymbol{100}\,$MHz digitizer} & $\$$ Raw2MGDO & -c LEGO -f filename \\
    \textbf{$\boldsymbol{500}\,$MHz digitizer} & $\$$ Raw2MGDO & -c LEGO$\_$DIGI8 -f filename \\
    \textbf{Optional} & &  -e FADC channel \\
	& &  -P $f_{\mathrm{pre}}$ \\
  \end{tabular}
\end{listliketab}

Detectors with positive and negative voltage have to be analyzed separately as all data analysis works on positive pulses and negative traces get simply inverted. The polarity is expected to be the same in all channels for a tier0 $\rightarrow$ tier1 and tier1 $\rightarrow$ tier2 transformation.


\chapter{Decay schemes of calibration sources}
\label{chap:DecaySchemes}

All decay schemes were taken from \cite{NuDat}. For some of them not all energy levels are shown, this is however indicated in the individual plots. 

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 0cm 0cm, width=0.8\textwidth]{./Appendix/plots/DecayScheme_22Na}
  \caption[Decay scheme of $^{22}$Na]{ Decay scheme of $^{22}$Na. }
  \label{fig:DecaySchemeNa22}
 \end{center}
\end{figure}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 0cm 0cm, width=0.8\textwidth]{./Appendix/plots/DecayScheme_60Co}
  \caption[Decay scheme of $^{60}$Co]{ Decay scheme of $^{60}$Co. }
  \label{fig:DecaySchemeCo60}
 \end{center}
\end{figure}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 0cm 0cm, width=0.8\textwidth]{./Appendix/plots/DecayScheme_137Cs}
  \caption[Decay scheme of $^{137}$Cs]{ Decay scheme of $^{137}$Cs. }
  \label{fig:DecaySchemeCs137}
 \end{center}
\end{figure}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 0cm 0cm, width=0.8\textwidth]{./Appendix/plots/DecayScheme_241Am_below70keV}
  \caption[Decay scheme of $^{241}$Am]{ Decay scheme of $^{241}$Am for energy levels below $70\,$keV. Intensities of $\gamma$-lines indicated. }
  \label{fig:DecaySchemeAm241}
 \end{center}
\end{figure}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 0cm 0cm, width=0.8\textwidth]{./Appendix/plots/DecayScheme_208Tl_below3000keV}
  \caption[Decay scheme of $^{208}$Tl]{ Decay scheme of $^{208}$Tl for energy levels below $3000\,$keV. Intensities of $\gamma$-lines indicated. }
  \label{fig:DecaySchemeTl208}
 \end{center}
\end{figure}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 0cm 0cm, width=0.8\textwidth]{./Appendix/plots/DecayChain_228Th}
  \caption[Decay chain of $^{228}$Th]{ Decay chain of $^{228}$Th. Isotopes decaying via $\alpha$ in yellow, $\beta$ decaying isotopes in blue, stable isotopes in white. The half-life of the decay is indicated below. }
  \label{fig:DecayChainTh228}
 \end{center}
\end{figure}



\chapter{Full Width at \texorpdfstring{$f_w$}{fw} Maximum}

To get the full width of a $\gamma$-line at some fraction $f_w$ of the peak maximum (FW$f_w$M) the $\gamma$-line is fit using a Gaussian plus tail fit function (\equationname~\ref{eqn:LEGO_tailfitfunction}). The corresponding $x$-value of the fit function is evaluated left and right of the peak centroid to satisfy $g(x) = f_w \cdot m_{\mu}$ and the difference is taken as the respective FW$f_w$M. $m_{\mu}$ is the maximum height of the Gaussian peak. The error is estimated as follows
\begin{equation}
  \frac{ \Delta \mathrm{FW}f_w\mathrm{M} }{ \mathrm{FW}f_w\mathrm{M} } = \frac{\Delta \sigma}{\sigma}
\end{equation}

Where $\sigma$ and $\Delta \sigma$ are the standard deviation and its uncertainty from the Gaussian plus tail fit function. When calculating a fraction FW$f_w$M/FWHM the errors are assumed to be fully correlated and therefore
\begin{align}
 \begin{split}
  \frac{\Delta (\mathrm{FW}f_w\mathrm{M}/\mathrm{FWHM}) }{(\mathrm{FW}f_w\mathrm{M}/\mathrm{FWHM})} & = 
  \sqrt{ \frac{ \Delta \mathrm{FW}f_w\mathrm{M} }{ \mathrm{FW}f_w\mathrm{M} }^2 + \frac{ \Delta \mathrm{FWHM} }{ \mathrm{FWHM} }^2 
  - 2 \frac{ \Delta \mathrm{FW}f_w\mathrm{M} }{ \mathrm{FW}f_w\mathrm{M} } \frac{ \Delta \mathrm{FWHM} }{  \mathrm{FWHM} } } \\
  & =\, 0
 \end{split}
\end{align}

% \chapter{ FADC shaping parameter optimization }
% 
% 
%  \begin{table}[htb]
%  \caption{Resolution comparison MCA and digitizer. Fit with a simple Gaussian plus errorfunction background. } 
%  %Scaled by dividing by the integral of each histogram from $658\,$keV to $666\,$keV.}
%  \label{tab:resolution}
%  \centering
%  \begin{tabular}{ccrccc}
%  \hline
%  detector & chan DIGI & line & FWHM MCA & FWHM DIGI & FWHM DIGI opt \\
%  \hline
%  \multirow{3}{*}{CC1} & \multirow{3}{*}{c0} 
%   & 661.7 & $2.20\pm0.02$ & $3.28\pm0.08$ & $2.94\pm0.07$ \\
%   & & 1173.2 & $2.82\pm0.03$ & $3.54\pm0.09$ & $3.24\pm0.09$ \\
%   & & 1332.5 & $2.96\pm0.03$ & $3.44\pm0.09$ & $3.14\pm0.08$ \\
%   \hline
%  \multirow{3}{*}{CC2} & \multirow{3}{*}{c1} 
%   & 661.7 & $1.79\pm0.01$& $2.90\pm0.06$ & $2.81\pm0.06$ \\
%   & & 1173.2 & $2.16\pm0.02$& $3.27\pm0.08$ & $3.13\pm0.08$ \\
%   & & 1332.5 & $2.24\pm0.02$& $3.49\pm0.09$ & $3.29\pm0.08$ \\
%   \hline
%  \multirow{3}{*}{CC3} & \multirow{3}{*}{c2} 
%   & 661.7 & $1.48\pm0.01$ & $1.66\pm0.05$ & $1.65\pm0.05$ \\
%   & & 1173.2 & $1.94\pm0.02$ & $2.03\pm0.06$ & $2.03\pm0.07$ \\
%   & & 1332.5 & $2.05\pm0.02$ & $2.17\pm0.07$ & $2.18\pm0.07$ \\
%   \hline
%  \multirow{3}{*}{CC4} & \multirow{3}{*}{c3} 
%   & 661.7 & $1.56\pm0.02$ & $2.90\pm0.08$ & $2.53\pm0.07$\\
%   & & 1173.2 & $1.94\pm0.02$ & $3.27\pm0.09$ & $2.96\pm0.08$\\
%   & & 1332.5 & $2.17\pm0.03$ & $3.37\pm0.09$ & $3.07\pm0.08$\\
%   \hline
%  \end{tabular}
%  \end{table}

\chapter{Dual Timer Unit gate calibration}
\label{appendix:DTUgatecalib}

In \figurename~\ref{fig:Na22CalRegular} individual \ac{DTU} gate calibration plots can be found. Without cuts and with standard quality and an energy cut on $^{22}$Na annihilation $\gamma$s of $(511 \pm 5)\,$keV in red. With standard cuts we intend that all events satisfy the following criteria: 1) No over- or under-flow from the dynamic range of the \ac{FADC}. 2) No error in event processing. 3) Number of found triggers is one. All coincident detectors behave very similar and a \ac{DTU} gate size of $2\,\upmu$s is fine for all of them.

\vspace{2cm}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 3.2cm 0cm, clip=true, width=0.9\textwidth]{./Appendix/plots/tier3_c0_c0_CC3_c1_CC1_Na22_coinc_20150911_162355_GATECAL}
  \caption[\ac{DTU} gate size calibration]{ \ac{DTU} gate size calibration plot. Trigger time difference $\Delta T = T(\mathrm{BEGe}) - T(\mathrm{Coax})$ for BEGe and Coax1 of $^{22}$Na coincidence measurements without data cuts and with standard quality and an energy cut ($511 \pm 5\,$)keV. The small bump at $-2\upmu$s appears because all event triggers before the start of trigger search are accumulated there. }
  \label{fig:Na22CalRegular}
 \end{center}
\end{figure}

\begin{figure}[h]
 \begin{center}
  \includegraphics[trim=0cm 0mm 3.2cm 0cm, clip=true, width=0.9\textwidth]{./Appendix/plots/tier3_c0_c0_CC3_c2_CC2_Na22_coinc_20150911_163805_GATECAL} \\ \vspace{10mm}
  \includegraphics[trim=0cm 0mm 3.2cm 0cm, clip=true, width=0.9\textwidth]{./Appendix/plots/tier3_c0_c0_CC3_c3_CC4_Na22_coinc_20150911_164920_GATECAL}
  \captionsetup{labelformat=empty}
  \caption[]{ \figurename~\ref{fig:Na22CalRegular} continued for BEGe and Coax3 (top) BEGe and Coax3 (bottom). }
  \label{fig:Na22CalRegular2}
 \end{center}
\end{figure}

\addtocounter{figure}{-1}

\chapter{Coincidence Monte Carlo simulation options}
\label{appendix:MCoptions}

Some geometry details are implemented variable in size. The options that can be chosen and a short description can be found here \\
% 
% \textbf{Special Detector Geometry} \\
% 
% \textit{/MG/geometry/LEGOTable/SpecialDetectorType} \\
%     not implemented yet - should contain the PPC geometry at some point \\

\textbf{BEGe cryostat dimensions} \\

\textit{/MG/geometry/LEGOTable/CryostatWindowThickness} \\
    Sets cryostat window thickness, which is the front part [mm] \\

\textit{/MG/geometry/LEGOTable/CryostatWallThickness} \\
    Sets cryostat wall thickness, which is the side part [mm] \\

\textit{/MG/geometry/LEGOTable/CryostatDiameter} \\
    Sets cryostat diameter [mm] \\

\textit{/MG/geometry/LEGOTable/CryostatHeight} \\
    Sets cryostat height [mm] \\

\textbf{BEGe Xtal dimensions} \\

\textit{/MG/geometry/LEGOTable/XtalDiameter} \\
    Sets crystal diameter (incl. DL) [mm] \\

\textit{/MG/geometry/LEGOTable/XtalHeight} \\
    Sets crystal height (incl. DL) [mm] \\
    
\textit{/MG/geometry/LEGOTable/XtalDistanceToWindow} \\
    Sets distance of crystal top to cryostat window [mm] \\
    
\textit{/MG/geometry/LEGOTable/XtalDitchInnerRadius} \\
    Sets inner radius of groove [mm] \\
    
\textit{/MG/geometry/LEGOTable/XtalDitchOuterRadius} \\
    Sets outer radius of groove [mm] \\
    
\textit{/MG/geometry/LEGOTable/XtalDitchDepth} \\
    Sets depth of groove [mm] \\
    
\textit{/MG/geometry/LEGOTable/XtalDitchOnBottom} \\
    Sets the ditch to a side of the detector (default: bottom side)  \\
    
\textit{/MG/geometry/LEGOTable/XtalCornerDiameter} \\
    Sets diameter of top/bottom side with edge [mm] \\
    
\textit{/MG/geometry/LEGOTable/XtalCornerHeight} \\
    Sets height from top/bottom side to the end of the edge [mm] \\

\textit{/MG/geometry/LEGOTable/XtalCornerOnBottom} \\
    Sets the edge to a side of the detector (default: top side)  \\

\textit{/MG/geometry/LEGOTable/XtalMaterial} \\
    Sets the detector material type. Available candidates are: (EnrichedGe DepletedGe NaturalGe) \\

\textbf{Source collimator properties} \\

\textit{/MG/geometry/LEGOTable/SourceCollimated} \\
    Use collimator for source or no. Default is true. \\
    
\textit{/MG/geometry/LEGOTable/SourceCollimatorCryoDistance} \\
    Sets distance of the source collimator to the BEGe cryostat \\
    
\textit{/MG/geometry/LEGOTable/SetCollimatorPosition} \\
    Sets the position of the collimator and the source in x direction [mm]
    0 position is the middle of the detector \\

\textit{/MG/geometry/LEGOTable/SourceCollimatorLength} \\
    Sets the length of the collimator for the source. [mm] \\
    
\textit{/MG/geometry/LEGOTable/SourceBeamWidth} \\
    Sets the width of the beam in the source collimator [mm] \\

\textbf{Source configuration} \\

\textit{/MG/geometry/LEGOTable/SourceType} \\
    Sets the source type. Available candidates are: ("Cs137 Pointlike Tueb HS7 HS7like") Cs137 is the realistic source geometry of the string source \\

\textbf{Scanning height and angle} \\

\textit{/MG/geometry/LEGOTable/ScanningHeight} \\
    Sets distance of table and endcap of cryostat [mm] \\
    
\textit{/MG/geometry/LEGOTable/ScanningAngle} \\
    Set scanning angle starting from horizontal scanning and tilting the coaxial detectors towards the vertical
    0deg here are 90deg Compton angle, 30deg here are 60deg Compton angle, 45deg here are 45deg Compton angle \\
 
\textbf{BEGe holder configuration} \\
% 
% \textit{/MG/geometry/LEGOTable/ActivateEnrBEGeCryostatHolders} \\
%     Activates the holder, cup and base for an enriched BEGe - NOT YET IMPLEMENTED \\

\textit{/MG/geometry/LEGOTable/ActivateDepBEGeCryostatHolders} \\
    Activates the holder, cup and base for a depleted BEGe \\

\textbf{Coincident Coax detectors} \\

\textit{/MG/geometry/LEGOTable/CoincidentDetConfiguration} \\
    Sets the configuration of the coincident coaxial detectors.
    The numbering is clockwise starting with the x>0 and y>0 quadrant.
    Add 8 for the first 4 for the second 2 for the third and 1 for the fourth coax.
    Example: 8+4+2+1=15 all coax are active.
    Values between 0 (no coax) and 15 (all coax). \\

\textbf{Coincident Coax collimators} \\

\textit{/MG/geometry/LEGOTable/CollimatorMaterial} \\
    Sets material of source and coaxial collimators for studies only. Options are: lead, gold, copper and lcHybrid which is a hybrid of lead and half copper. \\

\textit{/MG/geometry/LEGOTable/CollimatorOpening} \\
    Sets the opening of the collimators. [mm] \\

\textit{/MG/geometry/LEGOTable/CollimatorLength} \\
    Sets the coaxial collimator length.[mm] \\
% 
\textit{/MG/geometry/LEGOTable/CollimatorBEGeCryoDistance} \\
    Sets the distance from the BEGe cryo to the coaxial collimators. [mm] \\

\textit{/MG/geometry/LEGOTable/CollimatorCoaxCryoDistance} \\
    Sets distance from coaxial collimators to coaxial cryostat [mm] \\

% \textit{/MG/geometry/LEGOTable/GetSourceLeaking} \\
%     To be used with collimated Cs137 source.
%     Sets a density inf material around the shielding to get the leaking spectrum. \\


\chapter{Specific activity of \texorpdfstring{$^{42}$Ar}{42Ar} from relative abundance}  
\label{app:aractivity}

The specific activity of $^{42}$Ar in \ac{LAr} can be calculated from the relative abundance:
\begin{equation}
    A (^{42}\mathrm{Ar}) = \frac{N_A}{m_a(^{40}\mathrm{Ar})}\cdot\frac{^{42}\mathrm{Ar}}{^{40}\mathrm{Ar}}\cdot
    \left(1-\exp\left(-\frac{\ln(2)}{T_{1/2}}\cdot 1\,\mathrm{s}\right)\right) \approx \frac{ ^{42}\mathrm{Ar} }{ ^{40}\mathrm{Ar} }  \frac{ \upmu \mathrm{Bq/kg} }{ 10^{-22} }
\end{equation}

with 

\begin{listliketab}
  \begin{tabular}{lll}
    \textbullet & Avogadro's number & $N_A \approx 6 \cdot 10^{23}\,\mathrm{mol}^{-1}$, \\
    \textbullet & the molar mass of $^{40}\mathrm{Ar}$ & $m_a(^{40}\mathrm{Ar}) \approx 4\cdot10^{-2}\,\mathrm{kg/mol}$, \\
    \textbullet & and the half-life of $^{42}\mathrm{Ar}$ & $T_{1/2} = 32.9\,\mathrm{y} \approx 1.038\cdot10^9\,\mathrm{s}$ \\
  \end{tabular}
\end{listliketab}

Hence, for a relative abundance of $^{42}\mathrm{Ar}/^{40}\mathrm{Ar} = 7.4 \cdot 10^{-22}$ we find the corresponding specific activity $A (^{42}\mathrm{Ar}) \approx 7.4 \,\upmu \mathrm{Bq/kg}$. \\

\chapter{\texorpdfstring{\gerda}{Gerda} run setup}
\label{app:runsetup}

\begin{figure}[htb]
\centering
 \includegraphics[width=0.25\textwidth]{./Appendix/plots/string_setup}
 \caption{Positioning of \gerda\ Phase I strings.}
 \label{fig:strings}
\end{figure}

\vspace{2cm}

\begin{table}[htb]
\centering
\caption[String setup of the Phase I runs]{String setup of the Phase I runs. The strings are numbered S1 - S4 where S1 is the string in the one-string arm and S2 - S4 belong to the three-string arm as can be seen in figure \ref{fig:strings}.}
\label{tab:runsetup}
 \begin{tabular}{c|cccc}
 \hline\hline
 run & S1 & S2 & S3 & S4 \\ 
 \hline 
 \multirow{3}{*}{25-32} & GTF45 & GTF112 & RG1 & ANG3 \\
  & GTF32 & ANG2 & ANG4 & ANG5 \\
  &  -  & ANG1 & RG2 & RG3 \\
  \hline
 \multirow{3}{*}{33} & & GTF112 & RG1 & ANG3 \\
  &  -  & ANG2 & ANG4 & ANG5 \\
  &  -  & ANG1 & RG2 & RG3 \\
  \hline
 \multirow{5}{*}{34-46} & GD32B & GTF112 & RG1 & ANG3 \\
  & GD32C & ANG2 & ANG4 & ANG5\\
  & GD32D & ANG1 & RG2 & RG3\\
  & GD35B & - & - &\\
  & GD35C & - & - &\\
  \hline\hline
 \end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption[Livetimes of the Phase I runs]{Livetimes of the Phase I runs.}
\label{tab:lifetimes}
  \begin{tabular}{lc|lc|lc}
  \hline\hline
  Run & livetime [d] & Run & livetime [d] & Run & livetime [d] \\
  \hline
  Run25 & 20.5105 & Run35 & 17.7713 & Run44a & 1.42237\\
  Run26 & 39.2802 & Run36 & 37.745 & Run44 & 22.8399\\
  Run27 & 5.18356 & Run37 & 23.4621 & Run45 & 33.1296\\
  Run28 & 9.57194 & Run38 & 13.8776 & Run46a & 12.1286\\
  Run29 & 20.4123 & Run39a & 15.277 & Run46b & 5.6078 \\
  Run30 & 30.9436 & Run39b & 9.46787 &&\\
  Run31 & 21.6045 & Run40 & 34.534 &&\\
  Run32 & 26.6037 & Run41 & 21.4982 &&\\
  Run33 & 11.2161 & Run42 & 32.0353 &&\\
  Run34 & 14.8195 & Run43 & 22.7819 &&\\
  \hline\hline
  \end{tabular}
\end{table}


\begin{table}[h]
\centering
\caption[Detector total masses]{Detector total masses \cite{MarikThesis,RefWorks:93}.}
\label{tab:detmasses}
  \begin{tabular}{cc|cc}
  \hline\hline
  detector & total mass [g] & detector & total mass [g] \\
  \hline
  ANG1 & 969 & GTF112 & 2957 \\ 
  ANG2 & 2878 & GTF45 & 2312\\
  ANG3 & 2447 & GTF32 & 2321 \\
  ANG4 & 2401 & GD32B & 716 \\
  ANG5 & 2782 & GD32C & 743\\
  RG1 & 2152 & GD32D & 720\\
  RG2 & 2194 & GD35B & 810\\
  RG3 & 2121 & GD35C & 634\\
  \hline\hline
  \end{tabular}
\end{table}

\begin{table}[htb]
\centering
\caption[Detector High Voltage settings in the \gerda\ Phase I runs]{Detector High Voltage settings in the \gerda\ Phase I runs. Runs or detectors which are listed in {\color{red} red} are completely excluded from $^{42}$Ar analysis. If no voltage is given | means the detector is present in the setup and hasn't changed voltage. An empty space means the detector is not present in the setup. If the voltage value is given in {\color{red} red}, the detector in the respective run is excluded from $^{42}$Ar analysis.}
\label{tab:hvsetup}
 \begin{tabular}{c|rrr|rrrrr|rrr|rr}
 \hline\hline
 & \multicolumn{3}{c|}{ANG} & \multicolumn{5}{c|}{GD} & \multicolumn{3}{c|}{RG} & \multicolumn{2}{c}{GTF} \\
 run & {\color{red} 1} & 2/3/4 & 5 & 32B & 32C & 32D & 35B & {\color{red} 35C} & 1 & 2 & {\color{red} 3} & 112 & 32/45 \\ 
 \hline
 25 & 4.0 & 3.5 & 2.5 & & & & & & 4.5 & 4.0 & 3.2 & 3.0 & -3.0 \\
 26 & | & | & | & & & & & & | & | & 2.5 & | & | \\
 27 & | & | & | & & & & & & | & | & | & | & | \\
 28 & | & | & | & & & & & & | & | & 2.3 & | & | \\
 29 & | & | & | & & & & & & | & | & 2.0 & | & | \\
 30 & 2.0 & | & | & & & & & & | & | & 1.0 & | & | \\
 31 & | & | & | & & & & & & | & | & 0.0 & | & | \\
 32 & 1.5 & | & | & & & & & & | & | & | & | & | \\
 {\color{red} 33} & 0.0 & | & | & & & & & & | & | & | & | & \\
 {\color{red} 34} & | & | & | & & & & & & | & | & | & | & \\
 {\color{red} 35} & | & | & | & 3.5 & 3.5 & 3.5 & 3.5 & 3.5 & | & | & | & | & \\
 36 & | & | & | & | & | & | & | & | & | & | & | & | & \\
 37 & | & | & | & {\color{red} 3.5} & | & | & | & | & | & | & | & | & \\
 38 & | & | & | & | & | & {\color{red} 3.5} & | & | & | & | & | & | & \\
 39a & | & | & | & | & | & | & | & | & | & | & | & | & \\
 39b & | & | & | & | & | & | & | & | & | & | & | & | & \\
 40 & | & | & | & | & | & | & | & | & | & 3.5 & | & | & \\
 41 & | & | & | & | & | & | & | & | & | & | & | & | & \\
 42 & | & | & | & | & | & | & | & | & | & | & | & | & \\
 43 & | & | & | & | & | & | & | & | & | & | & | & | & \\
 44 & | & | & | & | & | & | & | & | & | & {\color{red} 2.0} & | & | & \\
 45 & | & | & | & | & | & | & | & | & | & {\color{red} 2.0} & | & | & \\
 46a & | & | & | & | & | & | & | & | & | & {\color{red} 2.0} & | & | & \\
 46b & | & | & | & | & | & {\color{red} 3.5} & | & | & | & {\color{red} 2.0} & | & | & \\
 \hline\hline
 \end{tabular}
\end{table}



% \chapter{MaGe Monte Carlo}
% \label{app:mage}
% 
% \begin{table}[htb]
% \centering
% \caption{Detector mapping to number in root files, geometry number of MaGe configuration file and string.}
% \label{tab:mapping}
%  \begin{tabular}{cccc}
%  root \# & MC \# & name & string \\
%  \hline
%  0 & 37 & GD32B & 1 \\
%  1 & 38 & GD32C & 1 \\
%  2 & 39 & GD32D & 1 \\
%  3 & 40 & GD35B & 1 \\
%  4 & 41 & GD35C & 1 \\
%  5 & 5 & ANG3 & 4 \\
%  6 & 7 & ANG5 & 4 \\
%  7 & 3 & RGIII & 4 \\
%  8 & 1 & RGI & 3 \\
%  9 & 6 & ANG4 & 3 \\
%  10 & 2 & RGII & 3 \\
%  11 & 11 & GTF112 & 2 \\
%  12 & 4 & ANG2 & 2 \\
%  13 & 0 & ANG1 & 2 \\
%  \hline
%  0 & 8 & GTF45 & 1 \\
%  1 & 10 & GTF32 & 1 \\
%  \end{tabular}
% \end{table}


\chapter{Energy resolution plots}
\label{app:resolution}

\begin{figure}[ht]
\centering
    \includegraphics[trim=0.8cm 0cm 2.4cm 1.6cm, clip=true, width=0.7\textwidth]{/home/sturm/Ar42/calibrations/fwhm_GD32B}
    \caption[Variation in time of the \ac{FWHM} of the Phase I \ac{BEGe} detectors]{\ac{FWHM} from calibration data between 2012-07-08 and 2013-03-20 of GD32B. The black line indicates the median and the smallest $68\%$ interval is indicated with a dotted area.}
    \label{fig:res1}
\end{figure}


\begin{figure}[ht]
\ContinuedFloat
\captionsetup{list=off,format=cont}
\centering
    \includegraphics[trim=0.8cm 0cm 2.4cm 1.6cm, clip=true, width=0.7\textwidth]{/home/sturm/Ar42/calibrations/fwhm_GD32C}
    \caption{GD32C}
    \label{fig:res2}
\end{figure}

\begin{figure}[ht]
\ContinuedFloat
\captionsetup{list=off,format=cont}
\centering
    \includegraphics[trim=0.8cm 0cm 2.4cm 1.6cm, clip=true, width=0.7\textwidth]{/home/sturm/Ar42/calibrations/fwhm_GD32D}
    \caption{GD32D}
    \label{fig:res3}
\end{figure}

\begin{figure}[ht]
\ContinuedFloat
\captionsetup{list=off,format=cont}
\centering
    \includegraphics[trim=0.8cm 0cm 2.4cm 1.6cm, clip=true, width=0.7\textwidth]{/home/sturm/Ar42/calibrations/fwhm_GD35B}
    \caption{GD35B}
    \label{fig:res4}
\end{figure}

\begin{figure}[ht]
\ContinuedFloat
\captionsetup{list=off,format=cont}
\centering
    \includegraphics[trim=0.8cm 0cm 2.4cm 1.6cm, clip=true, width=0.7\textwidth]{/home/sturm/Ar42/calibrations/fwhm_GD35C}
    \caption{GD35C}
    \label{fig:res5}
\end{figure}



\begin{figure}[ht]
\centering
    \includegraphics[trim=0.8cm 0cm 2.4cm 1.6cm, clip=true, width=0.7\textwidth]{/home/sturm/Ar42/calibrations/fwhm_GTF45}
    \caption[Variation in time of the \ac{FWHM} of GTF45 and GTF32]{FWHM from calibration data between 2011-11-09 and 2012-05-22 of GTF45. The black line indicates the median and the smallest 68\% interval is indicated with a dotted area.}
    \label{fig:resGTF1}
\end{figure}

\begin{figure}[ht]
\ContinuedFloat
\captionsetup{list=off,format=cont}
\centering
    \includegraphics[trim=0.8cm 0cm 2.4cm 1.6cm, clip=true, width=0.7\textwidth]{/home/sturm/Ar42/calibrations/fwhm_GTF32}
    \caption{GTF32}
    \label{fig:resGTF2}
\end{figure}

% 
% \chapter{\texorpdfstring{$^{42}$Ar}{42Ar} specific activity comparison with previous analysis}
% \label{app:crosscheck}
% 
% In \tablename~\ref{tab:checksabine} a comparison of the $^{42}$Ar analysis to a previous one can be found. All values are compatible within one sigma, also including Run31 and Run32 which were not considered in the previous analysis. Run31 was very unstable and noisy and was originally not approved for physics analysis. However, it was revised later so a part of the data can be used and only the very bad part is not considered. When referring to Run31 the revised version is intended. In Run32 the HV of ANG1 was lowered to $1.5\,$kV which was the reason to exclude it from this analysis. However, later comparisons do not indicate that the data from Run32 is incompatible with the rest of the data. The sum value of the previous fit contains also GTF112 which is not included in the current fit value which is why values differ slightly. In five out of seven cases, the fit including Run31 and Run32 has a higher p-value. 
% 
%  \begin{table}[ht]
%  \centering
%  \caption{Comparison with previous values. Tabulated are the marginalized modes for Run25 to Run30. As a consistency crosscheck also the values including Run31 and Run32 are given here. The values are all compatible within $1\sigma$ comparing values with Run31 and Run32 included and excluded. }
%  \label{tab:checksabine}
%   \begin{tabular}{crrr}
%   detector & previous 25-30 & current 25-30 (p-value) & current 25-32 (p-value) \\
%   \hline
%   ANG2 & $106^{+17}_{-11}$ & $108.7^{+14.5}_{-13.7}$ (0.54697) & $100.9^{+13.1}_{-10.3}$ (0.60506) \\
%   ANG3 & $78\pm13$ & $78.7^{+13.8}_{-12.9}$ (0.4743) & $94.7^{+12.5}_{-12.3}$ (0.69769) \\
%   ANG4 & $71^{+13}_{-11}$ & $69.1^{+12.8}_{-11.5}$  (0.37645) & $76.7^{+13.5}_{-8.5}$ (0.55979) \\ 
%   ANG5 & $94^{+15}_{-13}$ & $93.9^{+16.0}_{-12.5}$ (0.54067) & $110.1^{+14.7}_{-11.4}$ (0.39516) \\
%   RG1 & $97^{+18}_{-15}$ & $97.3^{+18.7}_{-14.1}$ (0.75095) & $107.5^{+14.3}_{-14.7}$  (0.6638) \\
%   RG2 & $124^{+19}_{-16}$ & $122.7^{+19.7}_{-15.5}$ (0.51641) &  $113.9^{+15.1}_{-13.5}$ (0.60831)\\
%   sum & $92.8^{+5.3}_{-5.1}$ & $95.9^{+5.7}_{-6.4}$ (0.56657) & $99.7^{+6.7}_{-3.9}$ (0.70677) \\
%   \end{tabular}
%  \end{table}
% 


