Status of GERDA Phase II experiment aimed for the $0\nu\beta\beta$ decay search.

A.V. Lubashevskiy for the GERDA collaboration, Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
Motivation

Search for the neutrinoless double beta ($0\nu\beta\beta$) decay is a good way to search for the physics beyond the Standard Model. The observation of such a decay would prove that lepton number is not conserved.

- **$2\nu\beta\beta$**
- **$0\nu\beta\beta$**

Region of interest (ROI) of $0\nu\beta\beta$

Searching for $0\nu\beta\beta$ helps to understand:
- Nature of ν (Dirac or Majorana)
- Neutrino mass scale
- Neutrino hierarchy
- Some fields in particle physics including cosmology

Energy (keV) vs. arbitrary units
The GERDA experiment is a low background experiment aimed to search for 76Ge $0\nu\beta\beta$ decay.

Experimental sensitivity:

If background $<< 1$

$$T_{1/2}^{0\nu} \propto \varepsilon \cdot a \cdot M \cdot t$$

If background $>> 1$

$$T_{1/2}^{0\nu} \propto \varepsilon \cdot a \cdot \sqrt{\frac{M \cdot t}{\Delta E \cdot BI}}$$

- ε Efficiency
- $M \cdot t$ Mass-Time = Exposure
- a Abundance
- ΔE Energy resolution
- BI Background Index

Search with enriched HPGe detectors enriched with 76Ge:

- Detector = source
- Very good detector’s energy resolution: better than 0.2%
- Intrinsically pure material
GERDA collaboration

www.mpi-hd.mpg.de/gerda/
GERDA collaboration meeting in Heidelberg, 2014

16 institutions, 132 members
Background reduction

GERDA experiment located at LNGS underground laboratory of INFN (Italy). The rock overburden is equivalent to 3500 m.w.e. This allows to reduce μ ($\sim 10^6$ times) and neutron flux induced by cosmic radiation.
Bare germanium detectors enriched by ^{76}Ge, submerged into the high-purity liquid argon (LAr), are used in GERDA experiment.
General concept

Bare Ge detectors allows to decrease background from the surrounding materials, liquid argon shields from the radiation and cools down the Ge detectors.

~ 80 g Cu,
~ 10 g PTFE,
~ 1 g Si per detector (in Phase I)
• Achieved Background Index (BI) for semi-coaxial detectors is $0.018(2)$ cts/(keV·kg·yr).
• BI after pulse shape discrimination: $0.011(2)$ cts/(keV·kg·yr).
• About one order of magnitude better than in previous experiments with HPGe detectors.
GERDA Phase I

- **8 enriched Coaxial detectors:** working mass 14.6 kg. Average FWHM at $Q_{\beta\beta}$: $\Delta E = 4.8$ keV
- **Natural Ge:** 3.0 kg.
- **5 enriched BEGe:** working mass 3.0 kg (for test Phase II concept): $\Delta E = 3.2$ keV
GERDA Phase I results

Energy spectrum from all enriched Ge detectors with and without the PSD selection.

- **Total exposure is 21.6 kg·yr.**
- **All analysis parameters were fixed before unblinding.**
- **No event** remain within $Q_{\beta\beta} \pm \sigma$ after PSD cut.

The “claim” of a signal for $0\nu\beta\beta$ decay of 76Ge is ruled out by GERDA with 99% probability.

The limit on the half-life of $0\nu\beta\beta$ decay is:

$$T_{1/2}^{0\nu} > 2.1 \times 10^{25} \text{ yr}$$
GERDA Phase I results

90% C.L. on $T_{1/2}$ for 76Ge and 136Xe compared with the signal claim.

Total exposure is $21.6 \text{ kg}\cdot\text{yr}$.

All analysis parameters were fixed before unblinding.

No event remain within $Q_{bb} \pm \sigma$ after PSD cut.

The “claim” of a signal for $0\nu\beta\beta$ decay of 76Ge is ruled out by GERDA with 99% probability.

The limit on the half-life of $0\nu\beta\beta$ decay is:

$$T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr}$$
Other GERDA Phase I results

Analysis of $2\nu\beta\beta$ spectrum gives:

$$T_{1/2}^{2\nu} = (1.93 \pm 0.10) \cdot 10^{21} \text{ yr}$$

Experimental results for the limits on $T^{0\nu\chi}_{1/2}$ of ^{76}Ge for the Majoron models

<table>
<thead>
<tr>
<th>Model</th>
<th>n</th>
<th>Mode</th>
<th>Goldstone boson</th>
<th>L</th>
<th>$T^{0\nu\chi}_{1/2}$ [1023yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB</td>
<td>1</td>
<td>χ</td>
<td>no</td>
<td>0</td>
<td>> 4.2</td>
</tr>
<tr>
<td>IC</td>
<td>1</td>
<td>χ</td>
<td>yes</td>
<td>0</td>
<td>> 4.2</td>
</tr>
<tr>
<td>ID</td>
<td>3</td>
<td>$\chi\chi$</td>
<td>no</td>
<td>0</td>
<td>> 0.8</td>
</tr>
<tr>
<td>IE</td>
<td>3</td>
<td>$\chi\chi$</td>
<td>yes</td>
<td>0</td>
<td>> 0.8</td>
</tr>
<tr>
<td>IF</td>
<td>2</td>
<td>χ</td>
<td>bulk field</td>
<td>0</td>
<td>> 1.8</td>
</tr>
<tr>
<td>IIB</td>
<td>1</td>
<td>χ</td>
<td>no</td>
<td>-2</td>
<td>> 4.2</td>
</tr>
<tr>
<td>IIC</td>
<td>3</td>
<td>χ</td>
<td>yes</td>
<td>-2</td>
<td>> 0.8</td>
</tr>
<tr>
<td>IID</td>
<td>3</td>
<td>$\chi\chi$</td>
<td>no</td>
<td>-1</td>
<td>> 0.8</td>
</tr>
<tr>
<td>IIE</td>
<td>7</td>
<td>$\chi\chi$</td>
<td>yes</td>
<td>-1</td>
<td>> 0.3</td>
</tr>
<tr>
<td>IIF</td>
<td>3</td>
<td>χ</td>
<td>gauge boson</td>
<td>-2</td>
<td>> 0.8</td>
</tr>
</tbody>
</table>

see more in arXiv:1501.02345
From Phase I to Phase II

\[T_{1/2}^{0\nu} \propto \varepsilon \cdot a \cdot M \cdot t \]

\[T_{1/2}^{0\nu} \propto \varepsilon \cdot a \cdot \frac{M \cdot t}{\Delta E \cdot BI} \]

- Increase mass: additional 30 new BEGe detectors with total mass of ~ 20 kg.
- Exposure: 20 kg yr → 100 kg yr (within 3 years).
- Reduce background: (from \(10^{-2}\) cts/(keV kg yr) → \(10^{-3}\) cts/(keV kg yr)):
 - Power Pulse Shape Discrimination (PSD) of new BEGe detectors.
 - LAr light scintillation veto.
 - Cleaner materials.
New BEGe detectors for GERDA Phase II:

- Better energy resolution (FWHM up to 1.6 keV@1.3MeV in a vacuum cryostat).
- Powerful PSD.
- Holders with lower intrinsic radioactivity.

Examples of the pulses from BEGe detector.

Simulation of E-field in BEGe

All detectors prepared and ready for installation in GERDA. More information in talk of V.Wagner **T 10.4.**
GERDA Phase II preparations
LAr light instrumentation

Measurements with BEGe detector inside LArGe test facility show very good suppression of background. For 228Th inner source the suppression factor > 5000 has been obtained after applying LAr veto and PSD (but for other sources it can be lower for example for external 226Ra it is only factor 18). That is why to reach goal of Phase II background index of $< 10^{-3}$ cts/(keV·kg·yr) light scintillation veto will be implemented in GERDA experiment.

See more in arXiv:1501.05762
LAr light instrumentation was developed and successfully installed in GERDA. More information in talk of A. Wegmann T 10.5 and B. Schneider T 28.2 (light attenuation).
First commissioning tests

Spectrum taken in the commissioning run of GERDA Phase II. More details in following talks: T 10.4 and T 10.5.
42Ar background mitigation

In GERDA Phase I for suppression of 42Ar background copper “mini-shroud” is used.
For GERDA Phase II such device will block the scintillation light -> new device was developed: nylon mini-shroud covered with wavelength shifter.
In measurements in LArGe accumulated statistics is equivalent approximately to ~17 kg·yr in natural argon. It was shown that with NMS+PSD+PMT suppression it is possible to dramatically decrease 42K background: suppression more than factor of 1000 was demonstrated.
Conclusion

• GERDA Phase I data taking was successfully performed.
• Obtained limit on the half-life of the $0\nu\beta\beta$ decay is $2.1 \cdot 10^{21}$ yr.
• Signal from the previous claim disfavoured by GERDA with 99% probability.
• Installation of the GERDA Phase II is ongoing.
• First results of background suppression by LAr scintillation veto are promising.
• More data are coming....
Back up slides
LArGe test facility

LArGe low background test facility has been created in order to study the possibility to suppress background by using anticoincidence with liquid Ar scintillation signal detected by PMTs. It was shown that liquid scintillation veto can efficiently suppress the background.