

Upgrade of the GERDA Experiment

K.T.Knöpfle for the GERDA collaboration MPI Kernphysik, Heidelberg ktkno@mpi-hd.mpg.de

TIPP'14, June 2 - 6, 2014 / Amsterdam, The Netherlands

GERDA : The GERmanium Detector Array

http://www.mpi-hd.mpg.de/gerda

searches for neutrinoless double beta decay of Ge-76 at the INFN deep-underground Laboratori Nazionali del Gran Sasso

Upgrade to Phase II

Introduction

Upgrade measures

lock

detector mass & design

detector module design

LAr instrumentation for active veto

Status

Conclusion

GERDA

collaboration

2vßß

conventional 2nd order process - observed in various nuclei

⁷⁶Ge : $T_{1/2} = 1.8 \cdot 10^{21} \text{ yr}$

⊽ = v Ovßß $(\mathsf{A},\,\mathsf{Z})\to(\mathsf{A},\,\mathsf{Z}\text{+}2)\,+\,2\text{e}^\text{-}$

hypothetical process T_{1/2} > 10²⁵ yr

- lepton number violation
- v is Majorana fermion (i.e. its own anti-particle)
- access to v mass scale (if light v exchange)
- physics beyond SM

intro

2vßß

conventional 2nd order process - observed in various nuclei

⊽ = v Ovßß $(\mathsf{A},\,\mathsf{Z})\to(\mathsf{A},\,\mathsf{Z}\text{+}2)+2\text{e}^\text{-}$

hypothetical process T_{1/2} > 10²⁵ yr

- lepton number violation
- v is Majorana fermion (i.e. its own anti-particle)
- access to v mass scale (if light v exchange)
- physics beyond SM

Frequentist: best fit $N^{0v} = 0$; $T_{1/2}^{0v} > 2.1 \cdot 10^{25}$ yr (90% C.L.) - sensitivity. : 2.4 \cdot 10^{25} yr PRL 111 (2013) 122503

The quest for $0v\beta\beta$ decay is open again!

*claim: Klapdor-Kleingrothaus, PL B586 (2004) 198

Exposure [kg-years]

Upgrade strategy:

Stay as long as possible in background-free regime. Increase mass / exposure and reduce BI and resolution.

new lock

in cleanroom on top of cryostat: replaces Phase I twin lock system

• larger: Ø 0.49 m, h = 2.8 m

upgrade lock within glove box for handling of detectors in dry nitrogen atmosphere

new lock

in cleanroom on top of cryostat: replaces Phase I twin lock

- larger Ø 0.49 m, h = 2.8 m
- space for 7 string array

cryogenic preamps

new lock

in cleanroom on top of cryostat: replaces Phase I twin lock

- larger Ø 0.49 m, h = 2.8 m
- space for 7 string array &
 surrounding LAr instrumentation for active veto

Ge detector array and LAr veto simultaneously deployed in cryostat.

lock within glove box for handling of detectors in dry nitrogen atmosphere

wanted: discrimination of single (ββ signal) / multi site (background) events

* SSE: 1 MeV electron has 'range' of ~1 mm

wanted: discrimination of single (\u03b3\u03b3 signal) / multi site (background) events

Which detector design?

Phase I:

Refurbished semi-coaxial detectors from HdM & IGEX experiments

n+ conductive Li layer, separated by a groove from the boron implanted p+ contact

Phase II detector type, already tested in Phase I: BEGe – broad energy Ge detector

Phase I:

Refurbished semi-coaxial detectors from HdM & IGEX experiments

n+ conductive Li layer, separated by a groove from the boron implanted p+ contact

Phase II detector type, already tested in Phase I: BEGe – broad energy Ge detector ,point-contact' detector* with superior pulse shape discrimination (PSD) power and energy resolution *Luke etal, IEEE TNS 36 (1989) 926

pulse shape discrimination

BEGe

A / E cut is robust, simple and well understood.

pulse shape discrimination

BEGe

A/E ≡ 1

A/E < 1

SSE accepted for 0.965 < A/E < 1.07: $0\nu\beta\beta$ efficiency = 92 ± 2 % $2\nu\beta\beta$ efficiency = 91 ± 5 % 80% of background events rejected

EPJ C73 (2013) 2583

18-fold segmented true coaxial n-type Ge detector studied in great detail worked as expected Abt et al NIM A583 (2007) 332

abandoned for Phase II since

- difficult, expensive technology
- many contacts, many preamps
- lack of supplier for enriched Xtals
- ...
- attractive alternative found

From raw germanium material to diode production

[3] Canberra Oak Ridge

[4] Canberra Olen [2] PPM [5] HADES

[1] Germanium enrichment, ECP, Zelenogorsk, Russia 53.3 kg enrGeO₂, 88% Ge76 [2] Metal reduction and purification, PPM, Langelsheim, Germany 35.5 kg enrGe, 6N [3] Xtal pulling/Zone refinement, Canberra, Oak Ridge, USA 9 Xtals \rightarrow 30 slices [4] Diode production, Canberra, Olen, Belgium 30 enrGe diodes (20kg) [5] Diode storage and characterization, HADES, Mol, Belgium

From raw germanium material to diode production

Phase I

Phase II

string assembled with individual detector modules

detector module

Phase II

copper81.4 g / 2.3 kg25.8 g / 1.3 kg detector massPTFE11.3 g2.1 gbronze-1.0 gsilicon0.3 g40.3 g► Significant amount of copper & PTFE replaced by intrinsically radio-pure silicon!

front end electronics

very front end electronics in Phase II close to detector - distance >30cm in Phase I

signal cable to wire bonds cryogenic pre-25 µm Al amp >50 cm **HV** cable away VFET l Ar JFET out Cdet test

Options for custom-made feed back resistor (commercial chips: not radio-pure enough, or too large parasitic elements vs conductive substrate):

- amorphous Ge
- TiN

W all on quartz substrate
 → stability problems to be solved

front end electronics

CC3: 4 Channel Charge Sensitive Preamplifier

- upgrade of CC2 preamplifiers of GERDA Phase I
- based on commercially available opamps
- low-noise, cryogenic and radio-pure electronics 0.7 keV FWHM pulser resolution
 2.6 keV FWHM at 2.6 MeV with BEGe detector
 20 MHz bandwidth allows PSD (A/E)
 suitable for operation in liquid Argon (50 mW/channel)
 ≈ 50 µBq / channel (including pins) expected
 additional line driver available

0.5-1 m (4x) flex cables to VFE and detectors

prototype version (FR4 laminate)

10 m long coaxial cables to the feedthru flange

wanted: discrimination of single (\u03b3\u03b3 signal) / multi site (background) events

top plate with 9 PMTs

Cu shroud 1, h~ 60 cm

flange

hybrid LAr veto system

PMTs and SIPMs & fibers are deployed together with detector array through Phase II lock w/o LAr drainage

Ø49 cm central window, h~100 cm, covered by dense curtain of 1x1 mm² scintillating fibers on radius of 23.25 cm; readout by KETEK SIPMs 3x3 arrays

flange

Cu shroud 2 Ø49 cm, h~60cm, t=0.1mm coated with tetratex & WLS (TPB)

bottom plate with 7 PMTs

top PMT support plate

copper shroud lined with WLS

coated Tetratex being stitched with 100 µm nylon wire

Ø 49 cm - h = 60 cm t = 100 μ m copper foil t = 2 mm cooper flanges, laser welded

LAr veto

fiber curtain

LAr veto

performance

MC: XUV & optical photons tracked XUV attenuation 60 cm reflectivity measured

background suppression factors :

3 – 10 for Bi-214 depending on location 60-300 for TI-208 if close to detector

LAr veto

transparent mini-shroud

Phase I: Cu mini-shrouds

- shielding E-Field of detectors
- shielding against convection
- essential for reaching BI = 0.01

► prevent K-42 ions ($E_{\beta} \le 3.5 \text{ MeV}$), progenies of Ar-42, to reach detectors

Phase II:

Transparent or optically active minishroud needed to detect scintillation light emitted close to detectors

transparent mini-shroud

various options tested

copper mesh on HV

SiPM in non-transparent shroud

nylon shroud coated with TPB/PS

transparent mini-shroud

suppression of K-42 events

nylon mini-shroud coated with TPB/PS

measurement in LArGe test stand spiked with Ar-42 - statistics corresponding to \sim 17 kg yr in natural argon.

GERDA Phase I concluded in September 2013

Water tank drained (and refilled) Inspection of cryostat and water tank by certified body

▶ no indication of corrosion after 3 years of operation

system safety of pressure equipment certified Replacement of 2 of 3 broken PMTs of Cherenkov system Rescue of calibration source from bottom of filled cryostat (dropped by accident during Phase I)

June 2014

All BEGe detectors for Phase II stored at LNGS Glove box modified for new lock Phase II lock installed

Next steps

Measurement of (i) Rn emanation in lock (ii) Ar triplet lifetime
in gas and LAr (iii) attenuation length of scintillation light in GERDA
ready for start of commissioning, deployment of first Phase II string

Phase II goal: sensitivity $T_{1/2}^{0v}$ (Ge-76) ~ 1.4 · 10²⁶ yr at 100 kg·yr

- BI to be reduced by another order of magnitude to 0.001 cts/ (keV kg yr) more BEGe detectors with better PSD (& resolution) instrumentation of LAr to veto specific backgrounds less & cleaner material in detector holders, cables, ...
- get exposure of ~100 kg·yr within 3 years double detector mass (15 kg semi-coaxial + 20 kg BEGe)
- Phase II commissioning to start by the summer of this year

	Phase	
	1 I.	II
a: enrichment	0.86	0.88
ε : efficiency	0.72	
M: source mass / kg	15	~35
M·t : exposure / (kg yr)	21.6	100
BI: background index	0.01	0.001
ΔE : e. resolution / keV	4.5	<3

End / Backup

Phase I

measured spectra

GERDA

background model

source	location	1	GOLD-coax		GOLD-nat
		units	minimum	maximum	minimum
40K c)	det. assembly	µBq/det.	152[136,174]	151[136,174]	218[188,259]
42K c)	LAr	µBq/kg	106[103,111]	91[72,99]	98.3[92,108]
42K c)	p ⁺ surface	μBq		11.6[3.1,18,3]	
42K c)	n ⁺ surface	μBq		4.1[1,2,8.5]	
60 Co c)	det. assembly	µBq/det.	4.9[3.1,7.3]	3.2[1.6, 5.6]	2.6[0,6.0]
⁶⁰ Co ^c)	germanium	μBq	>0.4 †)	$>0.2^{\dagger})$	6[3.0,8.4]
214Bi c)	det. assembly	µBq/det.	35[31,39]	15[3.7, 21.1]	34.1[27.3,42.1]
²¹⁴ Bi ^c)	LAr close to p ⁺	µBq/kg		<299.5	
²¹⁴ Bi ^m)	radon shroud	mBq		<49.9	
²¹⁴ Bi ^c)	p ⁺ surface	μBq	$2.9[2.3,3.9]^{\dagger})$	$3.0[2.1,4.0]^{\dagger})$	$1.6[1.2,2.1]^{\dagger})$
²²⁸ Th ^c)	det. assembly	µBq/det.	15.1[12.7,18.3]	5.5[1.8, 8.8]	15.7[10.0,25.0]
²²⁸ Ac ^c)	det. assembly	µBq/det.	17.8[10.0,26.8]	<15.7	25.9[16.7,36.7]
²²⁸ Th ^m)	radon shroud	mBq		<10.1	
²²⁸ Ac m)	radon shroud	mBq		91.5[27,97]	
228 Th $f)$	heat exchanger	Bq		<4.1	

arXiv:81306.5084v1 (21 Jun 2013) EPJC 74 (2014) 2764

Phase I

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{enr} \cdot N^{0\nu}} \cdot \mathcal{E} \cdot \epsilon$$
$$\epsilon = f_{76} \cdot f_{av} \cdot \varepsilon_{fep} \cdot \varepsilon_{psd}$$

Data set	Exposure (kg yr)		
Golden-coax	17.9		
Silver-coax	1.3		
BEGe	2.4		

- N_A: Avogadro number
- E: exposure
- ε: exposure averaged efficiency
- m_{enr}: molar mass of enriched Ge
- N^{0v}: signal counts / limit
- f₇₆: enrichment fraction
- f_{av}: fraction of active detector volume
- $\boldsymbol{\epsilon}_{fep}:$ full energy peak efficieny for $0\nu\beta\beta$
- ϵ_{psd} : signal acceptance

	<f<sub>76></f<sub>	<f<sub>av></f<sub>	<ε _{fep} >	<ɛ _{psd} >	<3>
Coax	0.86	0.87	0.92	0.90 +0.05/ -0.09	0.619 +0.044/-0.070
BEGe	0.88	0.92	0.90	0.92 ±0.02	0.663 ±0.022