neutrinoless double beta decay in ^{76}Ge with GERDA

on behalf of the GERDA collaboration
Peter Grabmayr
Kepler Center für Astro- und Teilchenphysik
Eberhard Karls Universität Tübingen
Bad Honnef 22. April 2014
summed electron energy spectrum of GERDA Phase I

$Q_{\beta\beta}$ of 76Ge: 2039 keV

resolution: $\pm 1\sigma$ (~4 keV)

no count!

with PSD

outline:

- introduction
- GERDA experiment
- GERDA results
- future Phase II
search for properties of ν!

absolute mass scale, hierarchy

most interesting: is ν of Majorana type?
$\nu \equiv \bar{\nu}$

lepton number violation
extension to Standard Model
baryon asymmetry

$2\nu2\beta$: $T_{1/2} \sim 10^{(18-21)}$ yr

$0\nu\beta\beta$ decay

$0\nu2\beta$: $T_{1/2} > 10^{25}$ yr
Notes from the Editors: Highlights of the Year 2013 (by APS)

Physics looks back at the standout stories of 2013.

- Dark Matter is Still Obscure
- Strangers from Beyond our Solar System
- Light Stopped for One Minute
- Four-Quark Matter
- What’s Inside a Black hole?

Majorana Fermions Annihilate in Nanowires

nanowires are Quasi-Particles

v are elementary particles
sensitivity $S_{1/2}$ for $0
\beta\beta$

$$T_{1/2} = \ln 2 \cdot (N_A/A) \cdot M \cdot (N_{\beta\beta}/t)^{-1}$$

$N_{\text{obs}} \sim M \cdot t$

$N_{\text{BG}} \sim M \cdot t \cdot \delta E \cdot b$

sensitivity $\sim N_{\text{obs}} / \sqrt{N_{\text{BG}}}$

$$S_{1/2} \propto a \cdot \epsilon \cdot \sqrt{M \cdot t \cdot \delta E \cdot b}$$

relevant units for background index:

- $\text{cts/(mol yr } \delta E)$
- cts/(kg yr keV)

a : isotop. enrichment
ϵ : efficiency
M : mass
t : time of measurement
δE : energy resolution
b : background rate
resolution

\(^{48}\text{Ca} \)

\(^{48}\text{Ca}, 2\nu2\beta \)

\(T_{1/2} = 4 \times 10^{19} \text{ yr} \)

\(0\nu, T_{1/2} = 10^{26} \text{ yr} \)

FWHM = 2.5%

\(\Rightarrow \text{Ge: 0,2\%} \)

ratio 2\nu/0\nu !!!

FWHM = 2,5 %

\(T_{1/2} = 10^{26} \text{ yr} \)

FWHM = 2,0 %

\(T_{1/2} = 10^{27} \text{ yr} \)

\(\Rightarrow \text{Ge: 0,2\%} \)
228Th spectrum

228Th

208Tl: 2615 keV

appears in natural decay chains

big source of background

76Ge: $Q_{\beta\beta} = 2039$ keV
candidates

\[228^{\text{Th}}\]
$^{76}\text{Ge experiments}$

previous experiments: HDM (5 det) and IGEX (3 det)

Klapdor-Kleingrothaus et al.

71.7 kg·yr
$T_{1/2} > 1.9 \cdot 10^{25}$ yr (90%CL)

Aalseth et al.

8.9 kg·yr
$T_{1/2} > 1.6 \cdot 10^{25}$ yr (90%CL)

MPLA21 (2006)

116.75 mole.years - 8.87 kg.y in ^{76}Ge

$T_{1/2}(0\nu) > 1.57 \times 10^{25}$ yr (90% CL)
$m_\nu < (0.3-1.1)$ eV

2038.5 keV
GERDA – the novel idea

“...low Z material around detector...”
“...mount the Ge diodes directly in cryo-liquid”

reduced radioactivity of environment
less muon-induced background

Ge diodes – enriched to 86%
selected material for holder and FE
liquid argon
stainless steel cryostat
water to moderate neutrons and
as muon veto (Cherenkov)
underground LNGS 3400 m w.e.

analysis: anti-coincidence, PSD

Phase I: aim at FWHM < 5 keV & BI ~ 10^{-2} cts/(keV·kg·yr)

→ HdM, Majorana: closed compact shielding
GERDA: design and construction
construction @ LNGS

February 2008

March 2008
construction @ LNGS

March 2008
construction @ LNGS

May 2008
rate of 66 Cherenkov PMT

Apr 22, 2014, WEH

P. Grabmayr
rate of 66 Cherenkov PMT

CNGS beam

μ [1/(s m^2)], #_con [1/d], μ [1/(s m^2)]
CNGS neutrino beam
comparison to effective temperature
Multiplicity of 66 Cherenkov PMT

muon rejection efficiency $\varepsilon > 97\%$
mounting the diodes

test in LARGE

note distance between diode and preamplifier
2 enriched detectors had problems from the very beginning, removed from physics analysis

6 enriched detectors with 14.6 kg total mass
3 natural detectors with 7.6 kg total mass

inserted of 1 & 3 string arm:
total of 8 enriched + 3 natural diodes in October 2011
add 5 BEGe detectors

3 data sets:
golden
silver
BEGe
summed electron energy spectra

- $^{39}\text{Ar} \beta^-$
- $2\nu\beta\beta$
- ^{210}Po
- ^{226}Ra
- ^{222}Rn
- ^{218}Po

Enriched coaxials, 19.20 kg × yr

Enriched BEGes, 2.40 kg × yr
analysis: blinding & publications

blinding of data within \(Q_{\beta\beta} \pm 20 \text{ keV} \)

[raw data copied to backup; but not converted to analysis standard MGDO]

EPJC 73 (2013) 2330 the GERDA experiment (setup)
EPJC 74 (2014) 2764 the background & models
EPJC 73 (2013) 2583 PSD: pulse shape for coax & BEGe

unblinding after fixing the parameters/procedures (@ Dubna meeting June 2013)
spectra with/without PSD uncovered @ Dubna

PRL 111 (2013) 122503 limit for \(T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr} \) (90% C.L. frequentist)
(n,γ) in the $Q_{\beta\beta}$ region

G. Meierhofer et al. EPJA48 (2012) 20

$\sim 10^{-5}$ cts/(keV kg yr)
calibration & data processing

processing: diode → amplifier → FADC → filter → energy, rise time, PSD

selection: anti-coincidence muon / 2nd Ge (~20% rejected, @ $Q_{\beta\beta}$), quality cuts (~9% reject), pulse shape discrimination (~50% reject)

calibration: 228Th (bi)weekly & pulser every 20 seconds for short term drifts

Shifts are small compared to FWHM $\sim 0.2\%$ $Q_{\beta\beta}$
backgrounds α & γ

<table>
<thead>
<tr>
<th>isotope</th>
<th>energy [keV]</th>
<th>enrGe (6.10 kg yr)</th>
<th>H_0M (71.7 kg yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>tot/bck [cts]</td>
<td>$\text{rate [cts/(kg yr)]}$</td>
</tr>
<tr>
<td>40K</td>
<td>1460.8</td>
<td>125/42</td>
<td>$13.5^{+2.2}_{-2.1}$</td>
</tr>
<tr>
<td>60Co</td>
<td>1173.2</td>
<td>182/152</td>
<td>$4.8^{+2.3}_{-2.8}$</td>
</tr>
<tr>
<td></td>
<td>1332.3</td>
<td>93/101</td>
<td><3.1</td>
</tr>
<tr>
<td>137Cs</td>
<td>661.6</td>
<td>335/348</td>
<td><5.9</td>
</tr>
<tr>
<td>228Ac</td>
<td>910.8</td>
<td>294/303</td>
<td><5.8</td>
</tr>
<tr>
<td></td>
<td>968.9</td>
<td>247/230</td>
<td>$2.7^{+2.3}_{-1.9}$</td>
</tr>
<tr>
<td>208Tl</td>
<td>583.2</td>
<td>333/327</td>
<td><7.6</td>
</tr>
<tr>
<td></td>
<td>2614.5</td>
<td>10/0</td>
<td>$1.5^{+0.6}_{-0.5}$</td>
</tr>
<tr>
<td>214Pb</td>
<td>352</td>
<td>1770/1688</td>
<td>$12.5^{+3.5}_{-7.7}$</td>
</tr>
<tr>
<td></td>
<td>351/311</td>
<td>6.8$^{+3.7}_{-4.1}$</td>
<td>105 ± 1</td>
</tr>
<tr>
<td>214Rn</td>
<td>609</td>
<td>194/186</td>
<td><6.1</td>
</tr>
<tr>
<td></td>
<td>24/1</td>
<td>3.6$^{+0.9}_{-0.8}$</td>
<td>30.7 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>6/3</td>
<td>0.4$^{+0.4}_{-0.4}$</td>
<td>8.1 ± 0.5</td>
</tr>
</tbody>
</table>

GOLD-coax

- Data
- Model
- 210Po on surface
- 224Ra & daughters on surface
- 224Ra & daughters in LAr

Counts [50 keV]

- Data/model
- 68%
- 95%
- 99.9%

Counts per energy (keV)

- 210Po

P. Grabmayr
Physikalisches Institut, Kepler Center for Astro and Particle Physics

<table>
<thead>
<tr>
<th>energy (keV)</th>
<th>events/(30 keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

5.04 kg yr exposure

\[
T_{1/2}^{2v} = 1.84 (^{+0.14/_.10} \cdot 10^{21} \text{ yr})
\]

HdM

![Graph showing experimental energy spectrum and model fit with data/model ratio](graph.png)

![Graph showing 5.04 kg yr exposure](graph.png)

publication year

- Barabash
- NNDC
- this work
background model @ \(Q_{\beta\beta} \)

“minimal fit” (all known contributions)

No line expected in blinding region

background flat between 1930-2190 keV
(without 2104±5 keV, without 2119±5 keV),

expect \(< 1\) event in other weak \(^{214}\)Bi lines (e.g. 2017, 2053 keV)

partial unblinding (grey window) after fixing of calibration & bkg model, no line in grey interval, expected 8.6-10.3 evts in grey part & see 13 events
pulse shape discrimination (PSD)

pulse shape discrimination to select $0\nu\beta\beta$ events

$0\nu\beta\beta$ events: range of 1 MeV electrons in Ge is \sim1 mm
 \rightarrow single drift of electrons & holes, single site event (SSE)

background from γ's: range of MeV γ in Ge $>10x$ larger
 \rightarrow often sum of several electron/hole drifts,
 multi site events (MSE)

surface events: only electrons or holes drift

charge and current signal for BEGe detectors (data events)

\[
\text{current signal} = q \cdot v \cdot \nabla \Phi
\]

(Shockley-Ramo theorem)
PSD for BEGe

use double escape peak (DEP) of 228Th spectrum as proxy (two 511 γ escape detector!) for $0\nu\beta\beta$

aim: develop the PSD method with 228Th calibration data and then apply it to physics data

Method: $A/E = \max$ of current pulse “A” / energy “E” is robust & simple & well understood
accept events $0.965 < A/E < 1.07$ (normalization A/E for DEP events = 1)

$0\nu\beta\beta$ efficiency = 92±2 % determined from DEP efficiency & simulation
$2\nu\beta\beta$ efficiency = 91±5 % in good agreement to DEP efficiency
reject >80% of background events
PSD for semi-coaxial: neural network (ANN)

Input: time when charge signal reaches 1%, 3%, …, 99% of maximum

tested many methods implemented in TMVA, selected artificial neural network TMlpANN

select ANN cut position @ DEP survival = 90%

cross checks:
$2\nu\beta\beta$ eff. = 85±2 %,
Compton edge eff. = 85-94%,
56Co DEP (1576 keV) eff. = 83%-95%
56Co DEP (2231 keV) eff. = 83%-93%

$0\nu\beta\beta$ efficiency = $0.90^{+0.05}_{-0.09}$
PSD for semi-coaxial

cross check ANN classification with 2 other methods:
1) projective likelihood trained with Compton edge evt
2) “current pulse asymmetry * A/E”

90% of ANN rejected events also rejected by both,
3% only rejected by ANN
→ classification of background like events meaningful
findings

total exposure of 21.6 kg yr between Nov. 2011 and May 2013
3 data sets: golden, silver, BEGe

weekly calibration runs with 228Th source
mean resolution at 2 MeV: coax 4.8 keV, BEGe 3.2 keV FWHM (50 cm diode-CC2)
energy scale stable within ±1.3 keV

the strongest gamma line is 1525 keV from 42K
dominated by 214Bi and 228Th

nearby sources (det. holders etc.) and surface contaminations
far sources do not matter

background flat between 1930-2190 keV

PSD gains another factor 2 in BI

$(11 \pm 2) \times 10^{-3}$ cts/(kg yr keV)

$(6 \pm 1) \times 10^{-3}$ cts/(mol yr dE)
calibration & stability
data sets defined
background model
PSD parameters fixed
analysis methods defined

whole collaboration during 4 days
unblinding of final ±5 keV

<table>
<thead>
<tr>
<th></th>
<th>golden</th>
<th>silver</th>
<th>BEGe</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>expt. w/o PSD</td>
<td>3.3</td>
<td>0.8</td>
<td>1.0</td>
<td>5.1</td>
</tr>
<tr>
<td>obs. w/o PSD</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>expt. w/ PSD</td>
<td>2.0</td>
<td>0.4</td>
<td>0.1</td>
<td>2.5</td>
</tr>
<tr>
<td>obs w/ PSD</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

no peak in spectrum at $Q_{\beta\beta}$,

event count consistent with bkg,

→ GERDA sets a limit
half life limit for ^{76}Ge $0\nu\beta\beta$

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{\text{enr}} \cdot N_{0\nu}^{A}} M \cdot t \cdot f_{76} \cdot f_{\text{av}} \cdot \epsilon_{\text{fep}} \cdot \epsilon_{\text{psd}}$$

exposure averaged efficiencies

<table>
<thead>
<tr>
<th>data set</th>
<th>$M \cdot t$</th>
<th>f_{76}</th>
<th>f_{av}</th>
<th>ϵ_{fep}</th>
<th>ϵ_{psd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>golden</td>
<td>17.9 kg yr</td>
<td>0.86</td>
<td>0.87</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td>silver</td>
<td>1.3 kg yr</td>
<td>0.86</td>
<td>0.87</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td>BEGe</td>
<td>2.4 kg yr</td>
<td>0.88</td>
<td>0.92</td>
<td>0.90</td>
<td>0.92</td>
</tr>
</tbody>
</table>

4 parameters: 3x bkg level & $1/T^{0\nu}

$1/T^{0\nu} \geq 0$ constrain (best fit $1/T=0$)

fix gaussian $\mu=(2039.06\pm0.2)$ keV, $\sigma=(2.0\pm0.1)/(1.4\pm0.1)$ keV for coax/BEGe

systematic uncertainties on f, ϵ, μ, σ: Monte Carlo sampling & averaging

frequentist: profile likelihood fit → best fit $N_{0\nu}=0$, $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25}$ yr (90% C.L.) (sensitivity = $2.4 \cdot 10^{25}$ yr)
GERDA Phase I

Claim 2004

\[\mathcal{E} = 71.7 \text{ kg yr} \]

Test of hypothesis

\[p = 0.01 \]

Claim 2004: excluded with 99%

\[p(N^0 = 0 \mid H_1 = \text{signal} + \text{bkg}) = 0.01 \]

GERDA Phase I

\[B_1 = 1.1 \times 10^{-2} \text{ cts/(kg yr keV)} \]

\[\mathcal{E} = 21.6 \text{ kg yr} \]

\[S \sim 0.006 \text{ cts/(mol yr } \delta\mathcal{E}) \]
comparison

include HdM & IGEX
model free: no NME needed
compare to Xe:
NME needed, which ?

\[
\frac{136}{76} \text{Xe/Ge} \sim 0.4
\]

⇒ weakest exclusion

gives total Bayes factor \(H_1/H_0 = 0.0022 \)
→ claim of \(^{76}\text{Ge} \) signal is strongly disfavored

\[0.2 < m_{\beta\beta} < 0.4 \text{ eV}\]
Sensitivity for $0\nu\beta\beta$ Decay

The sensitivity for $0\nu\beta\beta$ decay can be described by the equation:

\[S_{1/2} \propto a \epsilon \times \sqrt{\frac{M \cdot t}{\delta E \cdot b}} \]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>E (kg yr)</th>
<th>δE (%)</th>
<th>B (10$^{-3}$ cts/(kg yr keV))</th>
<th>$T_{1/2}$ > 10^{25} yr (90% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KamLAND-Zen I</td>
<td>27.5</td>
<td>4.2%</td>
<td></td>
<td>> 0.5</td>
</tr>
<tr>
<td>KamLAND-Zen II</td>
<td>89.5</td>
<td>4.2%</td>
<td>41</td>
<td>0.19 > 1.9</td>
</tr>
<tr>
<td>EXO-200 1</td>
<td>32.5</td>
<td>1.67%</td>
<td>1.5 ± 0.1</td>
<td>0.044 > 1.6</td>
</tr>
<tr>
<td>EXO-200 2</td>
<td>99.8</td>
<td>1.53%</td>
<td>1.7 ± 0.2</td>
<td>0.053 > 1.1</td>
</tr>
<tr>
<td>GERDA Phase I</td>
<td>21.6</td>
<td>0.2%</td>
<td>11 ± 2</td>
<td>0.006 > 2.1</td>
</tr>
</tbody>
</table>
Phase II

1) additional 30 BEGe Detectors:
 + 20 kg, better PSD

2) new FE- electronics

3) liquid-Argon-Instrumentation

 surface contaminations & Compton scattering
 produce scintillationslight (128nm) in LAr

 readout with
 a) WLS-fiber and SiPM
 b) 3” PMT

goal: BI\sim 10^{-3} \text{ cts/(keV-kg-yr)}

E \sim 100 \text{ kg yr} \Rightarrow T_{1/2} \sim 10^{26} \text{ yr}

poster Anne Wegmann/Tobias Bode
Further Studies: $\gamma-\gamma$ Coincidences

a) Background identification

b) $2\nu\beta\beta$ & $0\nu\beta\beta$ to excited states

Sum energy of two Ge-diodes

Energy of one diode (without 1525)

1525 keV
new experiments on $0\nu\beta\beta$
Kamland-Zen, EXO, GERDA, Majorana
^{136}Xe, ^{76}Ge

GERDA for ^{76}Ge
new $T_{1/2}^{2\nu} = 1.84 (^{+14/-10}) \cdot 10^{21} \text{ yr}$

new limit
$T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr (90\% C.L. frequentist)}$

data taking Phase I stopped, data analyzed & published
GERDA Phase II with add. 20 kg BEGe and LAr instrumentation
in 2014 we still do not know

........ if he is right