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Abstract

The GERmanium Detector Array (GERDA) experiment, located underground at the
INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, uses high-purity germa-
nium detectors to search for neutrinoless double beta decay (0νββ) of 76Ge. The first
phase of the experiment lasted from November 2011 to May 2013 and collected data
with a total exposure of 21.6 kg · yr. In this thesis, a thorough analysis of these data
was performed.
A background model was developed to decompose the observed energy spectrum in its
individual contributions. The region around the Q-value of 0νββ , Qββ , at 2039 keV
was studied in great detail. As main contributions to the background in this region,
alpha and beta decays of the 238U chain, beta decays of the 232Th chain, and beta
decays of 42K were identified. It was shown that the background around Qββ can be
approximated with a flat distribution.
Neutrino accompanied double beta decay (2νββ) is a lepton number conserving pro-
cess allowed by the Standard Model. Due to the low background in the experiment, in
the region dominated by 2νββ a signal-to-background ratio of 3 : 1 could be reached.
This allowed to measure the half-life of the decay with a precision unprecedented by
previous experiments, T 2ν

1/2 = (1.96± 0.13) · 1021 yr.
Several beyond-Standard Model theories predict neutrinoless double beta decay with
majoron emission (0νββχ(χ)). Depending on the theory, this process can be lepton
number violating or lepton number conserving. A search in the GERDA Phase I data
gave no indication of contributions to the observed energy spectra for any of the ma-
joron models. The lower limit on the half-life for the ordinary majoron model (spectral
index n = 1) was determined to be T

0νχ
1/2 > 4.15 · 1023 yr (90 % quantile). This limit

and the limits derived for the other majoron modes constitute the most stringent limits
on 0νββχ(χ) of 76Ge measured to date.
The primary scope of the GERDA experiment was the search for 0νββ of 76Ge. This
lepton number violating decay is expected by extensions of the Standard Model. The
observation of 0νββ would be the proof that the neutrino has a non-vanishing Ma-
jorona mass component. The analysis of the GERDA Phase I data did not reveal any
hint for the presence of a signal from 0νββ . A lower limit on the half-life was derived,
T 0ν

1/2 > 1.83 · 1025 yr (90 % quantile).



Sommario

L’esperimento GERmanium Detector Array (GERDA), situato nei Laboratori Nazionali
del Gran Sasso (LNGS) dell’INFN, utilizza rivelatori al germanio ultra-puro per la
ricerca del doppio decadimento beta senza neutrini (0νββ). Tali rivelatori sono arric-
chiti nell’isotopo 76Ge. La prima fase dell’esperimento è durata da novembre 2011 a
maggio 2013 ed ha raccolto dati con un’esposizione totale di 21.6 kg · yr.
In questa tesi è stato sviluppato dapprima un modello dei fondi per scomporre lo
spettro energetico osservato nei suoi singoli componenti. La regione intorno al Q-
valore della reazione 0νββ , Qββ , a 2039 keV è stata studiata in modo dettagliato. I
contributi principali al fondo in questa regione sono: i decadimenti alfa e beta della
catena del 238U, i decadimenti beta della catena del 232Th ed i decadimenti beta del
42K. È stato dimostrato inoltre che il fondo intorno a Qββ può essere descritto con una
costante.
Il doppio decadimento beta con emissione di due neutrini (2νββ) è un processo
che conserva il numero leptonico ed è previsto dal Modello Standard. Nella re-
gione dominata dagli eventi 2νββ è stato raggiunto un rapporto fra segnale e
fondo di 3 : 1. Questo risultato ha permesso di misurare il tempo di dimezza-
mento del decadimento con una precisione ineguagliata dagli esperimenti precedenti,
T 2ν

1/2 = (1.96± 0.13) · 1021 yr.
Alcuni modelli di fisica oltre il Modello Standard prevedono il doppio decadimento
beta senza neutrini con emissione di uno o due majoroni (0νββχ(χ)). In base alla
teoria, questo processo può violare o conservare il numero leptonico. Un’analisi dei
dati della prima fase di GERDA non ha fornito alcun riscontro di contributi di uno di
questi modelli agli spettri energetici osservati. Il limite inferiore sul tempo di dimez-
zamento per il modello ordinario del majorone (indice spettrale n= 1) è stato stimato
pari a T

0νχ
1/2 > 4.15 · 1023 yr (quantile del 90 %). Questo valore e quelli ricavati per

altri modelli del majorone costituiscono i limiti più stringenti su 0νββχ(χ) nel 76Ge
misurati fino ad ora.
Lo scopo primario dell’esperimento GERDA è la ricerca del 0νββ nel 76Ge. Questo pro-
cesso, che viola il numero leptonico, è previsto dalle estensioni del Modello Standard
e la sua osservazione dimostrerebbe che la massa del neutrino ha una componente
di tipo Majorana. L’analisi dei dati della prima fase di GERDA non ha rivelato nes-
sun cenno della presenza di un segnale di 0νββ . È stato così determinato un limite
inferiore sul tempo di dimezzamento, T 0ν

1/2 > 1.83 · 1025 yr (quantile del 90 %).
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Chapter 1

Introduction

More than 50 years have passed since the discovery of the neutrino. Oscillation
measurements have established that the neutrinos are massive particles and the two
squared mass differences have been measured, one in absolute value, one also in sign.
However, many of the neutrino’s characteristics are still a mystery today: Is the neu-
trino a Majorana particle, that is its own antiparticle? Is the neutrino mass hierarchy
normal or inverted? What is the absolute neutrino mass scale? Is CP violated in the
lepton sector?

The only practical way to experimentally test the nature of the neutrino is the
search for neutrinoless double beta decay (0νββ). The observation of this process
would be the proof that the neutrino has at least a Majorana component with a non-
zero mass [1]. Neutrino accompanied double beta decay (2νββ) has been observed
for several nuclei that cannot decay via single beta decay [2]. In this Standard-Model
allowed decay, the nucleus undergoes double beta decay under emission of two elec-
trons and two anti-neutrinos. If neutrinos are Majorana particles, the anti-neutrino
emitted in one beta decay can be absorbed in the other, leading to 0νββ . This process
is not allowed by the Standard Model and the lepton number is violated by two units.
Assuming the exchange of a light neutrino to be the dominant mechanism of the pro-
cess allows to extract also information on the absolute mass scale. Several theories
exist that predict neutrinoless double beta decay with majoron emission (0νββχ(χ)).
In this case, the decay is accompanied by the emission of one or two massless or very
light bosons, the majorons. Depending on the theory, the process can conserve or vio-
late lepton number. Details about the theory of neutrinos and double beta decay can
be found in Chapters 2 and 3.

The first search for double beta decay dates back to 1948 [3]. Since then, a multi-
tude of experiments using different isotopes and techniques has been conducted. An
overview about the most recent results is given in Chapter 4. The most stringent lower
limits on the half-life of 0νββ derive from searches with 76Ge and 136Xe [4–8]. They
are of the order of 1025 yr. In all cases, the main limitation of the sensitivity is the
background from natural radioactivity. A claim of observation of 0νββ [9] of 76Ge
has not been confirmed.

Germanium detectors are an attractive option for the search of 0νββ . Since 76Ge
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is an isotope that undergoes double beta decay, the detector is also the source. Germa-
nium can be produced very radio-pure, guaranteeing a small intrinsic background and
the typical energy resolution is of the order of (0.1− 0.2)%. The main characteristics
of germanium detectors are summarized in Chapter 5.

The GERmanium Detector Array (GERDA) [10, 11] is an experiment designed for
the search of 0νββ of 76Ge. It is located underground at the INFN Laboratori Nazionali
del Gran Sasso (LNGS) in Italy. The environmental background component is reduced
by passive shielding and minimization of material close to the detectors. To this scope,
the bare detectors are directly submersed into a cryostat filled with liquid argon. The
experiment is operated in two phases. The first phase lasted from November 2011 to
May 2013 and collected a total of 21.6 kg · yr of data with detectors enriched in 76Ge.
The second phase is planned to start in 2014. Additional 20 kg of enriched detectors
of a novel design featuring enhanced pulse shape analysis techniques and the read-out
of scintillation light in the liquid argon will allow an improvement of the sensitivity by
a factor ten. Details about the GERDA experiment and the Phase I data taking can be
found in Chapters 6 and 7.

In a Monte Carlo campaign, all possible background sources contributing to the
energy spectra of GERDA Phase I were simulated. This is described in Chapter 8.

Using the simulations, a background model describing the observed energy spec-
tra was developed and the background composition around 2039 keV, the Q-value of
double beta decay, was studied in detail. This analysis is presented in Chapter 9.

With the help of the background model, the half-life of 2νββ of 76Ge was mea-
sured. A search for contributions from 0νββχ(χ) in the GERDA Phase I data was
performed for a variety of models predicting the emission of majorons in double beta
decay. Chapter 10 gives all details of these analyses.

Finally, Chapter 11 describes the search for 0νββ in the GERDA Phase I data.



Chapter 2

Neutrinos

2.1 Neutrinos in the Standard Model

The neutrino was postulated by Wolfgang Pauli in 1930 to conserve energy and mo-
mentum in nuclear beta decay [12]. It was assumed to be a chargeless Dirac particle
with a very small or even vanishing mass. The neutrino, ν , and anti-neutrino, ν̄ ,
were considered distinct particles. Following theories, such as Enrico Fermi’s theory
describing beta decay [13, 14], were based on this assumption. Already in 1937,
however, Ettore Majorana suggested a Majorana nature of the neutrino, implying that
the neutrino was its own anti-particle, ν = ν̄ [15]. Due to it only weakly interact-
ing, it was only in 1956 that the (anti-)neutrino was observed directly by Reines and
Cowan [16,17] via the reaction

ν̄e + p → e++ n (2.1)

in a reactor experiment.
In order to study the difference between the neutrinos accompanying e+ and e−,

respectively, Raymond Davis searched for the reaction

ν̄e +
37 Cl → e−+37 Ar (2.2)

with a negative result [18], while reactions analogous to

νe +
37 Cl → e−+37 Ar (2.3)

could be observed. The conclusion from these observations was that ν and ν̄ are
distinct particles and lepton number L was introduced: Lνe

= Le− = +1, Lν̄e
= Le+ =

−1. By requiring lepton number conservation, reaction (2.2) is forbidden. All these
observations pointed at a Dirac nature of the neutrino.

After theoretical suggestions by Tsung Dao Lee and Chen Ning Yang [19], in 1957
parity violation in weak decays was observed [20, 21]. Assuming a massless neutrino
when solving the Dirac equation, this can be explained if either only the left-handed
neutrinos and right-handed anti-neutrinos, (νL, ν̄R), or only the right-handed neutrinos
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and left-handed anti-neutrinos, (νR, ν̄L), participate in the weak interaction [22–24].
The mystery was solved by the Goldhaber experiment in 1958 [25], which established
the V–A structure of weak interaction by showing that only (νL, ν̄R) is realized in na-
ture. This result lead to a new possible interpretation on why reaction (2.2) was not
observed. This could either be due to the fact that the neutrino and the anti-neutrino
are intrinsically different particles or it could simply be explained by the different he-
licities of the neutrino and the anti-neutrino. The experiment conducted by Raymond
Davis could therefore not be used to distinguish between Dirac and Majorana neutri-
nos.
In the Standard Model of Particle Physics (SM), the neutrino and the anti-neutrino are
assumed to be different particles, with lepton number +1 and -1, respectively. Three
lepton families exist: electron (e), muon (µ), and tau (τ). The analysis of the decay-
width of the Z0 boson confirmed the existence of only three types of light, active
neutrinos [26]. Each lepton family contains a left-handed leptonic doublet formed
by a charged lepton and a neutral, massless Dirac-neutrino, (l,νl)L, with l = e,µ,τ.
The doublet is accompanied by a right-handed singlet lR of the charged lepton. Right-
handed neutrinos are not present in the SM. The lepton number is found to be con-
served, i.e. the number of leptons is the same in the initial and final state of an
interaction.

2.2 Neutrino Oscillations

An experiment carried out by Raymond Davis and his team in the Homestake Gold
Mine at Lead, South Dakota, in the late 1960s, aiming at detecting solar neutrinos pre-
dicted by the Standard Solar Model (SSM), observed a clear deficit in the νe flux [27]
compared to the predictions [28]. Already in 1957, Bruno Pontecorvo and in 1962
Ziro Maki, Masami Nakagawa, and Shoichi Sakata had suggested a mechanism of
neutrino oscillations [29–31] that could have explained this mystery known as the so-

lar neutrino problem. In the following years, many experiments like Kamiokande [32],
SAGE [33], and Gallex [34] confirmed this deficit in the measured νe flux from the
sun. Also for the atmospheric neutrinos an anomaly was observed: the measured νµ
flux showed a deficit when compared to theoretical predictions [35, 36], while this
lack was not present in the νe flux. Nevertheless, it was only more than 30 years later
that the Super-Kamiokande [37] and SNO [38] experiments finally established the
existence of neutrino oscillations. The observed deficits could be explained by oscilla-
tions of the neutrino of one flavor, να, α = e,µ,τ, to a different flavor, νβ . In case of
the sun this is νe→ νµ, in case of the atmospheric neutrinos it is νµ→ ντ.

Oscillations between different neutrino flavors are possible if the flavor (or weak
interaction) eigenstates, |να〉, α = e,µ,τ, do not coincide with the mass eigenstates,
|νi〉, i = 1, 2, 3. The flavor eigenstates can then be expressed as coherent superposi-
tions of the mass eigenstates,

|να〉=
∑

i

U∗
αi
|νi〉, (2.4)
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where U is a unitary matrix referred to as the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix. A common parametrization of the PMNS matrix is

U =











1 0 0

0 cosθ23 sinθ23

0 − sinθ23 cosθ23











×











cosθ13 0 sinθ13e−iδ

0 1 0

− sinθ13eiδ 0 cosθ13











×











cosθ12 sinθ12 0

− sinθ12 cosθ12 0

0 0 1











×











eiα1/2 0 0

0 eiα2/2 0

0 0 1











,

(2.5)

where θi j are the three mixing angles, δ is known as the CP-violating Dirac phase,
and αi, i = 1, 2, are CP-violating Majorana phases. The latter two are only of rel-
evance if the neutrino is a Majorana particle, that is its own anti-particle. The time
evolution of a neutrino created in the flavor eigenstate |να〉 is calculated from the mass
eigenstates it is composed of. After having travelled the distance L, the neutrino is a
superposition of all flavors,

|να(L)〉=
∑

i

U∗
αi

e−i(m2
i
/2E)L|νi〉, (2.6)

where mi is the mass of the i-th mass eigenstate and E is the average energy of all
mass eigenstates. The probability of finding the neutrino in a flavor state |νβ〉 after it
travelled the distance L is

Pα→β = |〈νβ |να(L)〉|2 =
∑

i

|Uβ iU
∗
αi
|2+ 2Re
∑

j>i

Uβ iU
∗
β j

U∗
αi

Uα je
(−i∆m2

i j
/2E)L, (2.7)

where ∆m2
i j
= m2

i
−m2

j
is the squared mass difference between the two mass eigen-

states mi and m j. Note that oscillations cannot occur for massless neutrinos or for
neutrinos with degenerate masses (∆m2 = 0). Only mass squared differences can be
inferred from oscillation measurements, the absolute mass scale is not accessible for
these experiments.

The formalism described above refers to neutrino oscillations in vacuum. In pres-
ence of matter, e.g., in the sun, neutrinos undergo scattering processes with W±- and
Z0-exchange, with the first one being sensitive to the flavor. This alters the oscil-
lation probability. The effect is known as the Mikheyev-Smirnov-Wolfenstein (MSW)

effect [39, 40]. The large reduction in the flux of the solar neutrinos can only be
explained considering also the MSW effect.

All three mixing angles and the two mass differences, ∆m2
32 and ∆m2

21, have been
determined by experiments with solar, atmospheric, reactor, and accelerator neutrinos.
It is not possible to determine the sign of the mass difference ∆m2

32 from oscillation
measurements, while the MSW effect observed for solar neutrinos gives access to the
positive sign of ∆m2

21, establishing m2 > m1. Therefore, two possible mass hierarchies

have to be considered when decomposing the mass eigenstates into flavor eigenstates.
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Figure 2.1: Schematic of the normal (left) and inverted (right) mass hierarchy. Figure taken
from [41].

Considering also the results shown in Table 2.1, the normal hierarchy assumes∆m2
32 >

0, that is m1 < m2≪ m3, while the inverted hierarchy describes the case of ∆m2
32 < 0,

m3 ≪ m1 < m2. A schematic of both cases can be seen in Fig. 2.1. If the mass of the
lightest neutrino is much larger than the mass differences, the hierarchy is referred
to as quasi-degenerate, m1

∼= m2
∼= m3. The measurement of the CP-violating phase

δ and the Majorana phases α1 and α2 is beyond experimental reach at the moment.
Table 2.1 summarizes the neutrino oscillation parameters derived from a global fit to
the current oscillation data.

Table 2.1: Best-fit values of a global analysis of the current oscillation data. All values are
taken from [42]. For ∆m2

31, sin2 θ23, and sin2 θ13 the case of normal hierarchy (inverted
hierarchy) is given in the upper (lower) row. For an alternative analysis with comparable
results see [43].

parameter best fit [1σ range]

∆m2
21(10−5eV2) 7.62 [7.43, 7.81]

∆m2
31(10−3eV2) 2.55 [2.46, 2.61]

−2.43 [−2.37,−2.50]

sin2 θ12 0.320 [0.303, 0.336]

sin2 θ23 0.613 [0.573, 0.635]

0.600 [0.569, 0.626]

sin2 θ13 0.0246 [0.0218, 0.0275]

0.0250 [0.0223, 0.0276]

2.3 Neutrino Masses

The observation of neutrino oscillations necessitates an extension of the SM account-
ing for the non-vanishing neutrino mass. In the following, a brief overview on how to
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accomodate neutrino masses in the framework of the SM is presented. More details
can be found in e.g., [44] and references therein.

Following the SM approach of Yukawa coupling to the Higgs-field to generate par-
ticle masses, a Dirac mass term for the neutrino in the Lagrangian is written as

L D = −mDνRνL + h.c., (2.8)

with mD = vhν , where v is the vacuum expectation value of the Higgs field, hν the neu-
trino Yukawa coupling constant, and νR and νL the right- and left-handed components
of the neutrino field, respectively1. The only addition to the SM is the introduction of
the right-handed components of the neutrino fields. They are called sterile since they
do not participate in the weak interactions.

The Dirac mass term is not the only possibility of introducing a Lorentz invariant
neutrino mass term in the Lagrangian. Also the Majorana mass terms

L L =
1

2
mLν

C
L νL + h.c. (2.9)

and

L R =
1

2
mRν

C
R νR+ h.c. (2.10)

for νL and νR have to be considered2.
The Majorana mass term for left-handed neutrinos in equation (2.9) is not in-

variant under SM symmetry transformations. To assure gauge invariance, mL = 0 is
required to accomodate it in the SM framework. Thus, the most general neutrino mass
Lagrangian becomes

L D+M =L D +L R =
�

νC
L νR

�





0 mD

mD mR





�

νL νC
R

�

+ h.c.. (2.11)

Of course, (2.9) with mL 6= 0 can enter the Lagrangian, if physics beyond the SM is
considered.

A direct consequence of the Majorana mass term in the Lagrangian is that neutrinos
are their own anti-particles, ν = ν̄ . Since this is only possible for neutral, colorless
particles, neutrinos are the only elementary particles for which such a mass term can
enter the Lagrangian.

The smallness of neutrino masses compared to the masses of the other fermions
in the SM is a big puzzle. A natural explanation for this phenomenon is provided by
the see-saw mechanism [45–48]. It requires mL = 0 to conserve SM symmetries and
assumes mD ≪ mR. Within the SM, the Dirac mass mD is limited to the order of the
electroweak scale, as it is protected by the SM symmetries. The Majorana mass mR, on
the other hand, is not restricted by the SM. If mR is generated by new physics beyond
the SM, it is protected by the symmetries of these new physics, allowing mR up to the

1The adjoint spinor ν of ν is given by ν = ν†γ0

2νC
L
= C νL

T and νC
R
= C νR

T are the charge conjugate fields of νL and νR, respectively
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order of the GUT-scale, 1014−1016 GeV. These considerations make mD≪ mR a rather
natural choice. The mass eigenstates mi, i = 1, 2, of equation (2.11) are obtained by

diagonalizing the mass matrix. They result to be m1 ≃
m2

D

mR

and m2 ≃ mR. Since the
mixing angle is very small, tan2θ = 2mD/mR, the very light ν1 is composed mainly
of the active νL and the heavy ν2 is composed mainly of the sterile νR. The heavier
ν2 ≃ νR is, the lighter is ν1 ≃ νL.

2.4 Measurement of the Neutrino Mass

From oscillation measurements, only mass squared differences can be inferred. To
determine the absolute neutrino mass scale, three approaches can be followed.
Note that the corresponding experiments are complementary, as the measured mass
parameter depends on the type of experiment.

Cosmological and astrophysical measurements provide the possibility to estimate
the sum of the three neutrino masses,

∑3
i=1 mi. In the early Universe, small density

fluctuations were present. The significant thermal velocity of the light neutrinos
allowed them to escape from over-dense regions, washing out the structures. The
result is visible in the large scale structures we observe today and its extent depends
on the neutrino masses. An overview over different methods to extract

∑3
i=1 mi

is given in [49]. Generally, the results depend strongly on the model and on the
data combination used in the analysis. The latest result, published by the Planck
project [50], yields

∑3
i=1 mi < 0.23 eV [51].

The neutrino mass can be measured directly in decays where one of the
decay products is a neutrino. The effective electron neutrino mass is defined as
mνe
=
p
∑

i
|U2

ei|m2
i , where the sum runs over all mass eigenstates and Uei are the

elements of the PMNS matrix. It influences the energy spectrum of the visible
daughter particles around the endpoint energy of the decay. The best limit was
determined from tritium decays, mνe

< 2.3 eV by the Mainz experiment [52] and
mνe

< 2.1 eV by the Troitsk experiment [53]. The KATRIN experiment, currently
under construction, is designed to have a sub eV sensitivity [54].

The third class of neutrino mass experiments are those searching for neutrinoless

double beta decay. They are sensitive to the effective Majorana neutrino mass, 〈mββ〉 =
|
∑3

i=1 miU
2
ei
|.



Chapter 3

Double Beta Decay

3.1 Neutrino Accompanied Double Beta Decay

Even-even nuclei are more bound than odd-odd nuclei due to the pairing interaction.
Therefore, even-even nuclei exist, whose ground states are energetically lower than
those of their odd-odd neighbors, forbidding beta decay, see Fig. 3.1. In this case, it is
possible that two neutrons, n, decay simultaneously into two protons, p, two electrons,
e−, and two electron anti-neutrinos, ν̄e:

2νββ : (Z , A) → (Z + 2, A) + 2e−+ 2ν̄e, (3.1)

where Z is the atomic charge and A the mass number. This process is called neutrino

accompanied double beta decay (2νββ). It is shown in Fig. 3.2(a).
With the nuclear matrix element, M2ν , and the phase space factor, G2ν(Qββ , Z), the
decay rate can be written as

Γ 2ν = 1/T 2ν
1/2 = G2ν(Qββ , Z) · |M2ν |2. (3.2)

The phase space factor G2ν(Qββ , Z) is very sensitive to the Q-value of the decay, Qββ .
It scales with Q11

ββ
[56,57].

Neutrino accompanied double beta decay is a lepton number conserving SM pro-
cess, which does not allow the discrimination between Dirac and Majorana neutri-
nos. In experiments, the energy of the two electrons is measured, while the two
anti-neutrinos escape. The measured energy spectrum is therefore continuous, with a
maximum around Qββ/3. An example can be seen in Fig. 3.3.

3.2 Neutrinoless Double Beta Decay

The possibility of neutrinoless double beta decay (0νββ) was first proposed by Furry
in 1939 [59] as a method to gain insight about the Dirac or Majorana nature of the
neutrino. In this decay, two neutrons, n, decay simultaneously into two protons, p,
and two electrons, e−, with no emission of electron anti-neutrinos, ν̄e:

0νββ : (Z , A) → (Z + 2, A) + 2e−. (3.3)
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Figure 3.1: Isobars with A=76. The mass of 76Ge is less than the mass of 76As, but larger
than the mass of 76Se. Single beta decay is energetically forbidden, but double beta decay is
allowed. Figure adopted from [55].
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Figure 3.2: Feynman diagram of (a) neutrino accompanied double beta decay (2νββ) and
(b) neutrinoless double beta decay (0νββ).

The experimental signature of 0νββ is a peak at Qββ in the combined energy spectrum
of the two emitted electrons, as seen in Fig. 3.3. Since lepton number is violated
by two, ∆L = 2, the process is not allowed in the SM and its observation would
undoubtedly proof the existence of physics beyond the SM.
As pointed out by the blackbox or Schechter-Valle theorem [1], the existence of 0νββ
necessarily requires a Majorana neutrino mass, independent of the decay mechanism.
The generated Majorana mass term is, however, only of O (10−24)eV [60] and thus
many orders of magnitude too small to explain the observations of the mass splittings
in oscillation experiments. As a consequence, other Majorana or Dirac masses have to
contribute to the neutrino mass.

The simplest mechanism leading to 0νββ is the exchange of a light Majorana
neutrino. This process would allow direct conclusions on the mass and nature of
the neutrino. Possible alternative mechanisms, involving heavy Majorana neutrinos,
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Figure 3.3: Spectra of the sum kinetic energy of the two electrons, E, normalized to the Q-
value, Qββ , for neutrino accompanied (dashed line) and neutrinoless (continuous line) double
beta decay. Figure taken from [58].

positive chirality currents, and supersymmetric particles, might not allow to draw
any conclusions on the dominating neutrino nature and mass scale [61]. All these
alternative mechanisms require the introduction of new particles or interactions which
are not present in the SM. The rest of this section is dedicated to the case of 0νββ
via exchange of a light Majorana neutrino. A popular example involving additional
particles in the final states, so-called majorons, is presented in Sec. 3.3.

The diagram for 0νββ based on light Majorana neutrino exchange is depicted in
Fig. 3.2(b). When the neutrino is emitted at one vertex, it has almost total positive
helicity. Only a small component of O (mν/E), where mν is the neutrino mass and E

the energy, has negative helicity and can be absorbed at the other vertex. The process
is only possible, if the neutrino is a massive Majorana particle and the amplitude is
proportional to the effective Majorana neutrino mass

〈mββ〉= |
3
∑

i=1

miU
2
ei
|, (3.4)

where mi are the neutrino mass eigenstates and Uei the corresponding PMNS matrix
elements, see equation (2.5). The decay rate of 0νββ is then given as [62]

Γ 0ν = 1/T 0ν
1/2 = G0ν(Qββ , Z) · |M0ν |2 · 〈mββ〉2, (3.5)

where T 0ν
1/2 is the half-life of the decay, G0ν(Qββ , Z) the phase space factor, which scales

with Q5
ββ
[63, 64] and depends on the nuclear charge, Z , and M0ν is the nuclear

matrix element. The phase space factor, G0ν(Qββ , Z), can be calculated analytically.
The nuclear matrix element, M0ν , provides a large source of uncertainty, since the
results differ noticeably depending on the nuclear model used for the evaluation. For
a discussion see [58] and [63], and references therein.
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Figure 3.4: Effective Majorana neutrino mass as a function of the lightest neutrino mass for
the (a) 3σ-ranges and (b) best-fit values given in Ref. [42] and listed in Table 2.1 for the nor-
mal (left) and inverted (right) hierarchy scheme. The blue shaded areas can only be realized
for non-trivial CP values. (±,±) denote different CP conserving situations, corresponding to
signs of m2 and m3, relative to positive m1. Prospective future values of

∑3
i=1 mi =
∑

and
mνe
= mβ are also given. Figure taken from [65].
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Figure 3.5: Feynman diagram of neutrinoless double beta decay (a) with emission of one
majoron (0νββχ) and (b) emission of two majorons (0νββχχ).

Figure 3.4 shows the effective Majorana neutrino mass as a function of the lightest
neutrino mass for the 3σ-range and the best fit values of the oscillation parameters
given in Table 2.1. The normal as well as the inverted hierarchy are shown. Since for
the normal hierarchy the most massive state has a small contribution due to the small
mixing angle, the effective Majorana neutrino mass results to be small. For the in-
verted hierarchy the contrary holds, and the large contribution of the heavier neutrino
states leads to a larger effective Majorana neutrino mass. For the normal hierarchy,
the contributions can cancel due to the CP phases, leading to a vanishing effective
Majorana neutrino mass.
Note that the existence of sterile neutrinos is not taken into account here. For a dis-
cussion of the current situation regarding hints on their existence and their impact on
0νββ see elsewhere [65,66].

3.3 Neutrinoless Double Beta Decay with Majoron

Emission

Majorana neutrinos are their own anti-particles and cannot carry an additive quantum
number, such as baryon number, B, or lepton number, L. As a consequence, in models
with Majorana neutrinos, global (B − L) symmetry is broken. The breaking of the
symmetry leads to the existence of a massless Goldstone boson, the majoron, χ .

In the original majoron models, the majoron is part of an electroweak sin-
glet [67, 68], doublet [69], or triplet [70]. All models have in common that they
predict neutrinoless double beta decay with majoron emission (0νββχ),

0νββχ : (Z , A) → (Z + 2, A) + 2e−+χ . (3.6)

The corresponding Feynman diagram can be seen in Fig. 3.5(a).
The interactions of the doublet and triplet majorons with the Z0 boson would

give additional contributions to its decay width. Both models could be ruled out by
measurements at LEP [26]. The models with a majoron singlet, on the other hand,
are still within possibility [71]. Since the coupling strength of the majoron to the
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neutrino is proportional to mν/M , where mν is the neutrino mass and M is the scale
of spontaneous lepton number breaking, M ≃ mR, the singlet model needs severe
finetuning to obtain an observable rate of 0νββχ .

Supersymmetric models exist that lead to 0νββχ [72, 73]. Even the emission of
two majorons (0νββχχ),

0νββχχ : (Z , A) → (Z + 2, A) + 2e−+ 2χ , (3.7)

is possible [74]. Figure 3.5(b) shows the Feynman diagramm of this decay.
In recent years, a variety of new majoron models has been developed. In this

context, majoron denotes a massless or very light boson, not necessarily a Goldstone
boson, which couples to neutrinos. There are models which foresee majorons carrying
leptonic charge, thus assuring lepton number conservation and forbidding 0νββ . For
the case of majorons with L = −2, 0νββχ is expected [75], while L = −1 for the
majoron leads to 0νββχχ [76]. Also models with a vector majoron are introduced.
In these models, the majoron is the longitudinal component of a massive gauge bo-
son emitted in double beta decay [77]. In the framework of the SU(3)L

⊗

SU(1)N
electroweak model, 0νββχ and 0νββχχ [78] is predicted. Lastly, when considering
brane-bulk scenarios in particle physics, the breaking of the standard global (B − L)

symmetry by a gauge singlet Higgs field in the bulk leads to extradimensional ma-
jorons with a set of Kaluza-Klein modes [79].

Independently of the model, the decay rate for 0νββχ and for 0νββχχ can be
written as

Γ 0νχ = 1/T 0νχ
1/2 = |〈gα〉|

2 · G0νχ
α
(Qββ , Z) · |M0νχ

α
|2, (3.8)

and
Γ 0νχχ = 1/T 0νχχ

1/2 = |〈gα〉|4 · G0νχχ
α
(Qββ , Z) · |M0νχχ

α
|2, (3.9)

respectively, where |〈gα〉| is the effective coupling constant, |M0νχ
α
| and |M0νχχ

α
| are the

nuclear matrix elements, G0νχ
α
(Qββ , Z) and G0νχχ

α
(Qββ , Z) are the phase space factors,

and α denotes the various models. The phase space factors can be parametrized as a
function of the Q-value, Qββ , the sum kinetic energy of the two electrons emitted in
the decay, E, and the spectral index, n,

G0νχ(χ)
α

(Qββ , Z)∼ (Qββ − E)n. (3.10)

Normal 2νββ has n = 5, whereas 0νββχ can have n = 1, 2 or 3 and 0νββχχ can
have n = 3 or 7, depending on the model. As a consequence, the energy spectrum
of the two emitted electrons allows to distinguish the different models. The energy
spectra for all modes of 0νββχ and 0νββχχ together with the spectrum of 2νββ
are shown in Fig. 3.6.

Table 3.1 summarizes the main characteristics of the majoron models described
above. The first section considers lepton number violating models (I) allowing 0νββ ,
whereas in the second section lepton number conserving models (II) are listed, where
0νββ is not allowed.
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Table 3.1: Summary of different majoron models based on [76, 82, 83]. The first section
considers lepton number violating models (I) allowing 0νββ , while in the second section
lepton number conserving models (II) are listed, where 0νββ is not allowed. In the second
column, the information on whether one majoron, χ , or two majorons, χχ , are emitted is
given, the third column tells if the majoron is a Goldstone boson, the fourth column provides
its lepton number, L, the fifth column gives the spectral index, n, and the last column lists the
nuclear matrix elements.

Model Mode Goldstone boson L n Matrix element

IB χ no 0 1 MF −MGT

IC χ yes 0 1 MF −MGT

ID χχ no 0 3 MFw2 −MGTw2

IE χχ yes 0 3 MFw2 −MGTw2

IF (bulk) χ bulk field 0 2 −
IIB χ no -2 1 MF −MGT

IIC χ yes -2 3 MCR

IID χχ no -1 3 MFw2 −MGTw2

IIE χχ yes -1 7 MFw2 −MGTw2

IIF χ gauge boson -2 3 MCR





Chapter 4

Double Beta Decay Experiments

4.1 Direct Searches

4.1.1 Experimental Requirements

The expected number of signal events, NS, for any double beta process is given by

NS = ǫ · f ·
M · NA

mA

· (1− e−t ln(2)/T1/2), (4.1)

where ǫ is the signal efficiency, f and mA are the abundance and molar mass of the
isotope under study, M is the total source material mass, NA is Avogadro’s number,
t the time of measurement, and T1/2 is the half-life of the double beta decay. For
t ≪ T1/2, e−t ln2/T1/2 can be approximated as 1+ −t ln2

T1/2
, resulting in

NS = ǫ · f ·
M · NA

mA

·
t · ln2

T1/2
. (4.2)

From Equation (4.2) it is clear that the sensitivity of a double beta experiment scales
linearily with ǫ · f ·M · t in the absence of background events, NB.

In the presence of background, for 0νββ , where the signal is a peak at Qββ , the
expected number of background events is

NB = M · BI ·∆E · t, (4.3)

with BI the background index in cts/(keV·kg·yr) and ∆E the energy window around
Qββ used for the signal search. The latter is related to the energy resolution. When

assuming a large enough background level such that the uncertainty σNB
∼
p

NB, the
half-life to which an experiment is sensitive can be expressed as [58,84]

T 0ν
1/2 =

4.16 · 1026yr

nσ
· ǫ · f ·

1

mA

Ç

M · t
BI ·∆E

, (4.4)

where nσ is the number of standard deviations corresponding to a given confidence
level, C.L.. In the following, the most important factors entering Equation (4.4) are
discussed.
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Background index, BI The background index plays a decisive role in the reachable
sensitivity of an experiment. Various sources of background have to be consid-
ered. The radioactive isotopes from the natural decay chains of 238U and 232Th
are present in all materials, also in the detector components. Decays, in which
α-, β -, and γ-particles at energies above the Q-value of the double beta istope
under study are emitted, lead to background events in the energy region of in-

terest (ROI). Therefore, out of the 35 existing double beta isotopes, only eleven
with Qββ > 2 MeV are considered for double beta decay experiments to restrict
the contributions from natural radioactivity to a minimum1. In general, all ma-
terials used in the experiments have to be carefully selected and purified.
Also radon gas, present in the natural decay chains, is a problem, as it can diffuse
through materials and its charged decay products can stick to detector compo-
nents.
An external source of background are cosmic rays. In order to limit their contri-
bution in the ROI , double beta experiments are placed in underground labora-
tories. In this way, the contribution is limited to muon interactions. Muons can
interact directly or via the production of secondary particles, such as neutrons
or electromagnetic showers. The direct muon interactions can be vetoed very
efficiently, whereas the contributions from secondary particles are reduced by
high-Z , radiopure shielding, such as lead, copper, or water. A very powerful tool
in reducing the background is the analysis of event topologies, which allows to
distinguish background from signal events.

Signal efficiency, ǫ Double beta processes are very rare, so that a high signal effi-
ciency is crucial. Some double beta isotopes allow the construction of the de-
tector directly from the source material. This guarantees a very high signal
efficiency, as the decay products, namely the electrons, are absorbed inside the
source itself and event loss is limited to the detector surface.

Isotopic abundance, f The isotopic abundance of the eleven candidate isotopes
ranges between 0.187 % and 34.5 %. Therefore, in many cases isotopic enrich-
ment is inevitable in order to guarantee a reasonable sensitivity.

Source material mass, M Present generation double beta experiments have source
masses of the order 10–100 kg. For the future, ton-scale experiments are desired,
bringing forth an enormous economical and technological challenge.

Energy window, ∆E A good energy resolution allows to improve the signal-to-noise
ratio and is inevitable in reducing the intrinsic background of 2νββ events when
searching for 0νββ . Germanium detectors provide the best energy resolution
(as low as 0.1 %), followed by TeO2 bolometer crystals (≈ 0.2 %).

1Another argument for the choice of high Q-value isotopes is the strong dependency of the phase
space of double beta processes on the Q-value.
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Table 4.1: Q-value, Qββ , isotopic abundance, f , half-life of 2νββ , T2ν
1/2, and exper-

imental limits at 90 % C.L. for the half-life of 0νββ , T0ν
1/2, for the most interesting

double beta decay isotopes. Q-value and isotopic abundance are taken from [61],
T2ν

1/2 values are taken from [2] for all isotopes but 76Ge and 136Xe.

Isotope Qββ (keV) f (%) T 2ν
1/2 (1019 yr) T 0ν

1/2 (yr) (90 % C.L.)
48Ca 4273.7 0.187 4.4+0.6

−0.5 5.8 · 1022 [85]
76Ge 2039.1 7.8 184+14

−10 [86] a 2.1 · 1025 [6]

1.9 · 1025 [4]

1.6 · 1025 [5]
82Se 2995.5 9.2 9.2± 0.7 3.6 · 1023 [87]
96Zr 3347.7 2.8 2.3± 0.2 9.2 · 1021 [88]
100Mo 3035.0 9.6 0.71± 0.04 1.1 · 1024 [87]
116Cd 2809.1 7.6 2.8± 0.2 1.7 · 1023 [89]
130Te 2530.3 34.5 68± 12 2.8 · 1024 [90]
136Xe 2461.9 8.9 217.2± 1.7(stat)± 6.0(syst) [91] 1.6 · 1025 [7]

230± 2(stat)± 12(syst) [92] 1.9 · 1025 [8]
150Nd 3367.3 5.6 0.82± 0.09 1.8 · 1022 [93]

a See also Appendix B of this work.

4.1.2 Experiments

Several considerations have to be taken into account to maximize the sensitivity in a
double beta decay experiment. Table 4.1 lists the most interesting double beta decay
isotopes, their Q-value, the natural abundance, the measured half-life of 2νββ , and
limits for the half-life of 0νββ . The results in the search for 0νββχ and 0νββχχ
are summarized in Table 4.2.

The best limits on the half-life for 0νββ have been achieved so far for 100Mo, 130Te,
136Xe, and 76Ge. Note that the limits on the effective Majorana neutrino mass, 〈mββ〉,
given in the following are reported as provided in the references and different matrix
elements might have been used for their calculation. The values for T 0ν

1/2 from which
〈mββ〉 was derived are given in Table 4.1.

The measurement of 100Mo was performed by the NEMO 3 experiment [99]. Thin
foils containing the double beta isotopes under study are surrounded by a plane of
Geiger cells which allow to track the event topology. The individual particle energies
are measured by plastic scintillators read-out with photo multiplier tubes (PMTs). The
track reconstruction allows a very low background, BI ≈ 1.2 · 10−3 cts/(keV · kg · yr)
at 3 MeV. The drawback is a reconstruction efficiency for 0νββ events of only
13 % [100]. The modest energy resolution of (14 − 18)% full width at half maxi-
mum (FWHM) at 1 MeV leaves 2νββ as the largest background when searching for
0νββ . The cylindrical detector is divided into 20 independent sectors, which allowed
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Table 4.2: Summary of measured lower limits (90 %C.L.) on the half-life, T
0νχ(χ)
1/2 , of majoron

accompanied decay modes with spectral index n = 1, 2, 3, 7. Also the upper limit (90 %C.L.)
on the neutrino-majoron coupling constant, 〈g〉, is listed, if provided in the reference.

T
0νχ(χ)
1/2 (1021 yr) (90 %C.L.) 〈g〉 (90 %C.L.)

Isotope n= 1 n= 2 n= 3 n= 7 n= 1 n= 3 n= 7

χ χ χ / χχ χχ χ (10−5) χ (10−2)/ χχ χχ

48Ca [94] 0.72 - - - 140 - / - -
76Ge [4,95] 64 - 14 6.64 8.1 12 / 3.3 3.3
100Mo [83] 27 17 10 0.07 4-18 0.88-2.4 / 1.5 3.2
82Se [83] 15 6.0 3.1 0.5 6.6-19 2.2-6.8 / 2.4 1.3
116Cd [89,96] 8 1.7 0.8 0.041 4.6-8.1 - / - 3.9
96Zr [88] 1.9 0.99 0.58 0.11 - -/- -
150Nd [93] 1.52 0.54 0.22 0.047 6.4-30 -/- -
130Te [97,98] 16 - 0.9 - 6-16 -/- -
136Xe [92] 2.6·103 1.0·103 4.5·102 11 0.8-1.6 1.3 / 0.68 1.2

the measurement of ≈ 9 kg total mass of seven different double beta isotopes with
the NEMO 3 detector. The results for 100Mo lead to a limit for the effective Majorana
neutrino mass of 〈mββ〉 < (0.45− 0.93)eV [87].

The search for 0νββ of 130Te was conducted by the CUORICINO experiment [101].
It consisted of an array of 62 tellurium oxide (TeO2) bolometers with a total mass
of 40.7 kg (10.4 kg of 130Te). The crystals were cooled down to 8–10 mK. An en-
ergy deposition in the crystals leads to a temperature rise, which was read out with
high-resistance germanium thermistors glued to the crystals. An energy deposit of
2530 keV, the Q-value of 130Te, lead to an increase in the temperature of 1.77 ·10−4 K,
and a FWHM of (7−9)keV could be reached for this energy. With a background index
of about 0.2 cts/(keV · kg · yr) and an exposure of 1.75 kg · yr, a limit on the effective
Majorana mass of 〈mββ〉 < (0.30− 0.71)eV [90] could be set.

Two experiments are currently engaged in searching 0νββ of 136Xe, the
KamLAND-Zen experiment [102] and the EXO-200 experiment [103]. KamLAND-
Zen operates 13 tons of xenon-loaded liquid scintillator inside a nylon balloon with a
diameter of 3 m. This inner balloon is surrounded by an outer balloon with a diam-
eter of 13 m, filled with liquid scintillator, which acts as an active shield. The energy
and position of the decay are read out by PMTs. A rather poor energy resolution of
10 % at 2.5 MeV, the Q-value of 136Xe, is reached. With 89.5 kg · yr, KamLAND-Zen
has reached the largest exposure of a double beta isotope up to date. Unfortunately,
an unexpected background, most likely due to 110mAg, deteriorated significantly the
sensitivity of the experiment. A scintillator purification campaign in combination with
an additional 700 kg of xenon enriched to a level of 90 % is expected to improve the
sensitivity noticeably in the next months.
The EXO-200 experiment, on the other hand, is a liquid xenon time projection cham-
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ber (TPC), filled with 175 kg of liquefied xenon. The ionization as well as the scintilla-
tion light signal are measured, allowing for an energy resolution as good as 4 % at the
Q-value of 136Xe. The cylindrical shape of the TPC allows efficient topological and tem-
poral cuts, reducing the background to 1.5 ·10−3 cts/(keV · kg · yr). A first result based
on 79.4 kg of 136Xe and a seven-month period of data taking was published. Data tak-
ing is continuing and more stringent results are expected soon. Combining the results
of KamLAND-Zen, T 0ν

1/2 > 1.9 · 1025 yr [8], and of EXO-200, T 0ν
1/2 > 1.6 · 1025 yr [7],

a limit of T 0ν
1/2 > 3.4 · 1025 yr is reached and effective Majorana masses as small as

〈mββ〉 < (0.12− 0.25)eV [8] are tested.
The IGEX [104] and Heidelberg-Moscow (HdM) [105] experiments were two ex-

periments searching for 0νββ of 76Ge. Both used high-purity germanium (HPGe)
detectors enriched to a level of ≈ 86 % in 76Ge. The IGEX experiment collected
8.8 kg · yr of data. With a background index of 0.17 cts/(keV · kg · yr) it reached a
limit of 〈mββ〉 < (0.33− 1.35)eV [5].
The HdM experiment operated five detectors with a total mass of ≈ 11 kg in copper
cryostats with copper, lead, and polyethylene shielding. An excellent energy reso-
lution of 0.2 % FWHM was reached. From a data set with a statistical significance of
35.5 kg·yr and a background index of 0.06 cts/(keV·kg·yr) (after pulse shape analysis)
〈mββ〉 < 0.35 eV [4] was deduced.

A subgroup of the HdM collaboration made a claim of discovery of 0νββ of 76Ge
with T 0ν

1/2 = 1.19+0.37
−0.23 · 1025 yr (〈mββ〉 = (0.2− 0.6)eV) [9], which was later updated

to T 0ν
1/2 = 2.23+0.44

−0.31 · 1025 yr (〈mββ〉 = (0.29− 0.35)eV) [106]. Inconsistencies in the
latter analysis are pointed out in [107]. The combined analysis of the KamLAND-Zen
and EXO-200 experiments excludes the claim at 97.5 % C.L. [8]. A comparison of
two different double beta isotopes, however, has to rely on nuclear matrix element
calculations and is therefore strongly model-dependent. A direct, model-independent
test was carried out by the GERDA experiment [11] searching for 0νββ of 76Ge. The
results stronly disfavor the claim and a combined analysis with the IGEX and HdM
data yields 〈mββ〉 < (0.2− 0.4)eV [6].

A selection of the most developed next-generation experiments for the search of
0νββ is given in Table 4.3.

4.2 Indirect Searches

All experiments presented above employ direct methods for the search of 0νββ . There
are, however, also indirect searches allowing to retrieve information about a possible
Majorana neutrino mass and the effective coupling constant of the majoron to the
neutrino.

From geochemical measurements, the half-life of 128Te was defered from measure-
ments of the half-life of 130Te [108]. It was determined to be (7.7 ± 0.4) · 1024 yr.
The limit on the Majorana neutrino mass resulted as 〈mββ〉 < (1.1− 1.5)eV and the
limit on the effective majoron-neutrino coupling constant for the ordinary majoron
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Table 4.3: Most developed next-generation double beta experiments. The sensitivity on the
half-life of 0νββ , T0ν

1/2, and the effective Majorana neutrino mass, 〈mββ 〉, is given at 90 %C.L..
Adopted from [2].

Experiment Isotope Mass Sensitivity (90 % C.L.) Sensitivity (90 % C.L.)

(kg) T 0ν
1/2 (1026 yr) 〈mββ〉 (eV)

CUORE 130Te 200 6.51 0.02-0.05

2.12 0.035-0.09

GERDA 76Ge 40 2 0.07-0.2

1000 60 0.01-0.04

MAJORANA 76Ge 30-60 2 0.07-0.2

1000 60 0.01-0.04

EXO 136Xe 200 0.64 0.1-0.2

1000 8 0.03-0.06

SuperNEMO 82Se 100-200 1-2 0.04-0.1

KamLAND-Zen 136Xe 400 4.5 0.04-0.08

1 With BI = 10−3 cts/(keV · kg · yr)
2 With BI = 10−2 cts/(keV · kg · yr)

accompanied decay mode with n = 1 resulted as 〈g〉 < 3 · 10−5 . However, more
recent geochemical measurements suggested an about three times longer half-life of
130Te [109], leading to a longer half-life also for 128Te.

Also from astrophysics, bounds on the coupling between the neutrino and the ordi-
nary majoron can be derived. From the observation of neutrinos from SN1987A it was
deduced that a large part of the supernova energy is released via neutrinos. This allows
to set a bound on the neutrino-majoron coupling of 〈g〉 < (1− 20) · 10−5 [110, 111].
From calculations of the effects of a possible majoron decay and scattering in high-
density supernova medium it was determined that 〈g〉< 3·10−7 or 〈g〉> 2·10−5 [112].
The first limit is due to the fact that the supernova explosion would be suppressed for
strong enough coupling between the neutrino and the majoron, as the supernova en-
ergy would be released in majoron emission instead. The second limit was derived
considering that for too strong neutrino-majoron coupling the majorons would be
trapped inside the supernova medium, so that no conclusion on the coupling could
be drawn.

Another way to obtain information about the coupling between the neutrino and
the majoron is the search for possible effects of majoron emission in lepton and meson
decays. The most recent result from such analyses give 〈g〉2 < 5.5 · 10−6 [113].



Chapter 5

Germanium Detectors

Germanium detectors are used to detect particles via their interactions in matter.
These interactions are discussed for photons, electrons, positrons, and α-particles. An
overview of the working principle of semiconductor detectors in general and the main
characteristics of germanium detectors in particular is given. The concept of the signal
formation process is presented. Important features for the reduction of background
events in the search of 0νββ are summarized. A detailed review of germanium detec-
tors can be found in [114] and references therein.

5.1 Interaction of Photons, Electrons, Positrons, and α-

particles with Matter

5.1.1 Photons

Radioactive isotopes emit photons in the range from several keV to a few MeV. In this
energy range, three processes dominate the interaction of photons with matter. Their
cross sections depend on the atomic number of the material and on the photon energy,
Eγ:

• In the photoelectric absorption process, the photon transfers its entire energy
to an atomic shell electron which is ejected from the shell. The kinetic energy,
Ee− , of this photo-electron is

Ee− = Eγ− Eb,

where Eb is the binding energy of the electron. The remaining vacancy in the
shell is filled by electrons from the outer shells and due to the differences in the
binding energies characteristic x-rays or Auger electrons are emitted.

• Compton scattering is the elastic scattering of a photon off a quasi-free electron,
transferring only a part of its energy, ∆Eγ, to the electron. The value of ∆Eγ
depends on the scattering angle, Θ. It is largest for Θ = 180◦.
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Figure 5.1: Mass attenuation coefficient µ in germanium as a function of the photon energy.
Graphic based on [115].

• If the energy of the incident photon exceeds twice the rest mass of the electron,
me, the photon can create an electron-positron pair in a pair production process
when in the vicinity of a nucleus. In this process, Eγ is converted to the electron
and positron kinetic energies, Ee− and Ee+ , and to their rest masses.

The mass attenuation coefficient for photons, µ = NA

A
· (σphoto + σCompton + σpair),

where NA is Avogadro’s number, A is the mass number and σphoto, σCompton and σpair

are the cross sections for the respective processes, is shown for germanium in Fig. 5.1.
The photoelectric absorption is the dominant process for photon energies up to ≈
200 keV. For energies between 200 keV and about 8 MeV, Compton scattering has the
highest cross section. The photon scatters several times until it is finally absorbed
in a photoelectric process. The mean free path of a 1 MeV photon is about 3 cm in
germanium.

For higher energies, the pair production process gains more and more importance,
until its cross section dominates above an energy of around 8 MeV in germanium. At
2.6 MeV, the energy of the most dominant 208Tl line, its contribution to the total cross
section is ≈ 9 %.

In each of the processes mentioned, energy is transferred to at least one electron,
in case of pair production also to a positron.
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5.1.2 Electrons, Positrons, and α-particles

There are two main processes that lead to the loss of energy of electrons and positrons
traversing matter. High energetic electrons and positrons lose energy mainly radia-
tively through the bremsstrahlung process. Ionization, described by the Bethe-Bloch
formula [116], is the dominating effect for electrons and positrons with lower en-
ergies. In germanium, the ratio of both losses is equal for a particle energy of
≈ 18 MeV [117].
The energy loss mechanisms for electrons and positrons in matter are identical. The
behavior of the two particles differs, however, at the end of the track, where positrons
annihilate with electrons into two photons with an energy of 511 keV each.
The range of electrons and positrons in matter depends on their energy and the mate-
rial. The average range for a 1 MeV electron in germanium is about 1 mm [118].

Compared to electrons and positrons, α-particles are much heavier.
Bremsstrahlung processes are negligible and all energy is deposited via ioniza-
tion. The average range for a 5 MeV α-particle in germanium is about 2µm.

5.2 Semiconductor Detectors

The characteristics of a solid, and thus also of a semiconductor, are determined by the
structure of the crystal lattice, which causes allowed energy bands for the electrons
with forbidden states between these bands. For a semiconductor, the gap between the
valence and the conduction band, the bandgap, is of the order of 1 eV. Electrons can
be lifted to the conduction band by thermal excitation or ionizing radiation, leaving a
positively charged hole in the valence band. These electrons as well as the holes are
called charge carriers, as they can move freely throughout the crystal. A fraction of
the energy, however, goes into the excitation of phonons. Therefore, the pair energy,
Epair, the energy needed to create one electron-hole pair, is higher than the bandgap
energy. In germanium at 80 K it is 2.95 eV, while the bandgap energy is only 0.7 eV.

Semiconductor materials, like germanium and silicon, are tetravalent. Their atoms
form covalent bonds with their four nearest neighboring atoms. In n-type material,
pentavalent impurities like boron are present. Their fifth valence electrons are only
weakly bound, occupying the donor level slightly under the conduction band. These
electrons are easily thermally excited to the conduction band, creating an abundance
of negative charge carriers. In contrast, p-type material is doped with trivalent
impurities. They are missing one covalent bond, which leads to the formation of the
acceptor level, which is a little bit above the valence band. When electrons are lifted
to these states, they leave holes in the valence band and the net amount of charge
carriers remains positive.

A semiconductor detector consists of a p-n-junction. Close to the junction, the
charge carriers diffuse into the volume where their concentration is lower. The
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electrons from the n-region migrate to the p-region and recombine with the holes,
resulting in a positive space charge in the n-material and a negative space charge in
the p-material from the remaining ions. This depletion zone is non-conducting. Any
charge carrier created in this volume will be driven out by the electric field resulting
from the space charges. If an external potential is applied by connecting the anode
to the n-side and the cathode to the p-side (reverse biasing), the depletion zone
is enlarged. The bias voltage at which the depletion zone extends over the entire
detector volume is defined as the full depletion voltage.

Semiconductor detectors are fabricated from p-type or n-type material called the
bulk. There are two types of electrodes, p+ and n+, where the "+" indicates that the net
impurity density is much higher than in the bulk material. A p+-electrode is produced
by boron implantation. Its thickness is of the order of a few tenths of a micrometer. To
fabricate an n+-electrode, lithium atoms are diffused into the material. This results in
a layer with a thickness of several hundred micrometers. The electrodes are metallized
with aluminum, allowing the homogeneous application of an external voltage. In n-
type bulk material, the p-n-junction is located on the side of the p+-electrode. When
the full depletion voltage is applied, the depletion zone extends over the entire bulk
to the n+-electrode. In p-type detectors, the opposite is the case. As the electrodes are
conducting, they are not part of the depletion zone. They are thus not sensitive and
form a dead volume.

5.3 Germanium Detector Properties

5.3.1 Detector Geometries

The largest germanium detectors have cylindrical shapes.
In the (true) coaxial configuration, the core of the cylinder is (completely) partially re-
moved, so that the inner cylindrical surface provides an electrode. The other electrode
is formed by the outer surface.
For point-contact and Broad Energy Germanium (BEGe) detectors, a small, point-like
electrode is situated at the center of the top of the cylinder. The second electrode is
formed by the remaining surface.
Figure 5.2 shows examples of p-type detectors with a coaxial and with a BEGe ge-
ometry. For both detector schemes, the signal is read out at the p+-contact. The
n+-electrode serves as high-voltage (HV) contact. Small grooves separate the elec-
trodes.

5.3.2 Operating Voltage

Germanium detectors are generally operated with a fully depleted volume. The de-
pleted volume increases with the operating voltage between anode and cathode. Its
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(a) (b)

Figure 5.2: Schematic sketch of the vertical sections of a (a) coaxial and of a (b) BEGe detec-
tor.

depth, d, is given by [114]

d =

�

2εRε0V0

eρimp

�1/2

, (5.1)

with V0 being the applied reverse bias voltage, ρimp the net impurity concentration
in the bulk material, e the elementary charge, εR = 16 the dielectric constant of ger-
manium, and ε0 the vaccum permittivity. The bias voltage, V0, cannot be arbitrarily
large, because diodes have a finite break-through voltage and cabling and read-out be-
come technically challenging with increasing voltages. Therefore, very pure material is
needed for large devices with depletion depths of the order of centimeters. Techniques
have been developed to produce High-Purity Germanium (HPGe) with an active im-
purity concentration below 1010 atoms/cm3. Devices with diameters and heights of up
to ten centimeters and full depletion voltages of a few kilovolt are produced.

5.3.3 Operating Temperature

Germanium has a very small Epair of only 2.95 eV. At room temperature, a significant
fraction of electrons is easily excited to the conduction band, causing a high conduc-
tivity of the detector. Applying a bias voltage would lead to a large current through
the detector, making its operation as radiation detector impossible. Therefore, the de-
tector has to be cooled. Conventionally, this is done by keeping it in thermal contact
with liquid nitrogen through a cooling finger, which establishes a working tempera-
ture around 77 K. It has also been shown that the detectors can be directly submerged
into the cryoliquid without loss of functionality [119].
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5.3.4 Energy Resolution

The energy resolution of germanium detectors, measured in terms of the full width at
half maximum (FWHM) of the peak under study, is influenced by three effects.

The first one is the statistical fluctuation in the number of charge carriers created
by an incident charged particle of a certain energy, E. This contribution scales withp

E. It is called the Fano term.
The second factor that determines the energy resolution is the charge collection

efficiency. It scales with E.
The last component adding to the broadening of the FWHM is the energy-

independent noise contribution from the read-out electronics.
In optimized systems, total energy resolutions of about 2 keV at 1.3 MeV are ob-

tained for coaxial detectors. The distinctively reduced size of the read-out electrode of
BEGe detectors leads to a lower capacitance and therefore lower noise level compared
to coaxial detectors. At 1.3 MeV, a FWHM of typically 1.75 keV can be reached.

5.4 Signal Formation

5.4.1 Charge Carrier Drift

Photons, electrons, positrons, and α-particles interact inside a semiconductor detector
as described in Section 5.1, transfering energy to secondary electrons. These sec-
ondary electrons subsequently excite electrons from the valence to the conduction
band, hence create electron-hole pairs. The average number of charge carriers pro-
duced is proportional to the deposited energy, because Epair is independent of the type
of the incident particle and of its energy.

Since a semiconductor detector is operated in reverse bias mode, the electric field
in its bulk causes the drift of the electrons and holes in opposite directions towards
the electrodes. The electric field can be calculated solving Poisson’s equation,

△Φ= −
ρ

ε0εR

, (5.2)

where Φ is the electric potential, linked to the electric field, E, via E=−∇Φ, ρ is the
space charge density, ε0 is the vacuum permittivity and εR = 16 is the dielectric con-
stant of germanium. The space charge density, ρ, is determined by the active impurity
density, ρimp, which defines the strength of the electric field inside the detector.
To first order, the drift direction of the electrons (holes) is anti-parallel (parallel) to
the electric field lines. The drift velocities grow with rising electric field strength up
to a saturation field strength, Esat, which is of the order of 102 V/mm for electrons
and about a factor three to five larger for holes. Above Esat, the drift velocities remain
constant, being of the order of 0.1 mm/ns1.

1At higher order, the effect of the crystal structure has to be taken into account. At the operating
temperatures of HPGe detectors of around 100 K, the drift velocities differ for different drift directions
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5.4.2 Pulse Shapes

The moving charge carriers induce charges in the electrodes of the detector. For any
electrode, the time development of the induced charges, Q(t), follows the Shockley-

Ramo Theorem [122]. For a moving point charge q that can be found at position r(t)

at time t it is

Q(t) = −q ·Φω (r(t)), (5.3)

where Φω is the weighting potential. In order to determine Φω, the Laplace equation,

△Φ= 0, (5.4)

has to be solved. The boundary conditions for Φω are Φω ≡ 1 on the electrode of
interest and Φω ≡ 0 on all other boundaries.

The induced charges are recorded over a time period t1− t0 using charge-sensitive
preamplifiers. The pulse at time t1, P(t1), is proportional to the induced charges in
the respective electrode, integrated over the time period,

P(t1)∼
∫ t1

t0

Q(t) d t. (5.5)

The time development of the functional form of the integrated charges on the elec-
trodes is referred to as the pulse shape. Figure 5.3 shows an example of a digitized
pulse shape. Typical charge collection times are of the order of a few hundred nanosec-
onds. In order to assure that the preamplified pulse is proportional to the integral of
the induced charge, the decay time of the preamplifier has to be much larger than the
charge collection time, typically between 50 and 100 µs.

5.5 Background Rejection

Several techniques have been developed to reject remaining background events in the
search for 0νββ of 76Ge with germanium detectors. In general, background events
have a different topology than 0νββ events. Most 0νββ events will deposit their
energy locally within a sphere with a radius of ≤ 1 mm due to the limited range of
electrons in germanium. These are so-called single-site events (SSE). The main back-
ground contribution comes from Compton-scattered photons. Their energy deposits
are usually separated by centimeters, producing so-called multi-site events (MSE).

When several germanium detectors are arranged in an array, it is thus very un-
likely that more than one detector in the array has an energy deposit in the case of
a signal event. Therefore, an anti-coincidence cut between different detectors allows
for reduction of the background.

(longitudinal anisotropy) and are not always parallel to the electric field (transversal anisotropy) [120,
121]. The drift is only exactly parallel to the field lines, when these are parallel to the crystal axes.
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Figure 5.3: (a) An example of a digitized pulse shape. (b) A zoom into the rising edge of the
pulse shape.
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Figure 5.4: In the upper panel, typical charge pulses for a SSE and a MSE in a BEGe de-
tector are shown. In the lower panel, the corresponding current pulses are depicted. At the
same energy, E, the amplitude of the current pulse, A, differs for SSE and MSE. Image taken
from [128].

Background events can additionally be reduced using pulse shape analysis

(PSA) [123–125], that is by analyzing the structure of the pulse shapes. This allows to
distinguish between different event topologies and thus to discard background events.

The geometry of the BEGe detectors allows an improved PSA compared to coaxial
detectors. Thanks to the smallness of the p+-contact, the electric field of a BEGe
detector has a very peculiar shape. In the top panel of Fig. 5.4, typical charge pulses
for a SSE and a MSE in a BEGe detector are depicted. The lower panel shows the first
derivative of the charge pulses, the current pulses. Very distinct differences between
the two event topologies can be observed. At the same event energy, E, determined
from the height of the charge pulse, the amplitude of the current pulse, A, differs for
SSE and MSE. This leads to the definition of the A/E parameter. An event selection
based on A/E has proven to be very effective in distinguishing SSE from MSE and thus
lowering significantly the background. Details can be found in [126–129].





Chapter 6

The GERDA Experiment

The GERmanium Detector Array (GERDA) [10, 11] is an experiment designed for the
search of 0νββ of 76Ge with germanium detectors.
From Equation (4.4) it becomes evident that germanium detectors are an attractive
option in the search for double beta decay. Being the detector also the source, they
guarantee a very high signal efficiency. Germanium can be produced very radio-pure
as high-purity germanium (HPGe) and thus the intrinsic background is very small. The
excellent energy resolution of (0.1−0.2)% FWHM at 2039 keV, the Q-value of double
beta decay of 76Ge, allows for a good separation between 2νββ and 0νββ events.
Germanium detectors have been used in nuclear physics for a very long time, making
it a well established and validated technology.
One of the drawbacks of germanium detectors is the rather low Q-value of 76Ge, lead-
ing to substantial external background from natural radioactivity. The natural abun-
dance of 76Ge is only 7.8 %, so that costly enrichment is needed. In the future, the
scalability to larger masses could prove a problem.

The GERDA experiment adapted the idea of submerging HPGe detectors directly in
a cryoliquid [130]. It is operated in two phases.
The data taking for Phase I started in November 2011 and ended in May 2013. With a
background of≈ 10−2 cts/(keV·kg·yr), 21.6 kg·yr of data were collected. This allowed
to set a limit of T 0ν

1/2 > 2.1 · 1025 yr (90 % C.L.) on the half-life of 0νββ of 76Ge [6].
Phase II is planned to start in 2014. By using a novel detector design, featuring en-
hanced PSA techniques, and detecting the liquid argon (LAr) scintillation light, it aims
at a background level of 10−3 cts/(keV·kg·yr). With an exposure of 100 kg·yr, half-lifes
up to 2 · 1026 yr can be explored.

6.1 Experimental Setup

The GERDA experiment is located at the INFN Laborati Nazionali del Gran Sasso
(LNGS) in Italy. The rock above the laboratory provides in average 3500 m of wa-
ter equivalent (w.e.) shielding, suppressing the cosmic ray muon flux by a factor 106

to 1 muon/(m2 · h).
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(a) (b)

Figure 6.1: (a) String of three Phase I detectors in their low mass holders. (b) Three detector
strings contained in their minishrouds.

The environmental background component is reduced by graded shielding. The ger-
manium detectors are arranged in four detector strings. Low mass holders are used to
minimize the amount of material close to the detectors. Figure 6.1(a) shows such a
string with three detectors used in Phase I. The bare germanium detectors are directly
submerged in a stainless-steel cryostat with a diameter of 4.2 m, filled with 64 m3 of
liquid argon (LAr). A heatexchanger, located in the top part of the cryostat, prevents
the extensive loss of LAr. A copper lining of the steel vessel absorbs its gamma radia-
tion. The cryoliquid provides not only shielding, but also cools down the detectors to
their operating temperature. The complete detector array is enclosed in the so-called
radon shroud, a copper cylinder with a diameter of 75 cm and a thickness of 30µm.
Liquid argon contains the radioactive isotope 42Ar, whose daughter 42K decays to the
stable 42Ca. Since this latter decay has a Q-value of 3525.4 keV, it contributes to the
background in the ROI . In order to minimize this contribution, the attraction of posi-
tively charged 42K ions in the detector vicinity has to be reduced. This is achieved by
putting the detectors in a field-free configuration, that is by avoiding electrical fields
in their proximity. The field-free configuration is provided by closing the electrical
field lines originating from the voltage-biased surfaces of the detectors on a thin cop-
per layer closely surrounding each detector string. These so-called minishrouds have
a diameter of ≈ 10 cm and are centered on the detector string. They can be seen in
Fig. 6.1(b).

In the second phase of GERDA, the cryostat will be equipped with instrumentation
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Figure 6.2: An artist’s view of the GERDA experiment.

to detect the LAr scintillation light. This will allow a further reduction of the back-
ground from ambient radioactivity.

The cryostat is surrounded by a water tank with a diameter of 10 m and a height
of 9 m, containing 590 m3 of ultra-pure water. The water serves as shielding from
photons and spallation neutrons from outside the water tank. It is equipped with
photomultiplier tubes to detect the Čerenkov light of remaining cosmic muons.
On top of the water tank, a class 10 000 clean room is located. The handling of the
detectors takes place in class 100 flow-boxes. The detector strings are inserted into
the cryoliquid through a lock system. An additional muon veto system is installed on
top of the clean room to protect the neck region of the cryostat.

Close to the detectors, only copper and teflon are used, as these materials can
be produced with high radio-purity. All materials used to build the experiment were
screened to guarantee their radio-purity.

A sketch of the GERDA experiment is depicted in Fig. 6.2.

6.2 Detectors

6.2.1 Phase I Detectors

In the first phase of the GERDA experiment, the reprocessed HPGe detectors of the
IGEX [104] and HdM [105] experiments were deployed. All eight detectors were
coaxial p-type detectors and enriched in 76Ge to a level of (85–87) %. An example of
one of the detectors can be seen in Fig. 6.3. Together with a natural HPGe detector
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Figure 6.3: Picture of an enriched Phase I coaxial detector.

from the GENIUS-TF experiment [131], they were arranged in three detector strings.
Two additional natural GENIUS-TF detectors in a fourth string were later replaced by
five Phase II BEGe detectors. Due to high leakage currents, two of the enriched coaxial
detectors, ANG1 and RG3, as well as one of the BEGe detectors, GD35C, were not used
for data analysis. Table 6.1 summarizes the main characteristics of the detectors used
in Phase I.

The detectors were read out at the p+-electrode, whereas the n+-surface served as
HV contact. The applied bias voltage varied between 2 kV and 4.5 kV for the different
detectors. Charge-sensitive preamplifiers, custom-designed from low-background ma-
terial, were operated directly in the LAr at a distance of about 30 cm from the topmost
detectors. Coaxial cables with a total length of about 20 m transported the signal to
the data aquisition (DAQ). After amplification with a linear amplifier, the pulses were
digitized by a 14-bit flash-ADC (FADC). For each event, two traces per channel were
stored, one with a trace length of 4µs and a sampling frequency of 100 MHz, the other
one with a trace length of 160µs and a sampling frequency of 25 MHz. The decay time
of the pulses was ∼ 100µs.

6.2.2 Phase II Detectors

In Phase II, additional enriched HPGe detectors will be deployed. For the design, the
BEGe detector geometry was chosen. Its improved energy resolution and excellent
PSA performance will be crucial in order to reach the sensitivity goals.

To guarantee the extremely low background level needed for Phase II, the produc-
tion of the new BEGe detectors was carefully planned and carried out. Fast neutrons
from the cosmic radiation produce radio-isotopes such as 60Co and 68Ge via spalla-
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Table 6.1: Main characteristics of the Phase I detectors: isotopic abundance of 76Ge, f76,
diameter, d, height, h, total mass, M , fraction of active mass, fact , and thickness of n+ dead
layer, dn+ . The last column indicates the detectors used for analysis in this work.

Detector f76 d h M fact dn+ used for

(%) (mm) (mm) (g) (%) (mm) analysis

Enriched Coaxial Detectors

ANG1 85.9 (29) 59 68 958 83.0(52) 1.8(5) –

ANG2 86.6 (25) 80 107 2833 87.1(51) 2.3(7)
p

ANG3 88.3 (26) 78 93 2391 86.6(57) 1.9(7)
p

ANG4 86.3 (13) 75 100 2372 90.1(57) 1.4(7)
p

ANG5 85.6 (13) 79 105 2746 83.1(48) 2.6(6)
p

RG1 85.5 (15) 78 84 2110 90.4(59) 1.5(7)
p

RG2 85.5 (15) 78 84 2166 83.1(53) 2.3(7)
p

RG3 85.5 (15) 79 81 2087 89.5(54) 1.4(7) –

Enriched BEGe Detectors

GD32B 87.7(13) 71.89(4) 32.16(12) 717 89.0(27) 0.988(249)
p

GD32C 87.7(13) 71.99 (1) 33.15(6) 743 91.1(30) 0.809(278)
p

GD32D 87.7(13) 72.29(2) 32.12 (10) 723 92.3(26) 0.683(235)
p

GD35B 87.7(13) 76.33(3) 32.10(11) 812 91.4(29) 0.785(270)
p

GD35C 87.7(13) 74.84(6) 26.32(18) 635 90.6(32) 0.764(265) –

Natural Coaxial Detectors

GTF32 7.8(1) 89 71 2321 97(5) 0.4(8) –

GTF45 7.8(1) 87 75 2312 –

GTF112 7.8(1) 85 100 2965 –
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Figure 6.4: Picture of an enriched Phase II BEGe detector.

tion reactions in germanium. The decay of these cosmogenic radio-isotopes mimics
the signal events, increasing the internal background. Therefore, the exposure of the
germanium to cosmic radiation had to be minimized during the entire production pro-
cess. To this scope, the material and later the diodes were always transported in a
shielded container. At all production sites, underground storages were identified and
the germanium was transported between the storage location and the production site
on a daily basis. The exposure was rigorously tracked in order to estimate and control
the activation.
The steps in the production process of the BEGe diodes were:

• The production of GeO2 enriched in 76Ge to a level of ∼ 88 % at Electrochemical
Plant in Zelenogorsk, Krasnojarsk, Russia.

• The metal reduction and zone refinement to obtain 6N grade material at PPM
GmbH in Langelsheim, Germany.

• The crystal pulling at Canberra Industries Inc. in Oak Ridge, USA.

• The diode production at Canberra Semiconductors NV in Olen, Belgium.

• The characterization at the HADES underground laboratory in Mol, Bel-
gium [132].

• The contacting at Canberra Semiconductors NV in Olen, Belgium.

• The delivery to the GERDA experimental site at LNGS in Assergi, Italy.

From initially 37.5 kg of enriched GeO2, 30 BEGe detectors with a total mass of∼ 20 kg
were produced. Figure 6.4 shows one of the newly produced detectors.

The cosmic activation was limited to ∼20–50 68Ge nuclei/kg and ∼20–40 60Co
nuclei/kg, respectively.

As mentioned in Sec. 6.2.1, five of the enriched BEGe detectors could already be
operated in the GERDA setup during Phase I.



Chapter 7

GERDA Phase I Data

The GERDA Phase I data taking lasted for almost 19 months and a total of 21.6 kg · yr
of data was collected with the enriched detectors. The pulse shapes acquired with the
GERDA experiment were digitized by the DAQ system and stored for offline process-
ing. In the subsequent data flow, quality cuts were applied and the event energies
for each channel were extracted. This chapter recapitulates the offline data treat-
ment. For an extensive description of the data processing, summarized in Sec. 7.1,
see [133–138]. Specifics on the calibration procedure, presented in Sec. 7.2, can be
found in [139,140].
After the description of the data treatment, an overview on the GERDA Phase I data
taking is presented and the most important parameters are summarized. A first as-
sessment of the background sources present in the experiment is given.

7.1 Data Processing

All steps of the offline processing of the GERDA data were performed within the soft-
ware framework GELATIO [141]. This ROOT [142] based framework was specifically
developed for the GERDA data handling and analysis.

Every time an energy above 100 keV is deposited in at least one of the germanium
detectors, two pulse shapes are recorded for each of the detectors present in the setup.
One of these traces has a length of 4µs and is digitized with a frequency of 100 MHz,
whereas the other one has a length of 160µs and is digitized with a frequency of
25 MHz. For both traces, the rising edge of the pulse is ideally centered on the recorded
time window. The high-frequency pulse is typically used for PSA, as details in the rising
edge are preserved. The low-frequency pulse is recorded over a 40 times longer time
span. This provides the possibility to analyze also the baseline and decay tail of the
pulse. All steps described in the following are carried out with the long low-frequency
pulse.

The GELATIO software has a modulized structure. Each module is composed of
a variety of filters, dedicated to extract information on one particular aspect of the
pulse shape. A chain of several modules is used to extract all important parameters
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from the traces. After the restoration and analysis of the baseline, the starting point of
the rising edge is determined and the number of triggers for each trace is identified.
The energy deposited in each detector is extracted from the respective charge pulse by
applying an approximate Gaussian filter [133,143]. Finally, the rise time of the rising
edge is determined as the time between 10 % and 90 % of the maximum amplitude of
the charge pulse.

In a next step, the quality of the data has to be verified. Non-physical events, such
as discharges, cross-talk and pick-up noise events, have to be removed. Figure 7.1(a)
shows examples of such pulse shapes. Due to their anomalous shapes they can be
rejected by cuts based on the time position of the rising edge, the information from
the Gaussian filter, the rise time, and the charge pulse height, which must not exceed
the dynamic range of the FADC.
Also, all pile-up and accidental coincidence events are removed from the data set.
Example pulses are depicted in Fig. 7.1(b). Pile-up events comprise events in which
multiple traces are superposed in the same time window, leading to multiple triggers,
as well as events with a slope of the baseline, deriving from the decay tail of a previous
pulse outside the time window. Accidental coincidences, on the other hand, describe
traces where the rising edge of the pulse is not centered on the recorded time window.
Cuts based on the baseline slope, the number of triggers and the position of the rising
edge identify both classes of events. The rate of pile-up and accidental coincidence
events is negligible in the GERDA data due to an extremely low event rate. The loss
due to miss-classification by the quality cuts is < 0.1 % for events with energies above
1 MeV.

By monitoring the pulse shape parameters and their variations over time, data
taken in periods with large unstabilities could be removed, assuring always an excel-
lent data quality.

In a last step, all events that come within 8µs of a signal of the muon veto are
rejected, reducing the background around Qββ by 7 %.

For all analyses described in this work, only events that survive the detector anti-
coincidence cut were considered. This means, that all events with an energy deposit
> 20 keV in more than one detector in the array were not taken into account. While
the energy information from ANG1 and RG3 was ignored for this cut, energy deposits
in the natural germanium detectors and in GD35C were taken into account. The
background reduction around Qββ is around 15 %. Since 0νββ events are of the SSE
type, no signal events are lost by this cut.

7.2 Energy Calibration

The energy calibration of the GERDA data is realized using the information from dedi-
cated calibration runs. For these calibration runs, three 228Th sources are brought into
the vicinity of the detectors. A detailed description of the calibration system can be
found in [144–146].

During normal data taking, the calibration runs were performed every seven to
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(a) (b)

Figure 7.1: (a) Pulses generated by non-physical events. (b) Top: Pile-up event with base-
line slope. Middle: Pile-up event with superposition of multiple pulses. Bottom: Accidental
coincidence event. Figures adopted from [133].

ten days. The gain stability of the preamplifiers was monitored throughout the entire
data taking period by surveying their response to periodical test pulses. Extraordi-
nary calibration runs were performed following instabilities of the gain. The data of
the calibration runs was used to extract the calibration curves, that is the functions
converting the uncalibrated energy calculated by the Gaussian energy filter into cal-
ibrated energy for each detector. Additionally, the calibration data was used to tune
the PSA parameters and to check the data quality by monitoring e.g., the positions of
the photon peaks and their energy resolution in the recorded 228Th energy spectrum
as a function of time.

To save diskspace, the calibration data was recorded with a 400 keV threshold,
meaning that no event was recorded in which the energy did not exceed 400 keV in
at least one detector. The data was processed following the protocol described in
Sec. 7.1. All relevant parameters, such as uncalibrated energy, rise time, baseline
slope, number of triggers, and time position of the rising edge were extracted and
non-physical events as well as pile-up and accidental coincidence events were rejected
by the data quality cuts. As a consequence of the higher event rate compared to the
physics runs, pile-up and accidental coincidence events constituted up to 15 % of all
events recorded during the calibration runs. Finally, a muon veto cut and a detector
anti-coincidence cut were applied.

For each detector, the uncalibrated energies of the surviving events were filled
into a histogram. An example of such an uncalibrated energy spectrum can be seen
in Fig. 7.2. All peaks of the spectrum were identified and either matched to known



42 GERDA Phase I Data

uncalE
0 1000 2000 3000 4000 5000 6000 7000

C
ou

nt
s

1

10

210

310

Figure 7.2: Example of an uncalibrated energy spectrum of a single detector recorded during
a calibration run with the 228Th sources. All quality cuts have been applied.

photon peaks of the 228Th spectrum or discarded. The selected photon peaks were
then fitted with a general fitting function, containing a term for the gaussian peak, a
step function, a term describing the low energy tail, and a term describing the linear
background. If one of the contributions was not well constrained by the fit or neg-
ligible, the fit was repeated without the respective term. Figure 7.3 shows the peak
corresponding to the 2.6 MeV photon peak for one of the detectors with the best fit
function.

In the next step, the peak positions in the uncalibrated spectra obtained from the
fits are matched with their literature values. This allows to calculate the calibration

curves as

Ecal = a+ b · Euncal+ c · E2
uncal, (7.1)

where Ecal is the calibrated energy, Euncal the uncalibrated energy, and a, b, and c are
parameters determined from a fit. An example of a calibration curve is shown in
Fig. 7.4.

The calibration curves were used to determine the energy deposited in each detec-
tor for each event by converting the uncalibrated energy given by the Gaussian filter
into calibrated energy. For the physics runs, the curves were applied prospectively,
that is a set of calibration curves was valid for all subsequent physics runs until the
next calibration run was performed.

The energy resolution, defined as the full width at half maximum (FWHM), was
calculated for each photon peak in the calibration spectra. Its energy dependency can
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Figure 7.3: Peak corresponding to the 2.6 MeV photon peak with the best fit function. The
contributions from the low energy tail and the slope of the linear background are negligible
and are therefore omitted in the best fit function. Figure taken from [140].

be expressed as [147]

FWHM=
p

p2
0 + p1 · E, (7.2)

with p1 and p0 parameters that have to be determined separately for each detector1.
The dependency of the FWHM on the energy for one of the detectors is depicted in
Fig. 7.5. Shown is also a fit to the data points with Function (7.2). The peak at 511 keV
as well as the double escape peak (DEP) at 1593 keV and the single escape peak (SEP)

at 2104 keV suffer from Doppler-broadening and were excluded from the fit.
The validity of the calibration curves above 2.6 MeV, the highest peak in the cal-

ibration spectra, was verified using test pulses as input to the preamplifier. The pre-
cision of the calibration curves proved to be better than 10 keV between 3 MeV and
6 MeV.

7.3 Data taking summary

Phase I data taking lasted from November 9, 2011, to May 21, 2013. The measure-
ment live time was calculated from the monitoring test pulses that were inserted into
the test input of each detector at a frequency of 0.05 Hz (0.1 Hz before January 2012),
that is every 20 s (10 s). For every registered test pulse, 20 s (10 s) are added to the

1The term proportional to E mentioned in Sec. 5.3.4 is negligible in this case.
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Figure 7.4: True peak positions as a function of the peak positions in the uncalibrated energy
spectrum. The calibration curve, plotted in red, is defined as Ecal = a + b · Euncal + c · E2

uncal,
where a, b, and c are determined from a fit. Figure based on [140].

total live time, t i, of the respective detector, i. RG2, one of the enriched coaxial detec-
tors, showed an increasing leakage current towards the end of the data taking period
and was not considered for analysis anymore following March 2013. The data taken
between May 31, 2012 and June 15, 2012 was not used for data analysis due to large
instabilities of all detectors.
Table 7.1 lists the exposures, Ei, for all detectors, i, considered for data analysis. They
are defined as Ei = Mi · t i, where Mi is the total mass of detector i. The uncertainty on
the exposure was estimated to be < 0.5 %. A total of 21.6 kg · yr of data was collected
with the enriched detectors.

The graph in Fig. 7.6 shows the live time fraction of the enriched detectors over
the Phase I data taking period. The gap at the beginning of June 2012 was caused
by the exclusion of data due to instabilities. Also the insertion of the BEGe detector
string in July 2012 lead to an interruption in the data taking. Clearly seen are the
regular short interruptions due to calibration measurements. The overall duty factor
was 88.1 %. Superposed is the development of the total exposure E =

∑

i
Ei.

From the calibration measurements, the dependency of the FWHM on the energy
can be deduced as described in Sec. 7.2. In order to crosscheck the validity of the
interpolation, the FWHM at the 42K line at 1524.7 keV estimated from the calibration
data was compared to the FWHM derived from a fit to the physics data. For ANG2,
ANG4, and GD32D, the FWHM during physics data taking showed a positive offset
larger than the 68 % uncertainty. As this can be accounted to unobserved gain vari-
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Figure 7.5: FWHM as a function of the energy, E. The data points are fitted with Func-
tion (7.2). The Doppler-broadened 511 keV peak, the DEP at 1593 keV, and the SEP at
2104 keV were excluded from the fit. Figure based on [140].

ations, the constant offset of (1.24± 0.29± 0.02)keV, (0.48± 0.31± 0.05)keV, and
(0.94± 0.47± 0.05)keV, respectively, had to be added to the FWHM of these three
detectors when estimating the energy resolution at a certain energy for the physics
data from the calibration data. Table 7.1 lists the estimates for the energy resolution
at Qββ = 2039 keV for the single detectors. They were obtained by averaging over the
results from all available calibration measurements, weighting the single values with
the respective uncertainty, duration of validity for data calibration, and exposure, and
corrected for the offset. The statistical uncertainty is larger for ANG2, ANG4, and
GD32D due to the uncertainties deriving from the determination of the constant off-
set from physics data. The systematic uncertainty accounts for the variations deriving
from an alternative function to Equation (7.2) and an extraction of FWHM from the
sum spectrum of all calibration measurements instead of the weighted sum of the re-
sults for the single measurements. The exposure-averaged values for the coaxial and
BEGe detectors were (4.8± 0.2)keV and (3.2± 0.2)keV, respectively.

The energy resolution was stable over the complete Phase I data taking period.
This can be seen in Fig. 7.7(a), where the FWHM at 2039 keV of the coaxial detectors
is depicted as a function of time. Note that the shown values have not yet been
corrected for the constant offset. The fluctuations of the energy resolution remain
below 0.2 keV. For the BEGe detectors, the largest variations were about 0.3 keV.

The stability of the gain is demonstrated in Fig. 7.7(b), where the shift of the
position of the 2615 keV line for subsequent calibration measurements is depicted for
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Table 7.1: Exposure, E , and FWHM at Qββ , FWHM, for the detectors considered for analysis.
The uncertainty on E was estimated to be < 0.5 %. The statistical uncertainty on FWHM was
larger for ANG2, ANG4, and GD32D due to the offset correction, which was determined from
physics data. Also given are the exposures and exposure-weighted averages of the FWHM for
the data sets considering all enriched coaxial detector data (coaxial sum data set), all BEGe
detector data (BEGe sum data set), and for the golden and silver data sets, defined in Sec. 7.4.

Detector E (kg·yr) FWHM (keV)

Enriched Coaxial Detectors

ANG2 3.81 5.74±0.29±0.06

ANG3 3.21 4.54±0.05±0.13

ANG4 3.19 4.91±0.31±0.06

ANG5 3.69 4.17±0.04±0.09

RG1 2.84 4.46±0.07±0.26

RG2 2.47 4.90±0.06±0.25

Coaxial sum 19.2 4.80±0.14±0.13

Golden 17.9 4.83±0.15±0.13

Silver 1.3 4.63±0.09±0.22

Enriched BEGe Detectors

GD32B 0.55 2.62±0.05±0.07

GD32C 0.62 2.63±0.04±0.04

GD32D 0.56 3.68±0.47±0.06

GD35B 0.67 3.96±0.10±0.07

BEGe sum 2.4 3.24±0.16±0.06

the coaxial detectors. The FWHM of the distribution of the shifts, shown in the insert,
is 1.3 keV and thus much smaller than the energy resolution. For the BEGe detectors,
a FWHM of the gain distribution of 1.0 keV was measured, also well below the energy
resolution.

In order to avoid bias, the strategy of a blinded analysis was followed for the Phase
I data. All events with an energy deposit between 2019 keV and 2059 keV in one of
the detectors, that is within a 40 keV-wide window around Qββ , were stored separately
and were not available in the data sets used for analysis. The blinding procedure was
applied to all data taken after January 11, 2012. The selection was based on the
energy information provided by the FADC. In June 2013, after the end of the Phase
I data taking and when all analysis tools needed for the estimation of the half-life of
0νββ had been fixed, the complete data was made available for analysis.

Figures 7.8(a) and 7.8(b) show the energy spectra between 20 keV and 7.5 MeV
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Figure 7.6: Live time fraction and exposure of the enriched detectors in Phase I. The frequent
short interruptions were due to the regular calibration measurements.

for the active coaxial (ANG2-ANG5, RG1, RG2) and BEGe (GD32B, GD32C, GD32D,
GD35B) detectors, respectively. The data was processed according to the procedure
described in Sec. 7.1. The depicted spectra comprise all valid data acquired during
Phase I, with a total exposure of 19.2 kg · yr for the coaxial detectors and 2.4 kg · yr
for the BEGe detectors. The data sets are referred to as coaxial sum and BEGe sum,
respectively. The green area marks the blinded window. As described in Sec. 7.4,
the data of the coaxial detectors was divided in the golden and silver data set with
exposures of 17.9 kg · yr and 1.3 kg · yr, respectively. The corresponding spectra are
also shown in 7.8(a). For comparison, the energy spectrum of one of the natural
coaxial detectors, GTF112, is depicted in Fig. 7.8(c). Its total exposure was 4.0 kg · yr.

7.4 Background Contributions and Background Index

The energy spectra depicted in Fig 7.8 reveal distinctive characteristics, allowing to
draw first conclusions on the present background sources.

The low energy part was dominated by the decay spectrum of 39Ar. This cosmo-
genically produced radio-isotope decays in the LAr with a half-life of T1/2 = 269 yr
and a Q-value of 565 keV. The decay is pure beta decay without any photon emission.
Therefore, the detector geometry and n+-surface thickness have a large influence on
the shape of the spectrum, explaining the visible differences when comparing the coax-
ial with the BEGe detector energy spectrum. The activity of 39Ar in natural argon has
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(a)

(b)

Figure 7.7: (a) The FWHM at 2039 keV for the coaxial detectors as a function of time. Note
that the values have not yet been corrected for the constant offset. (b) Shift of the position of
the 2615 keV line for subsequent calibration measurements for the coaxial detectors. A FWHM
of 1.3 keV was measured for the distribution of the shifts.

been estimated to be 1.01± 0.02(stat)± 0.08(syst)Bq per kg of natural argon [148].

When comparing the energy spectra of the enriched detectors, Fig. 7.8(a)
and 7.8(b), with the spectrum of the natural detector, Fig. 7.8(c), it becomes obvi-
ous that the dominating contribution between 600 keV and 1500 keV for the enriched
detectors derives from the continuum of 2νββ , while this feature is practically absent
for the natural detector.

Furthermore, several photon lines can be identified in the depicted spectra. The
most prominent ones come from the decays of 42K, 40K, 214Bi, and 208Tl. They are
marked in Fig. 7.8. A quantitative analysis of the line intensities is presented in
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Figure 7.8: (a) Energy spectra of the enriched coaxial detectors (coaxial sum data set), and
the golden and silver data sets. For a definition of the data sets see Sec. 7.4. (b) Energy
spectrum of the BEGe detectors (BEGe sum data set). (c) Energy spectrum of the GTF112
detector. All spectra were obtained by processing the data as described in Sec. 7.1. They
comprise all valid Phase I data, with a total exposure of 19.2 kg · yr for the coaxial detectors
(17.9 kg · yr for the golden data set, 1.3 kg · yr for the silver data set), 2.4 kg · yr for the BEGe
detectors, and 4.0 kg · yr for GTF112. The green area marks the blinded window.
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Figure 7.9: Count rate, corrected for the live time fraction, of the coaxial enriched detectors
in the range 1550 keV to 3000 keV in time intervals of 15 days as a function of time.

Sec. 7.5.
At energies above 3.5 MeV, contributions from alpha decays are present in the

energy spectrum of the enriched coaxial detectors. Several peak-like structures can
be distinguished at 4.7 MeV, 5.3 MeV, 5.4 MeV, and 5.9 MeV. They can be attributed
to alpha decays from 226Ra, 210Po, 222Rn, and 218Po on or close to the p+-surface of
the detectors. All four isotopes are found in the natural decay chain of 238U. There
are no indications for the presence of isotopes of the 232Th chain in the vicinity of the
p+-surface of the detectors.

Figure 7.9 shows the count rate, corrected for the live time fraction, of the coaxial
enriched detectors in the range 1550 keV to 3000 keV in time intervals of 15 days as a
function of time.

The rate was stable within the uncertainties for most part of the data taking. Only
for a period following the extraction of the natural detectors in the 1-string arm and
the insertion of the BEGe detectors in June/July 2012, the count rate showed an
increase larger than 50 % compared to the average rate. The rate returned to the usual
level after ≈ 30 days. The data from the coaxial detectors could hence be divided into
two data sets, as indicated in Fig. 7.9. The silver data set contained the data collected
with the coaxial detectors during the first ≈ 30 days after the intervention for the
detector exchange. The golden data set contained all other data collected with the
enriched coaxial detectors. The information regarding exposure and energy resolution
is given in Table 7.1.

The background index (BI) in the region of interest (ROI) around Qββ was esti-
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Figure 7.10: Definition of the window used for the determination of the background index,
BI . All events between 1930 keV and 2190 keV were counted, excluding the 10 keV windows
around the SEP of 208Tl at 2104 keV and the 214Bi photon line at 2119 keV, as well as the
40 keV blinding window around Qββ .

Table 7.2: Background index, BI , for all relevant data sets. The window used for the estimate
comprised the range from 1930 keV to 2190 keV, excluding the regions between 2099 keV and
2109 keV and between 2114 keV and 2124 keV, as well as the 40 keV blinded window.

Data set BI (10−2 cts/(keV · kg · yr)

Coaxial sum 2.1+0.3
−0.2

Golden 1.8+0.3
−0.2

Silver 6.5+2.0
−1.5

BEGe sum 4.4+1.2
−1.0

mated from the energy spectrum between 1930 keV and 2190 keV. The regions be-
tween 2099 keV and 2109 keV as well as 2114 keV and 2124 keV were ignored due
to possible contributions from the single escape peak (SEP) of 208Tl at 2104 keV and
from the 2119 keV photon line from 214Bi, which would have lead to an overestima-
tion of the continuous background. Excluding also the 40 keV-wide window around
Qββ , where no information on the data was available for the blinded analysis, the total
width of the window used for the determination of the BI was 200 keV. Figure 7.10
illustrates the definition of this window. As observable in this figure and shown in
Chapter 9 and in [149], the background could be assumed to be flat in the ROI .

The BI was determined by counting all events in the above defined window and
normalizing this number to the width of the energy window and the exposure. The
results for all enriched coaxial detectors, the golden and silver data sets, and for the
BEGe sum data set are listed in Table 7.2.
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7.5 Photon Line Intensities

The most prominent photon line for all spectra depicted in Fig. 7.8 is the 1524.7 keV
line of 42K, the daughter of 42Ar. The mother isotope, 42Ar, is produced by cosmogenic
activation in argon and decays with a Q-value of 599 keV and a half-life of 32.9 yr.
The homogeneously distributed 42K ions are transported in the LAr by electric fields
and convective flows. They decay with a half-life of 12.4 h via beta decay with a Q-
value of 3525.4 keV to the stable 42Ca. In 18 % of the cases, 42K decays to an excited
level of 42Ca, which de-excites under emission of a 1524.7 keV photon, explaining the
observed line in the energy spectrum.

The line at 1460.8 keV derives from the decay of 40K. It decays with a half-life
of 1.3 · 109 yr via beta decay and via electron capture and positive beta decay. The
Q-values are with 1311.1 keV and 1504.9 keV both well below Qββ .

The beta decay of 60Co leads to two distinct photon lines at 1173.2 keV and
1332.5 keV. The Q-value of the decay is 2823.9 keV and the half-life is 5.3 yr.

Furthermore, the photon lines of several isotopes from the natural decay chains can
be recognized in the spectra. The decay chain of 232Th comprises 228Ac with lines at
911.2 keV and 969.0 keV, 212Pb with a line at 238.6 keV, 212Bi with a line at 727.3 keV
and 208Tl with lines at 510.8 keV, 583.2 keV, 860.6 keV, and 2614.5 keV. The latter can
be easily distinguished in Fig. 7.8(a). The presence of elements of the 238U chain can
be deduced from the lines of 214Pb at 295.2 keV and 351.9 keV and lines from 214Bi at
609.3 keV, 768.4 keV, 1120.3 keV, 1238.1 keV, 1764.5 keV, and 2204.2 keV, the latter
two again well visible in the spectrum of the coaxial detectors. The half-lives range
from a few minutes to several hours and the Q-values vary between 570 keV for 212Pb
and 6.2 MeV for 212Bi.

Also a possible contamination by 137Cs might be present.
In order to quantify the background contributions, the line intensities for the men-

tioned photon lines were determined for the coaxial detectors, the golden and silver
data sets, and the BEGe detectors. For each line, the number of events in the signal
region, NS+B, was counted in an 8σ-wide window centered on the photon line energy.
For σ, the exposure weighted average at Qββ was used, corresponding to σ = 2.1 keV
for the sum of the coaxial detectors and the golden data set, σ = 1.4 keV for the sum
of the BEGe detectors, and σ = 2.0 keV for the silver data set.

The number of events due to background, NB, was estimated from the number of
counts in a 16σ-wide window centered on the photon line and excluding the signal
region. This resulted in a total range of 8σ for the background counting. Taking into
account the Poissonian nature of the processes leading to NS+B and NB and following
a Bayesian approach, the probability distribution for measuring NS+B and NB is given
as

P(NS+B, NB|rS, rB) = P(NS+B|rS, rB) P(NB|rB) =
λNS+B · e−λ

NS+B!
·
νNB · e−ν

NB!
, (7.3)

where rS and rB are the expected signal and background rate in units of cts/(kg·yr)
and λ = E · (rS + cB · rB) and ν = E · rB the expectation values for the number of



7.5 Photon Line Intensities 53

events in the signal and background region, respectively, for a data set with expo-
sure E . The scaling factor, cB, is equal to unity in case of equally sized signal and
background regions. Using the Bayes’ theorem, the global posterior probability distri-
bution, P(rS, rB|NS+B, NB), can be expressed as a function of Equation (7.3) and the
prior probability distribution functions for rS and rB, P0(rS) and P0(rB), as

P(rS, rB|NS+B, NB) =
P(NS+B, NB|rS, rB)P0(rS)P0(rB)
∫

P(NS+B, NB|rS, rB)P0(rS)P0(rB)drSdrB

. (7.4)

In order to obtain an estimate for rS, Equation (7.4) has to be marginalized,

P(rS|NS+B, NB) =

∫

P(rS, rB|NS+B, NB)drB. (7.5)

The analysis was carried out using the Bayesian Analysis Toolkit, BAT [150]. For the
prior probabilities, P0(rS) and P0(rB), flat distributions were considered and rS and rB

were required to be non-negative.
Table 7.3 lists the line intensities, rS, for all relevant background photon lines for

the four data sets. Due to the large background from 39Ar at small energies, only lines
above 300 keV were considered in the analysis. For the line intensity, the mode of
P(rS|NS+B, NB) and the smallest 68 % probability interval of the marginalized distribu-
tion are given. In case this interval contains zero, the 90 % quantile is shown.

As expected, the 42K line was the most intense photon line for all data sets.
For the rate of the 1332.5 keV line of 60Co, only limits can be given for the coaxial

and the golden data set. It is expected to be very similar to the rate of the 1173.2 keV
line.

The behaviour of the overall count rate between 1550 keV and 3000 keV, depicted
in Fig. 7.9, is reflected in the line rates of the isotopes from the 232Th decay chain. For
the silver data set, the rates were systematically higher than for the golden data set.
The limited statistics did not allow to draw analogous conclusions for the 238U chain
isotopes.

The presence of 137Cs was confirmed only for the BEGe detectors.
The line at 511.0 keV is fed by photons from 208Tl decay as well as by the photons

resulting from e+e−-annihilation. The positrons can be produced by positive beta
decay, e.g. for 40K, or by a pair production process.

The smaller rate at the 42K line for the BEGe detectors compared to the coaxial
detectors is explained by the smaller size of the BEGe detectors, making full absorption
of the 1524.7 keV photons less likely. Due to geometrical differences and diverse diode
histories, also for the other photon lines differences in the rates of coaxial and BEGe
detectors were expected. The small exposure of the BEGe detectors allowed only
upper limits for most line rates and thus no quantitative comparison with the coaxial
detectors was possible.

Table 7.3 also shows the corresponding line intensities as measured in the HdM
experiment [151]. On average, they are about one order of magnitude higher than
the intensities measured in GERDA Phase I.
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Table 7.3: Line intensity, rS , for the most prominent background lines. The mode and smallest
interval of 68 % probability of the marginalized parameter distribution are given. In case the
interval contained zero, the 90 % quantile is shown. For comparison, the corresponding line
intensities measured in the HdM experiment are shown [151].

Coaxial sum Golden Silver BEGe sum HdM

Isotope Energy rS rS rS rS rS

(keV) cts/(kg·yr) cts/(kg·yr) cts/(kg·yr) cts/(kg·yr) cts/(kg·yr)
42K 1524.7 60.6 [58.8,62.6] 59.6 [57.6,61.5] 75.1 [67.7,83.5] 46.6 [41.7,51.2] -
40K 1460.8 14.1 [12.9,15.2] 14.5 [13.2,15.6] 14.5 [13.2,15.6] 12.7 [9.6,15.9] 181±2
60Co 1173.2 2.9 [1.3,4.4] 2.5 [0.9,4.0] 5.1 [0.8,9.9] <8.6 55±1

1332.5 <1.9 <1.8 5.2 [1.5,9.1] <6.3 51±1
228Ac 911.2 3.1 [1.1,4.9] 4.0 [1.8,5.9] <8.9 <8.0 30±2

969.0 6.7 [4.6,8.5] 5.6 [3.5,7.6] 19.7 [12.2,27.5] <8.2 18±1
212Bi 727.3 2.3 [0.5,4.1] <4.7 17.8 [8.7,24.9] <6.7 8±1
208Tl 583.2 4.0 [1.9,6.2] 3.0 [1.0,5.0] 14.0 [5.9,21.8] <11.0 36±3

860.6 <3.1 <3.6 <11.9 <7.0 6±1

2614.5 1.5 [1.1,1.7] 1.5 [1.1,1.7] 1.2 [0.2,2.4] 0.6 [0.1,1.3] 17±1
214Pb 351.9 9.6 [4.3,14.1] 10.1 [5.0,15.2] <34.8 13.5 [5.6,22.7] 139±5
214Bi 609.3 8.1 [5.6,10.3] 8.6 [5.9,10.8] <16.1 12.0 [6.7,18.2] 105±1

768.4 4.3 [2.1,6.3] 3.6 [1.4,5.5] 16.9 [8.1,23.9] 6.5 [1.6,10.7] 11±1

1120.3 <2.9 <3.1 <8.9 6.7 [2.5,10.7] 27±1

1238.1 <2.8 <2.8 <10.7 <6.6 11±1

1764.5 3.2 [2.7,3.7] 3.3 [2.7,3.7] 2.2 [0.2,4.0] <2.5 31±1

2204.2 0.9 [0.6,1.2] 0.9 [0.6,1.2] <3.3 1.0 [0.3,1.8] 8±1
137Cs 661.7 <4.6 <5.0 <14.7 7.0 [2.3,11.8] 282±2

e+e−

&208Tl 511.0 10.4 [7.8,12.8] 10.6 [7.9,13.1] <20.0 16.5 [10.4,21.9] 30±3



Chapter 8

Monte Carlo Simulation of the GERDA

Experiment

The energy spectra acquired during GERDA Phase I and presented in Chapter 7 are
composed of various contributions. The decays of a broad variety of radioactive iso-
topes inside or on the surface of the materials used in the experimental setup as well as
in the detectors themselves lead to energy depositions and thus contributed to the fi-
nal energy spectra. With the help of Monte Carlo (MC) simulations, the energy spectra
of the single background contributions were modeled.

8.1 Monte Carlo Description of the GERDA Experiment

The MC simulations were carried out within the GEANT4 [152] based MAGE [153]
framework. It comprises a detailed description of the geometry of the GERDA exper-
iment, including cabling, detector holders, minishrouds, and shroud. A schematic of
the implementation is shown in Fig. 8.1.

The geometrical information listed in Table 6.1 was taken into account to model
each detector used in the GERDA Phase I setup. The p+- and n+-electrodes were imple-
mented as inactive components of the detectors.

Two different configurations of the detector array were available for the MC cam-
paign. For both cases, the three detector strings containing the eight enriched coaxial
detectors and one natural coaxial detector remained unchanged. The fourth string
was designed to either contain the two additional natural coaxial detectors used in
the first part of Phase I data taking, or the five BEGe detectors inserted in the array
in July 2012. In the following, the first configuration will be referred to as configNAT,
whereas the second one will be referred to as configBEGE. In Fig. 8.2(a), configNAT is
depicted. Figure 8.2(b) shows the BEGe detector string that replaces the string con-
taining the two natural coaxial detectors, when switching to configBEGE. Additionally,
there was the possibility to replace the detector array by a single detector. For the
detector geometry, either ANG3 or GD32B could be chosen. These configurations are
labeled configANG3 and configGD32B in the following.
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Figure 8.1: Schematic of the MAGE imlementation of the GERDA experiment. The water tank,
equipped with photomultipliers, and the cryostat can be distinguished. The cylindrical shaped
shroud containing the detector array is placed inside the cryostat. On top of the water tank,
the cleanroom structure with the lock system is implemented.

8.2 Monte Carlo Event Processing

The output of MAGE is a list of hits with energies Ei for every simulated decay. The
energy in a detector, Edet, for each event is calculated as Edet =

∑det
i

Ei, where the sum
runs over all hits of the event in which energy is deposited in the active volume of the
respective detector.

In order to account for the energy resolution of each detector, Edet was smeared
with the resolution obtained during data taking. For this scope, the FWHM as a
function of energy, Equation (7.2), was determined for each detector as described
in Sec. 7.2. The final curves were obtained by averaging over all valid calibration
runs. For each Edet, the FWHM was determined from the corresponding detector’s
curve. The smearing factor to be added to Edet was drawn from a Gaussian random
distribution centered on zero and with a resolution corresponding to the respective
FWHM.
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(a) (b)

Figure 8.2: (a) The detector array in the configNAT configuration. (b) The string containing
the five Phase I BEGe detectors. It replaces the two-detector string, when switching from
configNAT to configBEGE. The minishrouds are sketched in brown. No minishroud was present
for the string with the two natural detectors.

Figure 8.3 shows an example of the energy spectrum for a single coaxial detector. It
was obtained by simulating 60Co decays in the detector holders. During processing, the
energy spectrum was smeared and a detector anti-coincidence cut with a threshold of
20 keV was applied. The differences before and after the processing are clearly visible.
The energy smearing broadens the photon peaks and the anti-coincidence cut reduces
the total number of events contained in the energy spectrum.

A complete set of MC simulations was prepared for the golden and for the BEGe
sum data set. For all MC simulations, the effects of the individual detector masses,
the active and dead volume fractions of each detector, and the individual detector live
time had to be taken into account, when creating the energy spectra corresponding
to the data sets. Depending on the simulation mode used, some parameters were
already accounted for in the simulations, whereas others had to be introduced during
the post-processing. For both data sets, three types of modeling and processing can be
distinguished, depending on the nature and position of the simulated source. It has to
be noted that for the analyses described in the following chapters, the needed input
was the shape of the energy spectra. Therefore, the single detector spectra of each
background contribution could be scaled as necessary in order to assure the correct
composition of their sum energy spectrum.

Full array Decays of the isotope under examination were simulated in a specific vol-
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Figure 8.3: Energy spectrum of a single coaxial detector obtained from MC simulation of 60Co
decays in the detector holders. The differences before and after processing are clearly visible.
The inset shows a zoom into the energy region around the two photon peaks at 1173 keV and
1333 keV.

ume, component, and/or material of the GERDA setup. For the simulations corre-
sponding to the golden (BEGe sum) data set, configNAT (configBEGE) was used.
The single detector energy spectra were smeared and a detector anti-coincidence
cut was applied in analogy to the physics data processing, excluding all events
with an energy deposit > 20 keV in more than one detector in the array. The
energy information from the detectors corresponding to ANG1 and RG3 was
not taken into account for this cut. The final energy spectrum, φ(E), was ob-
tained by scaling the energy spectrum of each detector, ϕ j(E), with the detec-
tor’s live time in days, T j = 458.3 for ANG2-ANG5 and RG1, T j = 384.6 for
RG2, T j = 280.0 for GD32B, T j = 303.4 for GD32C and GD35B, T j = 284.0 for
GD32D, and T j = 0 for all other detectors, and summing up all single detector
spectra,

φ(E) =

Ndet
∑

j=1

T j ·ϕ j(E), (8.1)

with Ndet = 11 for configNAT and Ndet = 14 for configBEGE.

Single detectors in full array This mode was applied for decays taking place inside
the detectors themselves. Again, configNAT was used for the simulations refer-
ring to the golden data set, whereas those corresponding to the BEGe sum data
set were modeled with configBEGE. Two simulations were run for each detector
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in the array, one simulating the decays in the active part and one simulating the
decays in the n+-deadlayer of the respective detector. For each simulation, the
smearing of the energies and a detector anti-coincidence cut, excluding the en-
ergy information from ANG1 and RG3, were applied. The single detector spectra
were normalized to the total number of decays simulated to represent the detec-
tion efficiency. They were then multiplied by the detector’s live time in days and
summed up, as described above. For the simulation of Nα

act
decays in the active

part of the detector α, this results in

φα
act
(E) =

Ndet
∑

j=1

T j

Nα
act

ϕα
act, j(E), (8.2)

whereas the simulation of Nα
dead

decays in the dead part leads to

φα
dead
(E) =

Ndet
∑

j=1

T j

Nα
dead

ϕα
dead, j(E), (8.3)

with Ndet = 11 for configNAT and Ndet = 14 for configBEGE. The distributions
ϕα

act, j(E) and ϕα
dead, j(E) represent the energy spectrum in detector j resulting

from decays in the active or dead volume of a specific detector α. Consequently,
the distributions φα

act
(E) and φα

dead
(E) give the total energy spectrum resulting

from decays in the active or dead volume of detector α. In the next step, φα
act
(E)

(φα
dead
(E)) was scaled with the active volume fraction, fact,α, (dead volume frac-

tion, (1− fact,α)) of detector α and the spectra for the active and the dead part
were summed,

φα
tot
(E) = fact,αφ

α
act
(E) + (1− fact,α)φ

α
dead
(E). (8.4)

The spectrum of each detector was then scaled with its total mass, Mα, in units
of kg. The final spectrum for each data set was obtained by summing the spectra
of all detectors present in the array,

φ(E) =

Ndet
∑

α=1

Mα ·φαtot
(E). (8.5)

In case of decays of 76Ge, the single spectra were also scaled with the detector’s
isotopic abundance, f76,α,

φ(E) =

Ndet
∑

α=1

f76,α ·Mα ·φαtot
(E). (8.6)

The values for fact,α, Mα, and f76,α are reported in Table 6.1.

Single detector In order to reduce the computing expenses for cases, where detector
anti-coincidences and minor geometrical differences between the detectors were
of secondary importance, the simulations were carried out using configANG3 and
configGD32B. In this case, the only processing step that had to be applied was
the smearing of the produced energy spectrum.
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8.3 Simulated Background Sources

The decays of all radioactive isotopes whose presence was deduced from the Phase
I data energy spectra were simulated. As can be seen from Fig. 7.8, the dominating
contribution in the energy spectra of the enriched detectors came from 2νββ of 76Ge.
From the observations made in Sec. 7.4 and from Table 7.3, the background contam-
inations that had to be considered were radioactive isotopes from the natural decay
chains of 232Th and 238U, as well as 42K, 40K, and 60Co decays. Due to its low Q-value
of 565 keV, the correct modeling of the 39Ar beta decay spectrum would require an
extremely detailed knowledge not only of the detector deadlayer geometry, but more
importantly of the trigger efficiency at small energies. As the study of these matters is
beyond the scope of this thesis, for all analyses presented in the following, an energy
threshold above the Q-value of 39Ar was set and thus the simulation of 39Ar decays
was not needed. Since no evidence for the presence of 137Cs was found in the spectra
of the coaxial enriched detectors, this source was considered to be negligible and no
137Cs decays were simulated.

Further contributions to the energy spectra could come from muons of the cosmic
radiation. It has been shown, however, that the muon rejection efficiency of the muon
veto system, εµr , is εµr = 0.991+0.003

−0.004 [154], so that the muon contribution is reduced
to a BI of < 10−5 cts/(keV · kg · yr) [11].

The background due to neutron interactions was estimated to be of the order of
10−5 cts/(keV · kg · yr) [155]. Both contributions are thus negligible and were not
considered.

Another possible source of background events were the three 20 kBq 228Th sources
used for the calibration measurements. During regular data taking, they were
shielded with tantalum plates. Their contribution to the BI was estimated to be
(1.07 ± 0.04(stat)+0.13

−0.19(syst)) · 10−4 cts/(keV · kg · yr) [146] and was thus negligible
in the Phase I data sets. Before the start of Phase I data taking, an additional 20 kBq
228Th calibration source fell to the bottom of the cryostat. Since the contribution to
the BI from this source was estimated to be below 10−3 cts/(keV · kg · yr), its removal
was postponed to after the end of Phase I. It had to be considered for the simulation
of the background contaminations in the experimental setup, though.

The contributions from the cryostat and the water tank to the BI have been esti-
mated to be below 10−4 cts/(keV · kg · yr) [156]. Therefore, no decays were simulated
in these components. However, the contamination of the LAr with isotopes from the
238U chain due to the radon-emanation of the cryostat and lock system materials was
taken into account.

The 40 keV region around the Q-value of double beta decay of 76Ge, Qββ =

2039 keV, was blinded over the complete Phase I data taking period. Hence, poten-
tial photon peaks from background contributions in this region could not be identified
from the data energy spectra. There are three possible candidates whose decays can
lead to a line around 2039 keV. The first candidate is neutron capture on 76Ge [155].
The second candidate is the inelastic scattering of neutrons off 206Pb, leading to an ex-
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Table 8.1: List of the available screening measurement results of hardware components in the
GERDA experiment obtained from gamma ray screening and 222Rn measurements. The activity
of the minishroud was derived from ICP-MS measurements assuming secular equilibrium of
the 238U chain. The last column gives the estimated BI at Qββ in units of 10−3 cts/(keV · kg ·
yr) [158,159]. Table taken from [149].

Component units 40K 214Bi/226Ra 228Th 60Co 222Rn BI

Close sources: up to 2 cm from detectors

Copper det. support µBq/det <7 <1.3 <1.5 <0.2

PTFE det. support µBq/det 6.0 (11) 0.25 (9) 0.31 (14) 0.1

PTFE in array µBq/det 6.5 (16) 0.9 (2) 0.1

minishroud µBq/det 22 (7) 2.8

Li salt (n+-contact) mBq/kg 17 (5) ≈ 0.003

Medium distant sources: 2 cm to 50 cm from detectors

CC2 preamps µBq/det 600 (100) 95 (9) 50 (8) 0.8

cables and suspension mBq/m 1.40 (25) 0.4 (2) 0.9 (2) 76 (16) 0.2

Distant sources: further than 50 cm from detectors

cryostat mBq 54.7 (35) <0.7

copper of cryostat mBq <784 264 (80) 216 (80) 288 (72)
<0.05

steel of cryostat kBq <72 <30 <30 475

lock system mBq 2.4 (3) <0.03
228Th calib. source kBq 20 <1.0

cited state of this isotope [157], which de-excites under the emission of photons with
a discrete energy. The third possibility is the decay of 56Co, which might be present
in the material used in the experimental setup. In all three cases, in addition to the
photon lines close to Qββ , other strong photon lines outside the blinded region should
be visible in the energy spectra. Due to their absence, it was concluded that no such
contaminations were present during GERDA Phase I data taking.

8.3.1 Results from Screening Measurements

Valuable information regarding the strength and location of background contamina-
tions was given by the results of the material screening measurements, which had been
conducted before installing the respective parts into the GERDA setup. The available
results are listed in Table 8.1.

8.3.2 Details of the Simulated Spectra

Based on the screening results and the observations made in Chapter 7, the energy
spectra presented in the following were modeled. A summary of all MC simulations
described in this section is given in Appendix A.

238U chain

The natural decay chain of 238U is given in Table 8.2.
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Table 8.2: Natural decay chain of 238U. Given are the decaying nuclides, the decay mode,
the half-life, T1/2, the Q-value of the decay, and the decay product. The last column lists
all associated gamma rays with an energy above 300 keV and a branching ratio of at least
5 %. Horizontal lines indicate, where the secular equilibrium might be broken. Decays with
branching ratios below 1 % are not listed. Values taken from [55].

Nuclide mode T1/2 Q-value (keV) decay product Eγ (keV)
238U α 4.5 · 109 yr 4270.0 234Th –
234Th β 24.1 d 273.0 234mPa –
234mPa β 1.2 min 2195.0 234U –
234U α 2.5 · 105 yr 4858.5 230Th –
230Th α 7.5 · 104 yr 2770.0 226Ra –
226Ra α 1.6 · 103 yr 4870.6 222Rn –
222Rn α 3.8 d 5590.3 218Po –
218Po α 3.1 min 6114.7 214Pb –
214Pb β 26.8 min 1024.0 214Bi 351.9
214Bi β 19.9 min 3272.0 214Po 609.3

768.4

1120.3

1238.1

1764.5

2204.2
214Po α 164.3µs 7833.5 210Pb –
210Pb β 22.3 yr 63.5 210Bi –
210Bi β 5.0 d 1162.1 210Po –
210Po α 138.4 d 5407.5 206Pb –

If the half-life of a decay is of the order of the data taking period or longer, the
secular equilibrium can be broken. That means that the decay of the parent nuclide is
not necessarily followed by the decay of the long-lived daughter within the run time
of the experiment. This divides the decay chain in several sub-chains, as indicated by
horizontal lines in the table. The presence of a certain radio-nuclide requires also the
presence of all other nuclides from the same sub-chain. No assumptions can be drawn,
however, regarding the presence or absence of nuclides from other sub-chains.

The data energy spectra do not indicate the presence of the sub-chains of 238U,
234U, and 230Th. The presence of the 226Ra sub-chain, however, is clearly indicated by
the alpha peaks, which are visible in the high-energy part of the spectra. The 238U
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chain can break at 210Pb and again at 210Po. The strong peak-like structure around
5.3 MeV that is visible in the energy spectrum of the enriched coaxial detectors, con-
firms the presence of 210Po. The preceding sub-chain contains only the two beta emit-
ters 210Pb and 210Bi with Q-values of 63.5 keV and 1162.1 keV, respectively, which do
not leave traces in the high-energy region and cannot be distinguished via character-
istic photon lines. In order to allow a statement about the presence or absence of the
isotopes of this sub-chain, an analysis of the time structure of the 210Po decays was
carried out. If a 210Pb contamination is present, the 210Po sub-chain is fed by these de-
cays. The half-life of 22.3 yr of 210Pb is much larger than the Phase I run time, whereas
the following 210Bi decay has a half-life of only 5.0 d. This would lead to a 210Po de-
cay rate which is approximately constant in time. An initial 210Po contamination and
the absence of 210Pb, on the other hand, could be distinguished by an exponentially
decreasing 210Po decay rate, with a decay time corresponding to the half-life of 210Po
of 138.4 d. A time-dependent analysis of the event rate in the golden data set in the
energy region between 3.5 and 5.3 keV, that is in the energy region where 210Po de-
cays are expected, is described in [149,160]. A fit to the experimental decay rate with
a model containing a constant and an exponentially decaying contribution resulted
in a rate of (0.6 ± 0.2) cts/d for the constant contribution and (7.9 ± 0.4) cts/d for
the decaying contribution. The decay time was determined to be (138.4± 0.2)d. The
event rate and the best fit model are depicted in Fig. 8.4. The analysis allowed to draw
the conclusion that the dominant contribution from 210Po decays derived from an ini-
tial 210Po contamination, whereas the contributions due to a contamination with 210Pb
were negligible in comparison. A similar analysis of the decay rate of events above
5.3 MeV suggested a constant count rate of (0.09± 0.02) cts/d in this energy region.
This is in agreement with the assumption that alpha decays of isotopes from the 226Ra
sub-chain are the origin of these events, with the half-life of 226Ra being 1.6 · 103 yr.
The corresponding graph is shown in Fig. 8.5.

Since α-particles have an attenuation length of the order of a few µm in LAr and
in germanium, they can only enter the active detector volume via the p+-contact. The
presence of peak-like structures indicates that radio-nuclides could be found directly
on the p+-surface, so that the energy spectrum was not smeared out by energy loss
in the LAr. The screening measurements, on the other hand, hinted at the emanation
of 222Rn from the cryostat and the lock system into the LAr. Therefore, also decays
in the LAr close to the p+-electrode had to be taken into account. The thickness of
the p+-deadlayer is of the order of a few hundred nanometers. In order to model the
high-energy part of the spectrum, the spectra originating from all alpha decays in the
226Ra sub-chain, that is the decays of 226Ra, 222Rn, 218Po, and 214Po, were simulated
in the Single detector mode with configANG3. Separate simulations were performed
for decays taking place directly on the p+-surface and for decays in the LAr close to
the p+-contact. For the latter, the decays were placed in the LAr inside the bore hole
at a maximum distance of 1 mm from the surface. In addition, 210Po decays on the
p+-contact were simulated. Simulations were carried out for p+-layer thicknesses of
100 nm, 200 nm, 300 nm, ..., and 1000 nm.
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Figure 8.4: Results of a fit to the count rate of events between 3.5 and 5.3 keV for the golden
data set with a model accounting for an exponentially decaying and a constant component. In
the upper panel, the best fit model with its 68 % uncertainty band is shown together with the
live time fraction. In the lower panel, the number of observed events is shown as a function
of time together with the best fit expectation (after correction for the live time fraction). The
smallest intervals of 68 %, 95 %, and 99.9 % probability for the expectation are given as a
green, yellow, and red band, respectively [161]. Graph taken from [149].

Figure 8.6 depicts the energy spectra for the simulation of 210Po decays on the p+-
surface as well as 222Rn decays in the LAr close to the surface for several dead layer
thicknesses. The decays taking place on the surface resulted in a peak-like structure
with a strong tail towards lower energies. The position of the peak is below the Q-
value of the decay and is shifted to smaller energies for increasing thickness of the
p+-surface. The decays in the LAr volume lead to a spectrum without any peak-like
structure, with the maximum energy deposit significantly below the maximum energy
released in the decay and decreasing for thicker p+-surfaces.

In addition to the alpha decays contributing to the high-energy region of the spec-
trum, also the relevant beta decays from the 238U chain were simulated. As the absence
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Figure 8.5: Results of a fit to the count rate of events above 5.3 keV for the golden data set
with a model accounting for a constant decay rate. In the upper panel, the best fit model with
its 68 % uncertainty band is shown together with the live time fraction. In the lower panel, the
number of observed events is shown as a function of time together with the best fit expectation
(after correction for the live time fraction). The smallest intervals of 68 %, 95 %, and 99.9 %
probability for the expectation are given as a green, yellow, and red band, respectively. Graph
taken from [149].

of a significant contribution from decays of 210Pb and 210Bi had been established, the
relevant decays were those of 214Pb and 214Bi. The decays were simulated on the
p+-surface as well as in the LAr volume inside the entire bore hole, using the Sin-

gle detector mode with configANG3. Since the emitted electrons and photons are
not sensitive to the changes in the p+-layer thickness taken into account for the al-
pha decays, the beta decays were simulated only for the nominal p+-layer thickness
of ANG3, 300 nm. For the energy spectra from alpha decays, only the p+-deadlayer
thickness plays a role, whereas other details of the geometry, like shape and size, do
not influence the spectral shape. This is not true for beta decays with emission of pho-
tons, where the geometrical shape plays a role in the detection efficiency. Therefore,
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(a)

(b)

Figure 8.6: (a) Simulated energy spectra for decays of 210Po on the p+-surface. (b) Simulated
energy spectra for decays of 222Rn in the LAr close to the p+-surface. The simulations were
carried out for different thicknesses of the p+-deadlayer. Figures adopted from [149].

the 214Pb and 214Bi decays were also simulated using the Single detector mode with
configGD32B. The p+-layer thickness was set to 600 nm, as suggested by the manu-
facturer. For the simulation of the decays in LAr, the decays were constrained to a
cylindrical volume around the p+-contact with a maximum distance of 4 mm from the
surface.

The screening results listed in Table 8.1 suggested the presence of contaminations
from the 238U chain not only on and close to the p+-surface, but also in other parts
of the GERDA setup. The simulations of the alpha decays were omitted for these con-
tributions, as they could not contribute to the energy spectrum due to the reduced
range of α-particles. Therefore, it was sufficient to simulate the decays of 214Pb and
214Bi. The energy spectra resulting from the decays of these two isotopes were mod-
eled separately for contaminations in the detector holders, in the minishrouds, and in
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the shroud with the Full array mode for configNAT as well as for configBEGE. The en-
ergy spectra due to contaminations on the n+-surface were simulated with the Single

detector mode for configANG3 and GD32B, respectively.

For each source position, the spectra resulting from 214Pb decays and from 214Bi
decays were added up to represent the full sub-chain decay spectrum. As the decay of
214Pb is followed in 99.98 % of all cases by a decay of 214Bi, no scaling of the spectra
had to be performed before adding them.

The electrons released in beta decays have an attenuation length of the order of
millimeters. Therefore, significant contributions from these particles to the energy
spectrum are expected only from decays close to or on the thin p+-surface and to a
smaller extent from decays close to or on the n+-surface, whose thickness is of the
order of the electrons’ range. For source distances of more than a few millimeters,
the contribution from electrons becomes negligible and all energy depositions in the
detectors are due to the photons released in the decays. With increasing distance of
the source, the photons become more and more likely to deposit part of their energy
via Compton scattering in the matter traversed before reaching the detectors. This
leads to reduced contributions at the photon peak energy and increased contributions
to the Compton-continuum at energies below the full peak energy.

These observations are confirmed when comparing the 214Bi sub-chain spectra sim-
ulated for the different source positions and depicted in Fig. 8.7(a) for the simulations
corresponding to the golden data set and in Fig. 8.7(b) for the simulations corre-
sponding to the BEGe sum data set. No significant differences between the two data
sets are observed. All spectra were normalized to the number of events in the bin
corresponding to the photon peak at 1764.5 keV. The decays at the p+-contact lead to
a continuous energy spectrum up to the Q-value of the decay and only small photon
peaks. The spectrum resulting from the decays on the n+-contact, on the other hand,
is dominated by strong photon peaks and a small continuous contribution, as most
electrons were stopped in the thick deadlayer and did not reach the active part of
the detector. The energy spectrum turned out to be very similar to that of other near
sources, like the decays taking place in the detector holders and in the minishrouds.
In all three cases, the source was at a distance smaller than 2 cm from the detectors,
leading to almost identical energy spectra. As expected, the energy spectrum from the
decays in the shrouds, located at a distance well above 2 cm but closer than 50 cm,
exhibits a lower peak-to-continuum ratio for energies below ≈ 1500 keV. For higher
energies, the spectral shape approaches that of the close sources. The energy spec-
trum resulting from decays in the LAr close to the p+-contact resembles this spectrum.
Whereas in the first case the amplified continuum is due to photons which lost part
of their energy due to Compton-scattering in the surrounding material, in the latter
case it is due to the contributions from electrons entering the detector through the
thin p+-deadlayer. Despite these differences in the origin of the energy depositions,
the resulting energy spectra are very similar.
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Figure 8.7: Simulated energy spectra of the 214Bi sub-chain decays for different source posi-
tions corresponding to the (a) golden and (b) BEGe sum data set. All spectra are normalized
to the number of events in the bin corresponding to the photon peak at 1764.5 keV.
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Table 8.3: Natural decay chain of 232Th. Given are the decaying nuclides, the decay mode,
the half-life, T1/2, the Q-value of the decay, and the decay product. The last column lists
all associated gamma rays with an energy above 300 keV and a branching ratio of at least
5 %. Horizontal lines indicate, where the secular equilibrium might be broken. Decays with
branching ratios below 1 % are not listed. Values taken from [55].

Nuclide mode T1/2 Q-value (keV) decay product Eγ (keV)
232Th α 1.4 · 1010 yr 4082.8 228Ra –
228Ra β 5.8 yr 45.9 228Ac –
228Ac β 6.2 h 2127.0 228Th 911.2

969.0
228Th α 1.9 yr 5520.1 224Ra –
224Ra α 3.7 d 5788.9 220Rn –
220Rn α 55.6 s 6404.7 216Po –
216Po α 0.1 s 6906.5 212Pb –
212Pb β 10.6 h 573.8 212Bi –
212Bi β / 60.6 min 2254.0 / 212Po / 727.3

α 6207.1 208Tl
212Po α 0.3µs 8954.1 208Pb –
208Tl β 3.1 min 5001.0 208Pb 510.8

583.2

860.6

2614.5

232Th chain

Table 8.3 shows the natural decay chain of 232Th.
As mentioned in Sec. 7.4, no indication for the presence of radioactive isotopes

from the 232Th chain in the vicinity of the p+-contact was found in the energy spectra.
Therefore, no decays of isotopes from this chain were simulated on or close to the p+-
surface. As a consequence, the simulation of any of the alpha-decaying isotopes could
be omitted. As mentioned before, only the spectrum above 570 keV was analyzed, in
order to avoid contributions from 39Ar. The beta-decaying isotopes with a sufficiently
high Q-value to give a significant contribution in the energy range above 570 keV are
228Ac, 212Bi, and 208Tl1.

Simulations were carried out for all three isotopes for decays taking place in the
detector holders as well as in the shroud. Following the discussion for the 238U decay

1The contributions from 212Pb are negligible above 570 keV due to its small Q-value of 573.8 keV
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chain, these two source positions were considered good representatives for the energy
spectrum of a close and of a medium distant source. Here, close means a distance
of up to 2 cm from the detectors, comprising also possible contaminations in the min-
ishrouds and on the n+-surfaces, and medium distant signifies a distance of more than
2 cm, but less than 50 cm.

Investigations in an early phase of the GERDA experiment could not rule out a
possible contamination of the heatexchanger, located in the top part of the copper
cryostat, with 228Th [162]. Also the possible contribution from the calibration source
at the bottom of the cryostat had to be taken into account. These two contaminations
from far sources, that is sources at a distance of more than 50 cm, were accounted
for by simulating 208Tl decays in the heatexchanger. The contributions from 228Ac and
212Bi could be neglected due to the small energy of the photons released in the decays,
which does not allow them to reach the detector array.

For all simulations, the Full array mode was used. The simulations for decays in
the holders and in the shroud were performed for configNAT as well as for configBEGE,
whereas the simulation of 208Tl on the heatexchanger was carried out only for config-

NAT. This was done to avoid the immense computational effort of the simulation of a
distant source in the view that only very small variations in the energy spectrum were
expected for a simulation with configBEGE.

The decay chain breaks after 228Ac, whereas 212Bi and 208Tl are part of the same
sub-chain. For this reason, the spectra of 228Ac were kept separate, whereas those of
212Bi and 208Tl were combined to the total 228Th sub-chain energy spectrum. To this
scope, the branching ratio of 212Bi had to be taken into account. The isotope decays
with 64.1 % probability via beta decay to 212Po and only in 35.9 % of all cases via
alpha decay to 208Tl. Consequently, the spectrum resulting from 208Tl decays had to be
down-scaled accordingly before adding it to the spectrum of 212Bi.

The final energy spectra for 228Ac corresponding to the golden and the BEGe sum
data sets are depicted in Fig. 8.8(a) and Fig. 8.8(b), respectively, and those for the
228Th sub-chain are shown in Fig. 8.9(a) and Fig. 8.9(b). The first were normalized to
the number of events in the bin corresponding to the photon peak at 911.2 keV, and
the latter were normalized to the 2614.5 keV photon peak. Similar effects as already
noted for the case of the 214Bi sub-chain are observed. Again, the general behavior of
the energy spectra simulated to match the golden and the BEGe data sets, respectively,
is in very good agreement. For the case of 228Ac, up to an energy of ≈ 1000 keV, the
peak-to-continuum ratio is larger for the decays taking place in the holders, that is
for the near source, than for the medium distant source. Above this energy, the two
spectra become practically indistinguishable. Note that as a result of the normaliza-
tion at 911.2 keV, for the range above 1000 keV the continuum as well as the peaks
seem slightly higher for the medium distant source, but the peak-to-continuum ratio
is approximately the same for both source positions. The energy spectra of the simula-
tions of the 228Th sub-chain decays also exhibit a similar structure. Below ≈ 2000 keV,
the continuous part of the energy spectrum due to decays in the shroud is enhanced
compared to the energy spectrum due to decays in the holders. Between 2000 keV and
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2400 keV, the two spectra coincide. Above 2400 keV, that is above the Compton edge
of the 2614.5 keV peak, the continuum of the energy spectrum for the medium distant
contaminations starts dropping rapidly and is almost absent above the 2614.5 keV
photon line, whereas for the close contaminations the continuum decreases much
slower and contributions due to the summation of energy deposits of two photons or
an electron and a photon are possible also at energies above 3000 keV. The energy
spectrum due to decays of 208Tl on the heatexchanger exhibits no peak structures be-
low 2614.5 keV. Also in this case, the continuum decreases steeply around 2400 keV.
No contributions to the spectrum above the well pronounced 2614.5 keV peak are
observed for the far source.

42Ar

As mentioned in Sec. 7.5, the most prominent photon line in the data spectra derives
from the decays of 42K, which follow the decay of 42Ar. The 42Ar isotopes are produced
by cosmic activation and are therefore distributed homogeneously in the LAr volume.
They decay via beta decay with a Q-value of 599.0 keV and no characteristic photons
are emitted. The energy loss in the n+-deadlayers reduces the electron energy below
the threshold used for analysis. The only possible way to contribute to the energy
spectrum above 570 keV would be energy deposits from electrons on the p+-surfaces
that enter the detector volume without significant energy loss in the LAr surrounding
the detectors. However, the fraction of 42Ar isotopes so close to these surfaces was
negligible, so that the simulation of 42Ar decays could be omitted.

The situation changes for the daughter isotopes, 42K. As they are produced as ions,
they could be transported by electric fields inside the LAr volume until their recom-
bination. The electric fields were due to the high-voltage, which was applied to the
detectors. It is thus likely that the 42K concentration in the vicinity of the p+-contact
was enhanced. The isotopes decay via beta decay with a Q-value of 3525.4 keV. This
allowed also the penetration of the thicker n+-deadlayer by the released electrons.
The field lines closed on the minishrouds, so that no electric fields were present in the
remaining part of the cryostat, assuring a homogeneous contribution of the contami-
nations outside the minishrouds.

In order to model all possible scenarios, three MC simulations of 42K decays were
carried out. In all three cases, the energy spectrum of the particles emitted in the
decays was sampled according to the distribution implemented in DECAY0 [163]2.
This initial decay spectrum served as input to the MAGE framework. All following MC
steps, including the propagation of the particles in the GERDA setup with MAGE and
the processing of the MC data, were done in the usual way.

The first simulation described the case of a homogenous distribution of 42K inside
the LAr. The decays were confined to a cylindrical volume of 6.6 m3. The Full array

mode was used and for the simulations with configNAT, the volume was centered on

2The decay of 42K is not Fermi-allowed. Since it is not treated in a specific way in GEANT4, as is done
for other isotopes like 40K, it is not simulated properly by GEANT4.
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Figure 8.8: Simulated energy spectra of 228Ac decays for different source positions corre-
sponding to the (a) golden and (b) BEGe sum data set. All spectra are normalized to the
number of events in the bin corresponding to the photon peak at 911.2 keV.



8.3 Simulated Background Sources 73

E (keV)
1000 2000 3000 4000

C
ou

nt
s/

(3
0 

ke
V

)

-410

-310

-210

-110

1

golden data set

Th228

holders
shroud
heatexchanger

golden data set

(a)

E (keV)
1000 2000 3000 4000

C
ou

nt
s/

(3
0 

ke
V

)

-410

-310

-210

-110

1

BEGe sum data set

Th228

holders
shroud
heatexchanger

BEGe sum data set

(b)

Figure 8.9: Simulated energy spectra of the 228Th sub-chain decays for different source posi-
tions corresponding to the (a) golden and (b) BEGe sum data set. All spectra are normalized
to the number of events in the bin corresponding to the photon peak at 2614.5 keV. Note that
the simulation of decays in the heatexchanger was carried out for configNAT in both cases.
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the three strings containing the enriched coaxial detectors, whereas for the simulations
with configBEGE, it was centered on the string containing the five BEGe detectors.

For the second case, the 42K decays were simulated on the p+-surface using the
Single detector mode for configANG3 and GD32B, respectively.

The third case modeled the contributions from contaminations on the n+-surface
of the detectors. For the golden data set, the simulations were done with configANG3

in the Single detector mode. For the BEGe sum data set, the outcome of recent stud-
ies regarding the transition layer for point contact detectors [164,165] was taken into
account. The results suggest that only the outermost part of the n+-layer is completely
insensitive to energy depositions. The transition layer describes a region between this
fully dead layer and the fully active volume of the detectors, where partial charge
collection takes place. If energy is deposited in this region, the events contribute to
the continuum of the energy spectrum in the lower energy region. The transition
layer does not play an important role in the case of photon interactions, since these
are distributed over the whole detector volume and the transition layer covers only a
small fraction. It does, however, have an influence on the energy spectrum for contri-
butions of beta decays on or close to the n+-surface, since these deposit their energy
throughout the entire n+-layer before reaching the active volume. Therefore, separate
MC simulations of 42K decays on the n+-surface were run for the four active BEGe
detectors. For these simulations, the outer 40 % of the n+-layer, as given in Table 6.1,
was considered completely dead, whereas the inner 60 % was modeled with a charge
collection efficiency increasing linearly from zero until one was reached at the bound-
ary to the active volume. The resulting spectra were then smeared to account for the
energy resolution and scaled according to the exposure of the corresponding detector
in the BEGe sum data set, before they were added to the total energy spectrum3.

The simulated energy spectra corresponding to the golden and BEGe sum data sets
are depicted in Fig. 8.10(a) and Fig. 8.10(b). The energy spectra for the different
source positions were normalized to the number of counts in the bin corresponding
to the photon peak at 1524.7 keV. For both data sets, the energy spectrum derived
from the decays on the p+-surface is dominated by the continuum and the photon
peak is small compared to the continuum. The spectrum reaches up to the Q-value
of the decay. The energy spectra resulting from decays inside the LAr volume exhibit
a pronounced photon peak and a large peak-to-continuum ratio. Above the photon
peak, the continuum drops by more than one order of magnitude due to the absence
of the dominating contribution from Compton-scattered photons. The energy spectra
from simulations of 42K decays on the n+-surface differ for the two data sets. For
the golden data set, below 1000 keV, the peak-to-continuum ratio is slightly smaller
than for the case of decays in the LAr, while it becomes equal between 1000 keV and
the photon peak energy. Above the photon peak, no sudden drop is observed in the

3Note that this was the only simulation for which the transition layer was modeled. Its effects should
also be taken into account when simulating the 214Bi sub-chain decays on the n+-surface and the energy
spectra from 2νββ and 0νββχ(χ), which will be described below. However, a dedicated analysis was
still ongoing at the time of writing of this thesis and therefore only partial results could be taken into
account.
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Figure 8.10: Simulated energy spectra of 42K decays for different source positions corre-
sponding to the (a) golden and (b) BEGe sum data set. All spectra are normalized to the
number of events in the bin corresponding to the photon peak at 1524.7 keV.
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continuum, since the spectrum is dominated by electrons. For the BEGe sum data
set, the case is different. The peak-to-continuum ratio is much smaller in the energy
spectrum from decays on the n+-electrode than in the energy spectrum from decays
in the LAr. The explanation for this is two-fold. Firstly, the average thickness of the
n+-layer for the coaxial detectors was ≈ 2 mm (the detector used for the simulation,
ANG3, has a deadlayer thickness of 1.9 mm, which corresponds to the average of
the detectors contributing to the golden data set). The deadlayer thickness of the
BEGe detectors, on the contrary, was below 1 mm for all detectors. Therefore, the
contribution of the electrons to the total energy spectrum is enhanced in the BEGe sum
data set, reducing the peak-to-continuum ratio significantly. Secondly, the partially
active transition layer lead to an increase of the spectrum at lower energies, again
reducing the peak-to-continuum ratio in the region below the photon line.

60Co

The beta decays of 60Co had to be taken into account as a natural contamination in
the materials used in the GERDA experiment. Based on the observations made above,
the energy spectra of a near and a medium distant 60Co source were not expected
to show large differences. From the small line intensities at the 60Co photon peaks,
listed in Table 7.3, it was deduced that the limited statistics in the data would not
allow a distinction between near and medium distant sources. Hence, 60Co decays
were simulated only in the detector holders, with the resulting energy spectrum being
representative for all 60Co contaminations in the experimental setup external to the
detectors. The simulations were performed for both configNAT and configBEGE in the
Full array mode.

Another source of 60Co was located inside the detectors themselves. The radio-
isotopes are produced inside the germanium via spallation reactions, when the detec-
tors are exposed to cosmic rays. Due to the half-life of 60Co of 5.3 yr, contributions
to the energy spectrum are expected also after several years of underground storage
of the detectors. The decays were simulated for both configNAT and configBEGE using
the Single detectors in full array mode.

Figures 8.11(a) and 8.11(b) depict the simulated energy spectra corresponding
to the golden and the BEGe sum data set, respectively. They were normalized to
the number of events in the bin corresponding to the energy of the photon peak at
1332.5 keV. For the decays in the holders of the detectors, the energy spectra exhibit
very clear photon peaks. Also the summation peak at 2505.7 keV is clearly visible. In
the case of the decays taking place inside the detectors, the peak-to-continuum ratio
is much smaller, as the dominant contribution to the energy spectra comes from the
electrons emitted in the decay. The peak structures are washed out, with large tails to
the high energy side.
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Figure 8.11: Simulated energy spectra of 60Co decays for different source positions corre-
sponding to the (a) golden and (b) BEGe sum data set. All spectra are normalized to the
number of events in the bin corresponding to the photon peak at 1332.5 keV.
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Figure 8.12: Simulated energy spectrum of 68Ga decays inside the germanium detectors of
the BEGe sum data set. The spectrum is normalized to the number of events in the bin corre-
sponding to the photon peak at 1077.4 keV.

68Ge

In analogy to the production of 60Co via cosmic activation, also the unstable 68Ge is
produced inside the germanium detectors when they are exposed to cosmic radiation.
The isotopes decay with a half-life of 270 d via electron capture (EC). The Q-value
is with 106.0 keV well below the analysis threshold and therefore the decays did not
have to be simulated. However, the daughter of 68Ge, 68Ga, decays with a short half-
life of 67.6 min via EC and positive beta decay. The Q-value is 2921.1 keV. The coaxial
enriched detectors had been stored underground for several years before their use in
the GERDA experiment. Therefore, it was assumed that the majority of the 68Ge pro-
duced during their exposure to cosmic radiation during production and refurbishing
had decayed and no contributions to the energy spectrum were expected from this
radio-isotope. A possible contamination had to be taken into account for the BEGe
detectors, though, since they had been produced only months before their insertion
into the experiment. The decays of 68Ga inside the BEGe detectors was simulated in
the Single detectors in full array mode for configBEGE only.

The resulting energy spectrum is shown in Fig. 8.12. It was normalized to the
number of events in the the bin corresponding to the photon peak at 1077.4 keV. The
spectrum is continuous with only a small peak structure at 1077.4 keV.
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40K

The screening results listed in Table 8.1 suggested the presence of 40K in several com-
ponents of small and medium distance in the experimental setup. These isotopes
decay via beta decay with a Q-value of 1311.1 keV or via EC and positive beta decay
with a Q-value of 1504.9 keV. The half-life is 1.3 · 109 yr. In both cases, the released
energy is below the Q-value of double beta decay of 76Ge. This means, that the energy
spectrum due to 40K decays falls in the energy region, which was dominated by the
2νββ spectrum. This limited the sensitivity to small variations in the shape of the en-
ergy spectrum, as expected for different source positions. Therefore, 40K decays were
simulated only in the holders of the detectors and the resulting energy spectrum was
used as a representative for all 40K contaminations in the setup.

The energy spectra were modeled in the Full array mode for configNAT and con-

figBEGe. They are shown in Fig. 8.13(a) and Fig. 8.13(b), respectively. They were
normalized to the number of events in the bin corresponding to the 1460.8 keV pho-
ton line.

76Ge

The energy depositions from 2νββ of 76Ge dominate the energy spectra for both the
golden and the BEGe sum data sets up to an energy of ≈ 1800 keV. In addition to the
2νββ energy spectra, also the spectra for 0νββχ(χ) were simulated for all spectral
indices predicted by theory, n = 1, 2, 3, and 7. The initial energy spectrum of the
particles released in the decay was sampled with DECAY0 according to the distributions
given in [80,81]. The propagation of the particles in the GERDA setup was carried out
with MAGE. For the simulations, the Single detectors in full array mode was used.
Simulations were performed for configNAT as well as for configBEGE.

All spectra are depiced in Fig. 8.14(a) and Fig. 8.14(b) for the golden and the
BEGe sum data set, respectively. The scaling of the spectra corresponds to the output
of the processing of the Single detectors in full array mode. Since for all cases the
energy is deposited exclusively by electrons and Bremsstrahlung photons, the spectra
are all continuous. They correspond to the spectra shown in Fig. 3.6.
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Figure 8.13: Simulated energy spectra of 40K decays in the detector holders corresponding to
the (a) golden and (b) BEGe sum data set. All spectra are normalized to the number of events
in the bin corresponding to the photon peak at 1460.8 keV.
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Figure 8.14: Simulated energy spectra of 2νββ and 0νββχ(χ) for 76Ge corresponding to
the (a) golden and (b) BEGe sum data set. All spectra are normalized according to the pro-
cessing of the Single detectors in full array simulation mode.





Chapter 9

Background Model for the GERDA

Phase I Data

The simulated energy spectra described in Chapter 8 were used to decompose the
GERDA Phase I data spectra into their single contributions. The data sets defined in
Sec. 7.4 were examined separately. Complete background models were obtained for
the golden and for the BEGe sum data set. The limited exposure of the silver data
set of only 1.3 kg · yr did not allow a quantitative analysis. However, its background
composition was assumed to be similar to that of the golden data set. The increase
in the event rate, shown in Fig. 7.9, can be connected to an increase in the number
of isotopes from the natural decay chains of 232Th and 238U in the detector vicinity
following the opening of the lock system and the extraction and insertion of detector
strings. The background models for the golden and the BEGe sum data sets allowed
to examine in detail the spectral shape and the composition of the background around
Qββ .

9.1 Statistical Analysis Method

The statistical data analysis was performed using a binned maximum likelihood ap-
proach. The spectra obtained from the MC simulation described in Chapter 8 were
added to compose a model containing all possible contributions. The expected num-
ber of events in the i-th bin of the model spectrum, λi, can then be written as the sum
of all M contributions from the single components, c, in the i-th bin, λc

i
,

λi =

M
∑

c=1

λc
i
. (9.1)

With ni describing the number of events in the i-th bin of the measured data spectrum,
the likelihood, P(n|λ), for the observed data spectrum, n, given a certain model, λ,
can then be written as the product of the probabilities of the single bins, P(ni|λi),

P(n|λ) =
∏

i

P(ni|λi) =
∏

i

e−λiλ
ni

i

ni!
. (9.2)
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With Bayes’ theorem, the global posterior probability distribution, P(λ|n), describing
the probability of the model given the data, can be expressed as

P(λ|n) =
P(n|λ)P0(λ)
∫

P(n|λ)P0(λ) dλ
, (9.3)

where P0(λ) describes the prior probability of the parameters,

P0(λ) =

M
∏

c=1

P0(λ
c). (9.4)

Information about a single model component, λc, can be extracted by marginalizing
Equation (9.4) with respect to λc,

P(λc|n) =
∫

1 6=c

...

∫

M 6=c

P(λ|n) dλ1 6=c...dλM 6=c, (9.5)

that is by integrating the global posterior probability distribution over all model com-
ponents except the one in question.

The fit was carried out using the Bayesian Analysis Toolkit BAT [150]. All model
spectra aside the one from the simulation of 2νββ of 76Ge were normalized to unity,
so that

λc
i
=N c

∫

∆Ei

φc,norm(E) dE, (9.6)

with φc,norm(E) the normalized simulated energy spectrum of the component c and
∫

∆Ei

φc,norm(E) dE the fraction of the energy spectrum in the i-th bin. The parameter
N c, which was determined in the fit, represents the total number of events of the
component c in the fit window.

The spectrum deriving from the simulation of 2νββ was treated in a different
manner. Not the number of events was determined in the fit, but instead the half-life
of the decay, T 2ν

1/2. For a single detector, j, T 2ν
1/2 is connected to the number of 2νββ

events in the i-th bin, λ2ν
i, j , via

λ2ν
i, j =

k

T 2ν
1/2

M j f76, j T j · [ fact, j ǫact, jF 2ν
act,i, j + (1− fact, j)ǫdead, jF 2ν

dead,i, j], (9.7)

with

F 2ν
act,i, j =

∫

∆Ei

ϕ
2ν ,norm
act, j (E) dE (9.8)

and

F 2ν
dead,i, j =

∫

∆Ei

ϕ
2ν ,norm
dead, j (E) dE. (9.9)

M j denotes the total detector mass, T j the live time of the detector, f76, j its isotopic
abundance in 76Ge, and fact, j the active volume fraction of the detector. The detection
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efficiencies for 2νββ taking place in the active and in the deadlayer part of the detec-
tor are given by ǫact, j and ǫdead, j, respectively. The corresponding normalized energy
distributions derived from the simulations are denoted ϕ2ν ,norm

act, j and ϕ2ν ,norm
dead, j . The con-

stant factor k is defined as k = (ln(2)NA)/m76, where NA is Avogadro’s number and
m76 = 75.95 g/mol is the molar mass of 76Ge.

For the case of more than one detector, a decay inside a detector can lead to an
energy deposit in the detector itself, but also to an energy deposit in one of the other
detectors. If the energy deposit in the detector where the decay took place is below the
threshold for the anti-coincidence cut, the event contributes to the energy spectrum
with the energy deposited in the other detector. Therefore, when determining the total
energy spectrum resulting from decays in one of the detectors, the contributions from
all detectors in the array have to be taken into account. With F α,2ν

act,i, j (F α,2ν
dead,i, j) giving

the content of the i-th bin of the normalized energy distribution recorded with detector
j for 2νββ taking place in the active (dead) volume of detector α and ǫα

act, j (ǫα
dead, j)

the corresponding detection efficiency, the content of the i-th bin in the combined
energy spectrum of all Ndet detectors in the array for decays taking place in the active
and dead part of detector α becomes

λ
α,2ν
i =

k

T 2ν
1/2

Mα f76,α ·
�

fact,α

Ndet
∑

j=1

T j ǫ
α
act, jF

α,2ν
act,i, j + (1− fact,α)

Ndet
∑

j=1

T j ǫ
α
dead, jF

α,2ν
dead,i, j

�

.

(9.10)
Summing up the simulations of decays in all Ndet detectors, this results in the final
model spectrum for 2νββ ,

λ2ν
i
=

Ndet
∑

α=1

λ
α,2ν
i . (9.11)

The Single detectors in full array mode described in Sec. 8.2 incorporates almost all
steps described in Equations (9.10) and (9.11). When using the final energy spectrum
provided by this processing mode, φ2ν(E), it follows that

λ2ν
i
=

k

T 2ν
1/2

∫

∆Ei

φ2ν(E) dE. (9.12)

For the fitting procedure, this was rewritten as

λ2ν
i
=

k0

t1/2

∫

∆Ei

φ2ν(E) dE. (9.13)

The factor k0 = (ln(2) · NA)/(m76 · 1021 · 365 d) = 15.06 (kg · d)−1 gives the decay rate
of 1 kg of germanium enriched to 100 % in 76Ge for T 2ν

1/2 = 1021 yr. The parameter
determined in the fit was t1/2, which represents T 2ν

1/2 in units of 1021 yr.
For the fit, a Markov Chain Monte Carlo (MCMC) run with 107 iterations was

performed. At each step, a complete set of fit parameters was available.
For each parameter, the fitting procedure returned its best-fit value, defined by

the mode of the global posterior probability distribution. This will be referred to as
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the global mode in the following. The best-fit model was composed by scaling the
individual normalized components according to their global mode and adding up the
single contributions. The contribution from 2νββ was calculated using the global
mode for t1/2 and Equation (9.13).

In order to obtain the marginalized distributions, for each parameter a histogram
was filled containing its value at each step of the MCMC run. After normalization
to the number of entries in the histogram, this represents the marginalized posterior
distribution for the respective parameter [166]. The marginalized distribution for the
total model was obtained by summing up the individual contributions at each step,
again converting t1/2 into the number of counts, filling each sum value in a histogram
and normalizing the histogram to the number of entries.

From the marginalized posterior distributions, the marginalized mode, smallest

68 % interval, and 90 % quantile for the individual parameters and the total model
could be calculated.

For predictions in a sub-range of the fit window, the MC energy spectra were used
to scale the individual parameters according to the fraction of events contained in
the sub-range. Again, the best-fit expectation for the total model was obtained by
summing the scaled global modes of all single contributions. For the marginalized
distributions, the histograms were filled with the value at each step of the MCMC run
after scaling it to the sub-range. The marginalized distribution for the total model in
the sub-range was composed by the sum of the individual contributions in the sub-
range at each step.

9.2 Background Model for the Golden Data Set

The background model for the golden data set was developed in two steps. First,
the high energy region was analyzed and the model describing the contributions from
alpha decays in the energy spectrum was defined. The alpha model served as input
for the second step, that is for the development of the complete background model,
describing the whole energy spectrum above the Q-value of 39Ar. The development of
the alpha model for the golden data set, summarized in the following, is described in
detail in [149] and [160]. It was performed with a subset of the golden data set with
a total exposure of 15.4 kg · yr.

Regarding the description of the full energy spectrum, a similar approach to the
one presented in these works was adopted. However, some changes were introduced
to the statistical analysis and to the composition of the model. The development of the
background model for the full energy spectrum used the total exposure of the golden
data set of 17.9 kg · yr.

9.2.1 High Energy Region

The high energy region was defined as the region between 3500 keV and 7500 keV.
All but one of the Q-values of the beta decays that are expected to contribute to the
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energy spectrum are below this region. Therefore, neither the photons nor the elec-
trons from these decays can lead to energy depositions in this region. The only beta
decaying isotope with a Q-value higher than this threshold is 208Tl with a Q-value of
5001 keV. However, in 99 % of all cases it decays to an excited state of 208Pb, which
de-excites releasing a 2614.5 keV photon. The electron energy is therefore reduced to
below 3500 keV and the contributions to the energy spectrum above this threshold are
negligible. The region between 3500 keV and 7500 keV is thus strongly dominated by
the energy depositions from alpha decays.

As mentioned in Sec. 8.3 and visible from Fig. 8.6, the thickness of the p+-
deadlayer has a strong influence on the shape of the energy spectrum induced by
alpha decays on and close to this contact. The high number of events at the 210Po
peak allowed an estimate of this critical parameter. A fit to the data was performed
in the energy range between 4850 keV and 5250 keV, which is dominated by the de-
cay spectrum of 210Po on the p+-surface. The model comprised the energy spectra of
the simulations of 210Po decays on the p+-surface for deadlayer thicknesses 100 nm,
200 nm, ..., 1000 nm. The prior probabilities of the ten parameters were chosen flat,
meaning that they were allowed to vary freely in the fit. The resulting deadlayer
model was a combination of the contributions for a deadlayer thickness of 300 nm,
400 nm, 500 nm, and 600 nm, respectively, while the contributions from all other en-
ergy spectra were negligible. This deadlayer model was adapted for the analysis of the
high-energy region and all energy spectra were composed accordingly.

In order to define the alpha model, the region between 3500 keV and 7500 keV
was divided into 80 bins with a width of 50 keV each. The fit model comprised the
contributions from 210Po on the p+-contact, as well as the contributions from the alpha
decays of the 226Ra sub-chain, that is from 226Ra, 222Rn, 218Po, and 214Po, on the p+-
surface as well as in the LAr close to the p+-surface. No prior assumptions apart from
the non-negativity of the number of events were taken into account for the intensity
of the single components. Following the method described in Sec. 9.1, the number
of expected events in the fit range for each component was determined from the fit.
Figure 9.1 depicts the best-fit model with its individual contributions for the 15.4 kg·yr
subset of the golden data set. The data energy spectrum is drawn for comparison. It
can be seen that the agreement between data and model is very good. A model without
the contributions from the decays in LAr could not succeed in describing the data that
well. This confirmed the assumption of a contamination of the LAr with the isotopes
of the 226Ra sub-chain.

Table 9.1 lists the number of expected counts in the complete energy spectrum
from 100 keV to 7500 keV for each component in the model. The numbers were esti-
mated from the MC energy spectra, using the modes and the smallest 68 % probability
interval of the marginalized posterior distributions. In case the latter contained zero,
the 90 % quantile was quoted.

For the decays on the p+-surface, a systematic decrease in the number of events
at each step of the decay chain can be observed. An explanation is the recoil of the
mother nucleus with ≈ 100 keV. This can detach the nucleus from the surface. As a
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Figure 9.1: Best-fit model and individual components for the alpha model of the 15.4 kg · yr
subset of the golden data set. The data energy spectrum is also drawn. The lower panel shows
the ratio of data and model and the smallest intervals of 68 % (green), 95 % (yellow), and
99.9 % (red) probability for the model expectation. Figure taken from [149].

consequence, the detection efficiency for the subsequent alpha decay is reduced due
to the small range of these particles in matter. For the decays in LAr, mostly limits
could be derived from the fit. Nevertheless, a systematic decrease after each step in
the decay chain seems to be present also in this case.

9.2.2 Full Background Model

Definition of the Model

The full background model was determined by a fit to the energy spectrum of the
golden data set in the energy range between 570 keV and 7500 keV. The full data set
with an exposure of 17.9 kg·yr was used. The analysis was performed with the blinded
energy spectrum, meaning that no information was provided about the contributions
between 2019 keV and 2059 keV. Accordingly, also from the MC energy spectra all
events with an energy deposit in this range were omitted for the fit.

The range was divided into bins with a width of 30 keV.
The ingredients to the model were the following:

Alpha model The alpha model determined previously was used as one component
of the full model. The composition of the alpha model was fixed according to
the best-fit model determined by the fit to the high-energy region. The resulting
energy spectrum was treated analogously to the other background components.
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Table 9.1: Number of expected events in the whole energy range from 100 keV to 7500 keV
for each component of the alpha model for the 15.4 kg · yr subset of the golden data set. The
numbers were estimated from the MC energy spectra, using the modes and the smallest 68 %
probability intervals of the marginalized distributions of the parameters. In case the interval
contained zero, the 90 % quantile is quoted. Table adapted from [149].

Isotope Location Number of counts
210Po p+-surface 1355 [1310,1400]
226Ra p+-surface 51 [36,65]
222Rn p+-surface 25 [18,33]
218Po p+-surface 14 [9,19]
214Po p+-surface <10
226Ra LAr <159
222Rn LAr <64
218Po LAr <30
214Po LAr 20 [10,29]

It was normalized to unity and the number of events from alpha decays in the
energy spectrum was a free parameter in the fit with a flat prior probability
distribution.

214Bi sub-chain close sources In order to describe the contributions from decays of
the 214Bi sub-chain at a distance below 2 cm from the detectors, the energy spec-
trum resulting from simulations of decays in the detector holders was used.
From the observations made in Sec. 8.3, it was assumed that this spectrum repre-
sented well the characteristics of a close source. The information collected in the
screening measurements and listed in Table 8.1 was used as input to the prior
probability. From the measured activities and resulting BI estimates and using
the MC spectra, the expected number of counts in the complete fit range due to
decays of the 214Bi sub-chain was calculated. It resulted to be 746 events for the
golden data set. Since not for all close components results from screening mea-
surements were available, other contaminations than the ones listed in Table 8.1
might have been present. The estimated number was therefore considered the
minimum number of events expected from close 214Bi sub-chain sources. Ac-
cordingly, the prior probability was chosen to be flat above 746 and zero below.

214Bi sub-chain medium distant sources The energy spectrum deduced from decays
in the shroud was chosen as a representative for the energy spectrum corre-
sponding to 214Bi sub-chain contaminations at a medium distance, that is at
distances above 2 cm and below 50 cm. Analogously to the case of the close
sources, the minimum number of events expected in the energy spectrum was
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determined from the screening measurement results. Consequently, the flat prior
probability required a minimum of 88 events.

214Bi sub-chain on p+-contact The presence of 214Bi sub-chain contaminations on the
p+-contact is a direct consequence of the presence of 226Ra on this surface.
Therefore, the results from the alpha model provide a strong prior knowledge on
the number of events expected from 214Bi sub-chain decays on the p+-surface.
Every decay of 226Ra is expected to be followed by a decay of 214Pb and by a
decay of 214Bi. The reduction in the number of events of subsequent decays in
the sub-chain observed for the alpha model is not expected to play a significant
role here, since the range of β -particles is much larger and is thus not noticeably
affected by the recoil of the mother nucleus. Using the detection efficiency for
226Ra decays of 44.3 % determined from MC and the estimated number of events
from 226Ra on the p+-contact as given in Table 9.1 for a live time of 384.6 d, the
activity was determined to be (3.4 ± 1.0)µBq. Considering the detection effi-
ciencies of 214Bi and 214Pb in the fit window, 61 % and 8 %, and the live time
of the data set, 458.3 d, this results in an expectation of 93± 27 counts due to
decays from the 214Bi sub-chain on the p+-surface. The prior probability for this
parameter was defined as a Gaussian distribution with the mean and standard
deviation given by the expected number of events and the uncertainty interval.

228Ac close sources In analogy to the case of the 214Bi sub-chain, the simulated spec-
trum of decays of 228Ac in the holders was chosen to represent the energy spec-
trum from close sources in the model. As the 232Th decay chain might be bro-
ken after 228Ac, the screening measurements could not be used to deduce prior
knowledge on the expected contributions. Therefore, a flat prior was used for
this parameter.

228Ac medium distant sources Again following the example of the 214Bi sub-chain,
the simulated spectrum of 228Ac decays in the shroud was used to describe
the contributions to the energy spectrum deriving from medium distant 228Ac
sources in the experimental setup. The prior distribution was flat.

228Th sub-chain close sources The spectrum of the 228Th sub-chain decays in the
holders was used to model the contributions from all close sources of 228Th
sub-chain decays. Also in this case, screening measurements allowed to con-
strain the flat prior probability distribution. From the estimates of the BI and
the measured activities, a lower limit of seven expected events was determined.
The limit is weaker than in the case of 214Bi sub-chain, since less screening mea-
surements were performed for the case of the 228Th sub-chain.

228Th sub-chain medium distant sources The spectrum of the medium distant 228Th
sub-chain contaminations was represented by the decays in the shroud. The
lower limit of the flat prior distribution for the expected number of events de-
termined from the screening measurements was 46 counts.
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228Th sub-chain distant sources For the 228Th sub-chain, also a distant source posi-
tion had to be considered in the model to represent the contributions from the
calibration source on the bottom of the cryostat and from the heat-exchanger.
The simulation of decays on the heat-exchanger was used to describe the result-
ing energy spectrum. The prior probability for the fit parameter was flat.

60Co external sources As mentioned in Sec. 8.3, the spectrum of 60Co decays in the
holders was chosen to represent the contributions from all 60Co decays in the
experimental setup external to the germanium detectors. Due to this simplifica-
tion, the results from the screening measurements could not be used as input to
the fit and the prior distribution was chosen to be flat.

60Co internal source The 60Co isotopes inside the germanium detectors are the re-
sult of cosmic activation during the exposure of the detectors to cosmic rays.
The critical time for the activation is the time that the germanium and later
the detectors spent above ground after the zone refinement of the germanium.
In [167], an estimate of the activity in June 2009 is given for each coaxial Phase
I detector. For the cosmogenic production, a rate of 4 nuclei/(kg · d) was as-
sumed [168]. From these activities, A0, the activities in November 2011, that
is at the beginning of Phase I, were calculated as A = A0 e−λ t , with t = 2.33 yr
and λ = ln(2)/T1/2 = ln(2)/5.27 yr. To estimate the number of decays recorded
by the detectors, for each detector the total data taking period was divided into
bins of ∆t = 15 d and the live time fraction for each of these bins i, fl ive,i, was
calculated. Using the actual activity at the time corresponding to the center of
the i-th bin, Ai = Ae−λ (i·∆t−(∆t/2)), and the detection efficiency determined from
MC for a detection in any of the detectors considered for the golden data set,
ǫ, the number of expected events in each bin for a specific detector was deter-
mined as Ai · ǫ · fl ive,i · ∆t. All contributions were summed up over the data
taking period. The contributions from the decays in the active and in the dead
part of each detector were calculated separately and scaled accordingly before
they were added. Adding the contributions from all detectors, a total of 40
events was expected due to the decay of 60Co inside the detectors. The prior
distribution was chosen flat until 40 and zero above.

40K external sources The contributions to the energy spectrum from decays of 40K
in the experimental setup were represented by the spectrum resulting from 40K
decays in the holders, as stated in Sec. 8.3. This rendered the use of the results
from the screening measurements impossible. Therefore, a flat prior was used
in the fit.

42K in LAr For the case of 42K decays homogeneously distributed in the LAr volume,
no prior knowledge was present. The prior distribution for the parameter was
flat.

42K on p+-contact Also for the decays of 42K on the p+-surface, a flat prior distribu-
tion was used.
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42K on n+-contact The prior distribution was chosen to be flat also for the case of 42K
decays on the n+-surface.

2νββ A crucial ingredient to the model is the contribution from 2νββ . In this case,
not the number of events in the fit window, but the half-life of the decay in units
of 1021 yr, t1/2, was the parameter determined in the fit, as shown in Sec. 9.1.
The prior for t1/2 was chosen flat between one and three, corresponding to T 2ν

1/2

between 1 · 1021 yr and 3 · 1021 yr. Since both the lower and upper limit were
far away from the previous result given in Table 4.1, the prior probability was
uninformative.

For all cases, where no explicit lower limit of the parameter range is given, this was
set to zero, so that the number of events in the analyzed range of the spectrum was
required to be non-negative.

Fit Results

A fit was performed according to the procedure described in Sec. 9.1. The global
fit provided the posterior probability distribution for the 16-dimensional parameter
space. The p-value calculated according to the procedure described in [169] was
0.07. Both the measured spectrum and the best-fit model contained 35847 events
in the complete range between 570 keV and 7500 keV. Figures 9.2 and 9.3 depict
the best-fit model for the energy region between 570 keV and 1800 keV and between
1800 keV and 3500 keV, respectively. The individual model contributions were scaled
according to their global modes. The measured energy spectrum for the golden data
set is also drawn. In the lower panels, the ratio of the data and the best-fit model
is shown. The smallest intervals containing 68 %, 90 %, and 99.9 % probability for
the ratio assuming the best-fit parameters are indicated with a green, yellow, and
red band. From the 42 points in the ratio plot for the lower energy region, 26 are
contained in the 68 % probability interval, 39 in the 95 % probability interval, and all
42 in the 99.9 % probability interval. This corresponds very well to the theoretical
expectations of 28.6, 39.9, and 42.0, respectively. Also for the higher energy region,
the fluctuations match the expectations. From the 57 points, 35 are contained in the
68 % interval, 55 in the 95 % interval, and 57 in the 99.9 % interval, whereas the
expectations are 38.8, 54.1, and 56.9, respectively. This good agreement between
observation and expectation confirms that the model describes the data very well.

From the 35847 counts in the fit range, 72 % were accounted to 2νββ and only
28 % derived from the various background contaminations. Nevertheless, the charac-
teristic photon peaks allowed to clearly identify the contributions from the different
background isotopes.

The energy spectra resulting from decays of the same isotope at different positions
have to be distinguished by the differences in the peak-to-continuum ratio. For some of
the contaminations, the variation of the peak-to-continuum ratio between two source
positions considered in the model was so small that the individual contributions could
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Figure 9.2: Best-fit model and data energy spectrum for the energy region from 570 keV to
1800 keV for the golden data set. The individual model components scaled according to their
global mode are also drawn. The lower panel shows the ratio of data and model and the
smallest intervals of 68 % (green), 95 % (yellow), and 99.9 % (red) probability for the ratio
assuming the best-fit parameters.
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Figure 9.3: Best-fit model and data energy spectrum for the energy region from 1800 keV
to 3500 keV for the golden data set. The individual model components scaled according to
their global mode are also drawn. The lower panel shows the ratio of data and model and the
smallest intervals of 68 % (green), 95 % (yellow), and 99.9 % (red) probability for the ratio
assuming the best-fit parameters.
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Figure 9.4: (a) Number of counts in the fit range attributed to 214Bi sub-chain decays of
medium distant sources against number of counts in the fit range attributed to 214Bi sub-chain
decays of close sources. (b) Number of counts in the fit range attributed to 214Bi sub-chain
decays on the p+-contact against number of counts in the fit range attributed to 214Bi sub-
chain decays of close sources. Every histogram entry corresponds to one step of the MCMC
used for the fitting procedure.

not be identified unambigously. Therefore, dependencies were present between some
of the parameters describing the contributions from the same isotope at different lo-
cations. Figure 9.4(a) shows the number of counts in the fit range attributed to 214Bi
sub-chain decays of medium distant sources against the number of counts attributed
to 214Bi sub-chain decays of close sources for every step of the MCMC run. Clearly,
dependencies between the two parameters were present. Figure 9.4(b), on the other
hand, shows the number of counts in the fit range attributed to 214Bi sub-chain decays
on the p+-surface against the number of counts attributed to 214Bi sub-chain decays
of close sources. Due to the larger variations in the shape of the two energy spectra,
they could be distinguished in the fit and no dependencies were observed. A strong
dependency was also found between 42K on the p+-contact and on the n+-contact. In
addition, the energy spectra deriving from 228Th sub-chain decays of close sources,
medium distant sources, and far sources were not completely independent in the fit.
The good agreement of the model with the data spectrum confirms the validity of the
total fit model. However, the mentioned dependencies have to be kept in mind when
interpreting the results for individual model components.

The mode and smallest 68 % probability interval for the half-life of 2νββ , derived
from the marginalized posterior distribution, give

T 2ν
1/2 = 1.94 [1.91, 1.97] · 1021 yr. (9.14)

This is in agreement with a previous determination based on a subset of the golden
data set, described in detail in Appendix B.
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The Background Model at Qββ

The upper panel of Fig. 9.5 shows the region around Qββ for the best-fit model and its
individual components after the revision of the MC blinding procedure together with
the data spectrum.

The model was used to estimate the total BI and the individual contributions from
all model components in the region around Qββ . To this scope, the number of expected
counts from each contribution and from the total model was determined in the±5 keV-
window around Qββ . This was done for the global as well as for the marginalized
posterior probability distributions, following the procedure described in Sec. 9.1. The
BI expectation was obtained by normalizing the number of counts to the width of the
window, 10 keV, and to the exposure, 17.9 kg · yr. The results for the individual model
components and the total BI are listed in Table 9.2.

The region was dominated by the contributions from 214Bi sub-chain decays, 228Th
sub-chain decays, 42K decays, and alpha decays from the 238U decay chain.

The total BI in the 10 keV-window around Qββ estimated from the best-fit model
was 20.3 · 10−3 cts/(keV · kg · yr). The marginalized posterior distribution for the total
model is shown in Fig 9.6. Its mode was found to be 21.0 ·10−3 cts/(keV ·kg ·yr), with
the smallest 68 % probability interval extending from 19.8 · 10−3 cts/(keV · kg · yr) to
22.2 · 10−3 cts/(keV · kg · yr).

Stability of the Background Model at Qββ

Some parameters that are known only within an uncertainty enter the model via the
MC simulations or the priors. In order to evaluate their effect on the final model
composition and the BI predictions, the analysis was repeated several times taking
into account these uncertainties. The main results of the following discussion are
summarized in Table 9.3.

Uncertainty on screening measurement results The influence of the uncertainty on
the activities used as prior input for the contributions from the 214Bi and 228Th
sub-chain decays of close and medium distant sources was estimated. This was
done by rerunning a separate fit for each possible change in the fit parameter
ranges, as calculated from the uncertainties on the activity measurements for
214Bi and 228Th in Table 8.1. No change was observed for any of the background
components.

Active volume fraction (n+-deadlayer thickness) Another uncertainty that had to
be considered was the uncertainty on the active volume fractions of the de-
tectors, fact . This affects several model components in different ways. For the
contributions from internal sources, like 2νββ and 60Co decays in the germa-
nium, the fractions of decays taking place in the active and in the dead volume
of the detectors change. The uncertainties on fact , listed in Table 6.1, are of
the order of a few percent. Therefore, the effect can be approximated as linear
and can be taken into account by rescaling the contributions from the active and
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Figure 9.5: Best-fit model and data energy spectrum between 1930 keV and 2190 keV for the
golden data set. The individual model components, scaled according to their global modes,
are also drawn. The light grey data spectrum indicated as unblinded was made available after
the background model determination and was thus not used for the analysis. The remaining
10 keV blinded window is marked in green. The lower panel shows a fit with a constant to the
best-fit model. The 10 keV-windows around the SEP of 208Tl at 2104 keV and the 214Bi photon
line at 2119 keV were excluded from the fit.
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Figure 9.6: Marginalized posterior probability distribution for the expected number of counts
in the 10 keV-window around Qββ for the golden data set. The mode and smallest 68 %
interval are marked.

the dead parts of the detectors. Altered spectra were produced for 2νββ and
internal 60Co decays by following the steps for the post-processing of the Single

detectors in full array mode, but using the upper or lower limits for fact for all
detectors. The analysis was then performed with the lower and the upper limit
spectra, respectively. Note that this overestimates the effect, as the maximum
uncertainty is considered for each detector and no distinction is made between
the correlated and the uncorrelated part of the uncertainty, see Table B.1. Nev-
ertheless, the background model composition was not affected by this change.

Energy spectra dominated by contributions from photons are not expected to
vary significantly for small variations of the active volume fraction. However,
the spectrum deriving from 42K decays on the n+-surface is likely to be altered,
as a higher or lower number of electrons reaches the active volume of the de-
tectors for decreasing or increasing deadlayer thicknesses. Simulations of 42K
decays on the n+-surface were performed for the cases of maximal and mini-
mal deadlayer thickness of ANG3 and the analysis was repeated by replacing
the standard 42K spectrum by the spectra of the two extreme cases. While for
the case of the upper limit of the deadlayer thickness the results remained un-
changed, the case of the lower limit lead to some differences in the model com-
position and the BI expectation. The global mode of the total BI increased by
0.5 · 10−3 cts/(keV · kg · yr), and the marginalized mode and upper and lower
limit of the smallest 68 % interval grew by 0.4 · 10−3 cts/(keV · kg · yr). Also
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Table 9.2: Estimates of the BI from the background model in a 10 keV-window around Qββ .
Listed are the results for the total model and all individual model components whose spec-
trum extends up to the window. The global modes, as well as the modes and smallest 68 %
interval of the marginalized distributions are given. In case the 68 % interval contains zero,
the 90 % quantile of the marginalized distribution is shown. All values are given in units of
10−3 cts/(keV · kg · yr).

Isotope Source position Global mode Marg. mode 68 % interval/

90 % quantile

alpha model p+-surface 2.1 2.1 [2.0,2.1]
214Bi chain close 3.6 2.9 [2.6,3.4]
214Bi chain medium distant 0.3 0.3 [0.3,1.2]
214Bi chain p+-surface 1.3 1.3 [0.9,1.7]
228Th chain close 1.0 0.8 [0.1,1.4]
228Th chain medium distant 2.6 0.8 [0.8,2.3]
228Th chain distant - <3.3
60Co close 1.0 1.0 [0.5,1.5]
60Co in Ge 0.5 <0.5
42K LAr 1.7 2.2 [1.9,2.4]
42K p+-surface - <4.9
42K n+-surface 6.2 <5.5

Total 20.3 21.0 [19.8,22.2]

the composition of the background model changed slightly. For the contri-
butions from the 228Th sub-chain, the global mode for close sources rose by
1.1 · 10−3 cts/(keV · kg · yr), whereas the contribution due to decays of medium
distant sources fell by 1.2 ·10−3 cts/(keV · kg · yr). This change was not observed
for the marginalized modes and limits. A variation in the composition of the con-
tributions from 42K decays was present for both the global mode and the values
from the marginalized probability distributions. For the global mode, the BI due
to decays in the LAr and on the p+-contact increased by 0.5·10−3 cts/(keV·kg·yr)
and 1.6 · 10−3 cts/(keV · kg · yr), respectively, and the contribution from decays
on the n+-surface decreased by 1.4 ·10−3 cts/(keV ·kg ·yr). This change was only
partly reflected in the values of the marginalized distributions. The marginal-
ized modes of 42K decays in the LAr increased by 1.1 · 10−3 cts/(keV · kg · yr),
which was also reflected in the boundaries of the 68 % probability interval. The
contribution from decays on the p+-surface not only lead to an upper limit as
before, but resulted in 2.2·10−3 cts/(keV·kg·yr), with a 68 % smallest interval of
[0.4, 4.0]·10−3 cts/(keV·kg·yr). The contribution from decays on the n+-surface
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Table 9.3: Results of the stability tests for the total BI prediction at Qββ for the golden data
set. Given are the changes of the global and the marginalized mode of the total BI in the
±5 keV-window around Qββ , ∆BIglobal and ∆BImarg, in units of 10−3 cts/(keV · kg · yr). All
variations of the marginalized mode remained within the smallest 68 % probability interval.
The last two columns indicate, if the global or marginalized mode of any of the individual
contributions to the model varied.

Item ∆BIglobal ∆BImarg Model composition varied

global marg.

Screening results – – – –

Active volume fraction

for internal sources – – – –

for 42K on n+-surface +0.5 +0.4
p p

Enrichment fraction – – – –

Source positions +1.6
−0.2

+0.2
−0.1

p p

Binning −0.1 −0.1
p p

remained unchanged.

Enrichment fraction The implications of the uncertainty on the enrichment fractions,
f76, were also estimated. This only affects the spectrum deriving from 76Ge
decays, that is the energy spectrum of 2νββ . As described for the case of the
uncertainty on the active volume, the post-processing of the simulated energy
spectra was repeated using the upper and lower limit of f76 for each detector
and the analysis was performed with the altered energy spectra. Again, this
presents the extreme case of all detectors having systematically lower or higher
enrichment fractions, and thus overestimates the effect. Neither the total BI nor
the composition of the model were affected by the change.

Source positions For the fit model, the locations of the contaminations were classi-
fied as close, medium distant, and far sources, and their energy spectra were ap-
proximated with the energy spectra from decays in the holders, the shroud, and
the heatexchanger, respectively. In order to evaluate the influence of a change in
the location of the decays on the BI prediction, the fit was repeated for several
variations in the location of the 214Bi sub-chain sources. The effect is expected to
be of the same order or smaller for model components different from the 214Bi
sub-chain. The fit was repeated by replacing the energy spectrum of 214Bi sub-
chain decays in the holders by the one of decays in the mini-shrouds and also by
the one of decays close to the n+-surface. The energy spectrum resulting from
decays in the shroud was replaced by the one of decays in the LAr. For the case of
decays in the mini-shrouds representing the close source, the global mode of the
total BI increased by 1.6·10−3 cts/(keV·kg·yr). The increase in the marginalized
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distribution was smaller, the mode grew by 0.2 · 10−3 cts/(keV · kg · yr), whereas
the boundaries of the smallest 68 % interval grew by 0.1 ·10−3 cts/(keV · kg · yr).
For the close source being represented by decays on the n+-surface, the to-
tal BI decreased by 0.2 · 10−3 cts/(keV · kg · yr) for the global mode and by
0.1 · 10−3 cts/(keV · kg · yr) for the marginalized mode and limits. The variation
of the medium distant source from shroud to LAr lead to an increase of the BI of
0.3 ·10−3 cts/(keV ·kg ·yr) for the global mode and of 0.2 ·10−3 cts/(keV ·kg ·yr)
for the values deriving from the marginalized distribution. The global mode of
the 214Bi sub-chain close source contribution rose by 0.6 · 10−3 cts/(keV · kg · yr)
for the case of the mini-shroud spectrum replacing the holder spectrum and for
the case of the LAr spectrum replacing the shroud spectrum. It remained un-
changed for the case of the n+-surface spectrum replacing the holder spectrum.
The global mode of the contribution of the medium distant 214Bi sub-chain de-
cays grew by 0.8 ·10−3 cts/(keV ·kg ·yr) when the holder spectrum was replaced
with the mini-shrouds spectrum and by 0.6 · 10−3 cts/(keV · kg · yr) when it was
replaced with the n+-surface spectrum. It increased by 1.0 ·10−3 cts/(keV ·kg ·yr)
for the case of decays in the LAr representing the medium distant source. The
global modes of the BI contributions from 42K in the LAr and on the n+-surface
increased by 0.6 · 10−3 cts/(keV · kg · yr), respectively, when the holder spectrum
was replaced by the mini-shrouds spectrum. In contrast, the modes from the
marginalized probability distributions did not undergo large changes in any of
the cases. The contribution from close source 214Bi sub-chain decays was af-
fected most, when the holder spectrum was replaced by the mini-shroud spec-
trum. In this case, it decreased by 0.4·10−3 cts/(keV·kg·yr). All other changes in
any of the marginalized modes for any of the variations turned out to be below
0.3 ·10−3 cts/(keV ·kg ·yr). The limits of the smallest 68 % intervals reflected this
behavior.

Binning For the fitting procedure, a binwidth of 30 keV was chosen for all energy
spectra. In order to test the stability of the fit, the analysis was repeated us-
ing different binwidths. The energy resolution of the detectors was ≈ 4.5 keV
around Qββ and the energy calibration was precise within 10 keV in the alpha
region of the energy spectra. Therefore, the finest binning allowing for a mean-
ingful fit is 10 keV. For a binwidth above 50 keV, the structures of the photon
peaks are washed out and the quality of the fit is reduced drastically. A binning
coarser than 50 keV is therefore not expected to give a useful result. The effect
of different binnings was thus estimated by repeating the fitting procedure once
with 10 keV bins and once with 50 keV bins. In both cases, the global as well as
the marginalized mode and the corresponding limits for the total BI decreased
by 0.1 · 10−3 cts/(keV · kg · yr). Several changes were observed for the global
mode of the single model components. For the case of 50 keV bins, the con-
tribution from close 214Bi sub-chain decays fell by 1.0 · 10−3 cts/(keV · kg · yr),
whereas that from medium distant sources rose by 1.5 · 10−3 cts/(keV · kg · yr).
For 228Th sub-chain decays, the contribution from close sources increased by
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1.1 · 10−3 cts/(keV · kg · yr) and the contribution from medium distant sources
decreased by 1.8 · 10−3 cts/(keV · kg · yr). The BI due to 42K decays on the n+-
surface was lower by 1.9 · 10−3 cts/(keV · kg · yr). The changes for the case of
10 keV bins were smaller. Again, the contribution from close 214Bi sub-chain de-
cays decreased, this time by 0.9·10−3 cts/(keV·kg·yr), whereas that from medium
distant sources increased by 1.3·10−3 cts/(keV·kg·yr). Also in this case, the con-
tribution from 42K decays on the n+-surface fell by 1.5 ·10−3 cts/(keV ·kg ·yr). All
other variations remained below 0.5 ·10−3 cts/(keV ·kg ·yr). The values deriving
from the marginalized distributions turned out to be stabler. The largest varia-
tion of the marginalized modes of the individual contributions was observed for
the case of 214Bi sub-chain decays from medium distant sources for a binning
of 10 keV. The marginalized mode increased by 0.5 · 10−3 cts/(keV · kg · yr). All
other variations did not exceed 0.3 · 10−3 cts/(keV · kg · yr).

In summary, a variation within their uncertainties of the prior limits on the 214Bi
and 228Th sub-chain contributions and of the enrichment fractions did not affect the
background model. Considering the change in the energy spectrum of 42K on the
n+-contact for the lower limit of the n+-deadlayer thickness derived from the un-
certainty on the active volume fractions resulted in an increase of the total BI by
0.5 · 10−3 cts/(keV · kg · yr) for the global mode and 0.4 · 10−3 cts/(keV · kg · yr) for the
marginalized mode. For a variation of the close and medium distant source positions,
a maximum increase of the total BI by 1.6 ·10−3 cts/(keV · kg · yr) for the global mode
and 0.2 · 10−3 cts/(keV · kg · yr) for the marginalized mode and a maximum decrease
of 0.2 · 10−3 cts/(keV · kg · yr) for the global and of 0.1 · 10−3 cts/(keV · kg · yr) for the
marginalized mode was observed. A change in the width of the bins lead to a de-
crease of 0.1 · 10−3 cts/(keV · kg · yr) for both the global and marginalized mode both
for smaller and wider bins. All variations of the marginalized mode of the total BI

remained well within the 68 % uncertainty interval.
In all cases where a change in the total BI was observed, also the composition of

the background model was altered. Especially the contributions from 214Bi sub-chain
decays, 228Th sub-chain decays, and 42K surface decays were affected. All changes
of individual contributions remained below 2.0 · 10−3 cts/(keV · kg · yr). Generally,
the global mode was more affected by changes than the values deriving from the
marginalized posterior distributions1.

As shown in Fig. 9.5, a part of the data energy spectrum contained in the 40 keV
blinded window was made available for analysis after the determination of the back-
ground model had been finalized. Only the 10 keV-window around Qββ was kept
blinded. The partial unblinding allowed to check the consistency of the background
model with the data. In the unblinded 30 keV-window, 16 events were detected,
whereas the best-fit model predicted 11.6 events. The expectation from the marginal-

1The result for T 2ν
1/2 resulted to be stable for all described variations of the fitting procedure, ex-

cluding the change in the enrichment fractions and the change of the active volume fractions. These
lead to differences of ±0.04 · 1021 yr and ±0.12 · 1021 yr, respectively, for the mode of the marginalized
posterior distribution.
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ized distribution was 12.0 counts, with a smallest 68 % interval of [11.5, 12.7]. The
probability to detect 16 events or more given the expectation of 12.0 events is 16 %.

The lower panel of Fig. 9.5 shows a fit with a constant to the background model in
the window between 1930 keV and 2190 keV. The 10 keV-windows around the SEP of
208Tl at 2104 keV and the 214Bi photon line at 2119 keV were excluded from the fit. A
fit with a first order polynomial resulted in a difference < 1 % for the total number of
expected counts in the window.

The fact that the energy spectrum is nearly constant in the window around Qββ
allows to estimate the BI directly from the data, as described in Sec. 7.4. The events
in the data energy spectrum between 1930 keV and 2190 keV were counted, excluding
the two 10 keV-windows around 2104 keV and 2119 keV and the 40 keV of the pre-
viously blinded window, and normalized to the width of the energy window and the
exposure. The resulting BI is 17.6+2.5

−2.2 ·10−3 cts/(keV ·kg ·yr). Including the unblinded
30 keV of the previously blinded window leads to a BI of 18.5+2.3

−2.2·10−3 cts/(keV·kg·yr).
The model prediction is in agreement with both results.

9.3 Background Model for the BEGe Sum Data Set

The exposure of the BEGe sum data set was only 13 % of the exposure of the golden
data set. Also, the detection efficiency for the full energy peaks is reduced for the BEGe
detectors with respect to the coaxial detectors due to their lower mass, diminishing the
possibility to identify unequivocally the photon lines present in the energy spectrum.
Therefore, the results presented in the following have to be regarded more from a
qualitative rather than a quantitative point of view.

The general approach for the development of the full background model for the
BEGe data set followed the strategy described for the golden data set. After the de-
termination of the alpha model for the high-energy region of the spectrum, the full
background model was developed.

9.3.1 High Energy Region

As discussed in Sec. 9.2.1, the energy spectrum above 3500 keV is dominated by the
energy deposits of alpha decays. The energy spectrum of the BEGe data set is depicted
in Fig. 7.8(b). Only a small number of counts was recorded for the alpha region and no
peaklike structures were observed. Therefore, a determination of the deadlayer model,
as described for the golden data set, was not possible. The energy spectra resulting
from simulations with a p+-deadlayer thickness of 600 nm, the nominal deadlayer
thickness of the BEGe detectors, were used for the analysis. As mentioned in Sec. 8.3,
the MC simulations of the alpha decaying isotopes performed with configANG3 can be
used also to describe the BEGe high-energy spectrum, since the spectral shape due to
alpha decays is influenced only by the p+-deadlayer thickness and not by other geo-
metrical details of the detectors. The region from 3500 keV to 7500 keV was divided
into 80 bins with a width of 50 keV each. From the small number of events in the BEGe
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Figure 9.7: Best-fit model and individual components for the alpha model for the BEGe sum
data set. The data energy spectrum is also drawn. The lower panel shows the ratio of data and
model and the smallest intervals of 68 % (green), 95 % (yellow), and 99.9 % (red) probability
for the model expectation.

sum data set above 3500 keV, no conclusions could be drawn regarding potential ad-
ditional or missing contributions to the alpha spectrum compared to the golden data
set. Hence, the contributions to the alpha model considered for the fit were the same
that had been taken into account for the golden data set. They comprised the decays
of 210Po and the alpha decays of the 226Ra sub-chain (226Ra, 222Rn, 218Po, 214Po) on the
p+-contact, as well as the alpha decays of the 226Ra sub-chain in the LAr close to the
p+-contact. The prior probabilities were uninformative with the only requirement of
non-negative number of events. The best-fit alpha model for the BEGe sum data set
is shown in Fig. 9.7 together with the data spectrum. The single contributions were
scaled according to the global modes of the posterior probability.

An estimate of the number of expected events for each component in the full en-
ergy range between 100 keV and 7500 keV was extracted using the marginalized pos-
terior distributions and the MC energy spectra for the full energy region. The modes
and smallest 68 % intervals are given in Table 9.4. For cases where the 68 % proba-
bility range extended down to zero, the 90 % quantile is listed. This is the case for all
but two components of the model. It seems that the contamination with 210Po isotopes
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Table 9.4: Number of expected events in the whole energy range from 100 keV to 7500 keV for
each component of the alpha model for the BEGe sum data set. The numbers were estimated
from the MC energy spectra, using the modes and the smallest 68 % probability intervals of
the marginalized distributions of the parameters. In case the interval contained zero, the 90 %
quantile is quoted.

Isotope Location Number of counts
210Po p+-surface 14.0 [9.4,19.4]
226Ra p+-surface 6.1 [2.2,10.2]
222Rn p+-surface <7.1
218Po p+-surface <4.8
214Po p+-surface <4.3
226Ra LAr <51.2
222Rn LAr <28.6
218Po LAr <20.4
214Po LAr <12.0

was much reduced compared to the coaxial detectors2. Note that not only the smaller
exposure, but also the much reduced size of the p+-surface as well as differences in the
production process and diode history have to be taken into account for an interpre-
tation of the alpha model. Therefore, differences between the coaxial and the BEGe
detectors were expected.

9.3.2 Full Background Model

Definition of the Model

The full background model was composed analogously to the background model of
the golden data set. The energy spectrum from decays of 68Ga in the germanium was
added as an additional contribution. Due to the short time period that had elapsed
since the production and transport of the detectors until their operation in the GERDA

experiment, this contribution could not be considered negligible as had been the case
for the coaxial detectors. Again, the model was defined for the energy region be-
tween 570 keV and 7500 keV and in the MC spectra the events between 2019 keV and
2059 keV were removed to imitate the data blinding procedure.

A binwidth of 30 keV was chosen.
The following model components and prior information entered the fit:

2Not all coaxial detectors showed the same high level of contamination with 210Po. The detectors
ANG2-ANG5, which were inherited from the HdM experiment, exhibited a much larger count rate
around 5.3 keV than the detectors RG1 and RG2, originating from the IGEX experiment. For further
information see [149].
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Alpha model The composition of the alpha model was fixed according to the best-
fit model resulting from the fit to the high-energy region. The total number of
alpha events in the fit range was a free parameter. No prior information was
taken into account.

214Bi sub-chain close sources The energy spectrum from decays in the holders was
used to represent this component. As described for the golden data set, the
results from the screening measurements, listed in Table 8.1, were used to de-
rive a minimum number of events expected from this source in the fit range.
Therefore, the prior probability was chosen to be flat above 107 and zero below.

214Bi sub-chain medium distant sources The energy spectrum due to decays in the
shroud was used to describe the contributions from medium distant 214Bi sub-
chain sources. The flat prior required at least 13 counts in the fit window, as
derived from the results of the screening measurements.

214Bi sub-chain on p+-contact Following the reasoning for the golden data set, the
activity of 214Bi sub-chain isotopes on the p+-surface is directly related to the ac-
tivity of 226Ra on the p+-surface. From the number of events attributed to 226Ra
decay in the alpha model, the detection efficiency of 44.3 %, and the average
live time of the BEGe detectors of 300 d, the activity of 226Ra on the p+-surface
was calculated to be (0.5±0.3)µBq. The detection efficiencies of 214Bi and 214Pb
in the fit window were determined to be 41 % and 4 %. As a result, a total of
6±3 events due to 214Bi sub-chain decays on the p+-surface was expected in the
fit range. The information was used to define the mean and standard deviation
of the Gaussian prior probability distribution.

228Ac close sources The energy spectrum resulting from decays on the holders and a
non-informative prior were used for this contribution.

228Ac medium distant sources The contribution was represented by the spectrum
deriving from decays on the shroud. The prior probability was flat.

228Th sub-chain close sources Also in this case, a minimum number of events due to
close sources of 228Th sub-chain decays, represented by the spectrum of decays in
the holders, was derived from the screening measurements. As a consequence,
the flat prior distribution required at least one event in the fit range.

228Th sub-chain medium distant sources The decays in the shroud were used to
model the contributions from medium distant 228Th sub-chain decays. Usage
of the screening results allowed to set a lower limit of six counts for the flat
prior.

228Th sub-chain distant sources The energy spectrum deriving from decays of 208Tl
in the heatexchanger simulated for the configNAT setup was used also for the
BEGe background model. No prior information was available, hence a flat dis-
tribution was chosen.
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60Co external sources The simulation of 60Co decays in the holders was used as a
representative of all contributions from 60Co decays external to the detectors.
This did not allow to use the screening results to constrain the fit parameter.
Hence, an uninformative prior was chosen.

60Co internal source An estimate of the number of produced 60Co isotopes inside the
germanium detectors can be calculated knowing the exposure history of the ger-
manium following the zone refinement. This allowed to extract the activity of
each BEGe detector at the time of insertion into the GERDA setup [170]. Follow-
ing the approach described for the golden data set, the total number of events
in the analyzed data spectrum was estimated for periods of 15 d, respectively,
taking into account each detector’s live time fraction and the actual activity for
each detector in this period. Summing up all contributions for the complete
data taking period allowed to set an upper limit of four events for the flat prior
distribution.

68Ga internal source Also in this case, the upper limit on the number of events could
be estimated from the exposure history of the germanium detectors to cosmic
radiation. The relevant time that has to be taken into account for the activa-
tion calculations is the time period spent above ground by the detectors follow-
ing the isotope separation, that is the enrichment process. For the cosmogenic
production, a rate of 1 nuclei/(kg · d) was assumed [168]. An analogous pro-
cedure as described for the case of the 60Co internal source was applied, using
the estimated activities for each detector at the time of insertion into the exper-
iment [170] and the half-life of 68Ga, T1/2 = 270.8 d. A maximum contribution
of 50 events was determined. The prior distribution was flat up to this number
and zero above.

40K external sources The energy spectrum from 40K decays in the holders was used
to represent all possible contributions from 40K. Again, this generalization made
it impossible to use the information from the screening measurements. Hence,
a non-informative prior was used for the fit.

42K in LAr Also for the parameter describing the number of events that can be ac-
counted to 42K decays in the LAr, a flat prior was chosen.

42K on p+-contact No input information was available for this component, thus a flat
prior was used also in this case.

42K on n+-contact Again, no prior knowledge about the number of expected events
was available, necessitating an uninformative prior.

2νββ Following the example of the golden data set, the prior proability distribution
on the fit parameter t1/2, which gives the half-life of 2νββ in units of 1021 yr,
was constant between one and three.
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For all components where no lower limit of the parameter range was specified above,
this was set to zero to assure a non-negative number of events for each contribution.

Fit Results

The background model comprised 16 parameters describing the number of events
from the background components other than 2νββ and one parameter for the half-
life of 2νββ . The global posterior distribution as well as the marginalized posterior
probabilities were determined with the fitting procedure described in Sec. 9.1. The
p-value resulted to be 0.42. The best-fit model is shown together with the data energy
spectrum in Fig. 9.8 and 9.9 for the energy ranges between 570 keV and 1800 keV
and between 1800 keV and 3500 keV, respectively. The best-fit model contains 5032
events, exactly matching the number of counts observed in the data spectrum. The
lower panels depict the ratio of the observed and expected number of events. For
the lower energy range, the interval of 68 % probability contains 35, that of 95 %
probability contains 40, and that of 99.9 % contains all of the 42 ratio points. This is
in good agreement with the expectations of 28.6, 39.9, and 42.0, respectively. Also for
the higher energy range, the fluctuations remain within expectations with 44, 54, and
57 ratio points matching the theoretical values of 38.8, 54.1, and 56.9 for the 68 %,
95 %, and 99.9 % probability intervals for a total of 57 points.

As shown already for the golden data set, dependencies were present between
some of the fit parameters. These were even stronger for the BEGe sum data set, due
to the smaller number of events in the measured energy spectrum. In the fit, no clear
distinction was possible between the energy spectra of 214Bi sub-chain decays from
close and medium distant sources. This was the case also for the two source positions
of 228Ac and for all three source positions of the 228Th sub-chain decays. Strong de-
pendencies were observed also between the parameters describing the contributions
from 42K on the n+-contact and on the p+-contact.

The half-life of 2νββ was determined from the marginalized posterior distribution
of t1/2. It resulted in

T 2ν
1/2 = 2.10 [2.02, 2.19] · 1021 yr. (9.15)

It agrees within 2σ with the results from the golden data set and those presented in
Appendix B.

The Background Model at Qββ

Figure 9.10 shows the data spectrum and the best-fit model with its individual contri-
butions in the 260 keV-window around Qββ .

The background contributions expected from the individual model components
and from the total model in an 8 keV-window around Qββ are listed in Table 9.5. As
already observed for the case of the golden data set, the dominating contributions are
accounted to decays of the 214Bi and 228Th sub-chains, the alpha decays from the 238U
chain, and 42K decays. Compared to the coaxial detectors, the contributions from 42K
decays on the detector surfaces were considerably higher. Note that the fit parameters
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Figure 9.8: Best-fit model and data energy spectrum for the energy region from 570 keV to
1800 keV for the BEGe sum data set. The individual model components scaled according to
their global mode are also drawn. The lower panel shows the ratio of data and model and the
smallest intervals of 68 % (green), 95 % (yellow), and 99.9 % (red) probability for the ratio
assuming the best-fit parameters.
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Figure 9.9: Best-fit model and data energy spectrum in the energy region from 1800 keV to
3500 keV for the BEGe data set. The individual model components scaled according to their
global mode are also drawn. The lower panel shows the ratio of data and model and the
smallest intervals of 68 % (green), 95 % (yellow), and 99.9 % (red) probability for the ratio
assuming the best-fit parameters.
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Figure 9.10: Best-fit model and data energy spectrum between 1930 keV and 2190 keV for
the BEGe data set. The individual model components scaled according to their global mode
are also drawn. The light grey data spectrum indicated as unblinded was made available after
the background model determination and was thus not used for the analysis. The remaining
8 keV blinded window is marked in green. The lower panel shows a fit with a constant to the
best-fit model. The 10 keV-windows around the SEP of 208Tl at 2104 keV and the 214Bi photon
line at 2119 keV were excluded from the fit.
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Figure 9.11: Marginalized posterior probability distribution for the expected number of
counts in the 10 keV-window around Qββ for the BEGe sum data set. The mode and smallest
68 % interval are marked.

for the decays of 42K on the p+-surface and on the n+-surface were highly dependent,
so that the sum of both contributions has to be considered. For the best-fit model,
these two components constitute 62 % of the total BI around Qββ . Most likely this
large difference between the BEGe detectors and the coaxial detectors can be ascribed
to decays happening on the n+-surface. For the coaxial detectors, the thickness of
the Li-diffused deadlayer is about twice that of the BEGe detectors, so that for the
latter more electrons released in the decay of 42K reach the active volume and thus
contribute to the energy spectrum.

The total BI in the 8 keV-window, estimated from the best-fit model, was 40.0 ·
10−3 cts/(keV ·kg ·yr). The marginalized distribution, shown in Fig. 9.11, gave a mode
of 40.6·10−3 cts/(keV·kg·yr) and a smallest 68 % interval of [36.5, 45.2]·10−3 cts/(keV·
kg · yr).

Stability of the Background Model at Qββ

The effect of the uncertainties on the priors and MC simulations on the model predic-
tions around Qββ were evaluated from crosschecks analogous to those performed for
the golden data set. The main results can be found in Table 9.6.

Uncertainty on screening measurement results The activities that were used to de-
fine the priors for the parameters of the close and medium distant 214Bi and 228Th
sub-chain contributions were known only within an uncertainty. While the total
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Table 9.5: Estimates of the BI from the background model in a 8 keV-window around Qββ .
Listed are the results for the total model and all individual model components whose spec-
trum extends up to the window. The global modes, as well as the modes and smallest 68 %
interval of the marginalized distributions are given. In case the 68 % interval contains zero,
the 90 % quantile of the marginalized distribution is shown. All values are given in units of
10−3 cts/(keV · kg · yr).

Isotope Source position Global mode Marg. mode 68 % interval/

90 % quantile

alpha model p+-surface 1.8 1.8 [1.5,2.1]
214Bi chain close 5.4 3.2 [2.7,5.1]
214Bi chain medium distant 0.3 0.3 [0.3,2.7]
214Bi chain p+-surface 0.5 0.5 [0.2,0.8]
228Th chain close 0.1 0.1 [0.1,3.0]
228Th chain medium distant 3.7 0.8 [0.8,4.2]
228Th chain distant - <8.4
60Co close 1.2 <4.2
60Co in Ge 0.3 <0.3
68Ga in Ge - <3.6
42K LAr 2.0 2.1 [1.9,2.3]
42K p+-surface 11.8 5.1 [0.5,10.5]
42K n+-surface 12.9 <16.4

Total 40.0 40.6 [36.5,45.2]

BI remained unchanged, using the lower limit for the 214Bi sub-chain activity of
medium distant sources lead to an increase by 0.4 · 10−3 cts/(keV · kg · yr) of the
marginalized mode and upper limit and an increase by 0.2·10−3 cts/(keV·kg·yr)
of the lower limit for the contribution from close source 214Bi sub-chain de-
cays. The contribution from medium distant 214Bi sub-chain decays did not
change. The marginalized mode for 42K decays on the p+-surface grew by
1.4 · 10−3 cts/(keV · kg · yr). This increase was not observed for the 68 % interval
limits. The 90 % quantile of the contribution from 42K decays on the n+-surface
fell by 0.5 · 10−3 cts/(keV · kg · yr).

Active volume fraction (n+-deadlayer thickness) In order to study the influence
of the uncertainty on fact for the BEGe detectors, alternative energy spec-
tra were produced for 2νββ , internal 60Co decays, and for the internal 68Ga
decays, taking into account the upper and lower limits for fact for each de-
tector. The global modes of the single contributions as well as of the to-
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Table 9.6: Results of the stability tests for the total BI prediction at Qββ for the BEGe sum
data set. Given are the changes of the global and the marginalized mode of the total BI in
the ±4 keV-window around Qββ , ∆BIglobal and ∆BImarg, in units of 10−3 cts/(keV ·kg ·yr). All
variations of the marginalized mode remained within the smallest 68 % probability interval.
The last two columns indicate, if the global or marginalized mode of any of the individual
contributions to the model varied.

Item ∆BIglobal ∆BImarg Model composition varied

global marg.

Screening results – – –
p

Active volume fraction

for internal sources – +0.3 –
p

for 42K on n+-surface −0.4 +0.5
p p

Enrichment fraction – – –
p

Source positions +1.1
−0.5 +1.1

p p

Binning +1.3
−0.5

+1.3
−1.2

p p

tal BI did not change. The marginalized mode of the total BI increased by
0.3 · 10−3 cts/(keV · kg · yr) for both maximal and minimal active volume. The
limits of the smallest 68 % interval remained unaltered. For both the case of
minimum and maximum fact , the marginalized mode of 42K on the p+-contact
increased. The change was 0.6·10−3 cts/(keV·kg·yr) for minimal active volumes
and 0.8 · 10−3 cts/(keV · kg · yr) for maximal active volumes. The change in the
limits of the 68 % intervals was smaller, it was 0.2 ·10−3 cts/(keV ·kg ·yr) for both
the lower and the upper limit in both cases.

The effect from changes in the energy spectrum of 42K decays on the n+-contact
following variations of the deadlayer thickness was estimated using the energy
spectra from simulations with deadlayer thicknesses of 1.0 mm and 0.7 mm, re-
spectively. These values correspond to the mass-weighted average upper and
lower limits for the four BEGe detectors used for analysis. The transition layer
was modeled as described in 8.3.2. For the case of reduced deadlayer thickness
(0.7 mm), the total BI of the best-fit model did not change. The mode of the
marginalized distribution for the total BI increased by 0.4·10−3 cts/(keV·kg·yr),
whereas the limits remained stable. In the best-fit model, the contribution from
42K decays on the p+-surface was reduced by 2.1 ·10−3 cts/(keV ·kg ·yr), whereas
that of 42K decays on the n+-surface increased by the same amount. Regarding
the marginalized results, the only alteration was observed for the case of 42K
decays on the p+-surface. The 68 % interval extended down to zero, so that
only an upper limit of 14.7 · 10−3 cts/(keV · kg · yr) could be given. For the case
of maximal deadlayer thickness (1.0 mm), the global mode of the total BI de-
creased by 0.4 ·10−3 cts/(keV ·kg ·yr). The mode of the marginalized distribution
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increased by 0.5 ·10−3 cts/(keV ·kg ·yr), but no change was observed for the lim-
its of the smallest 68 % interval. For the global modes of 42K on the surfaces,
an effect contrary to that of the case of thinner deadlayer was observed. This
time, more events were attributed to 42K on the p+-contact, the contribution
rose by 2.6 · 10−3 cts/(keV · kg · yr), whereas that of decays on the n+-contact
diminished by 3.2 · 10−3 cts/(keV · kg · yr). Regarding the marginalized distri-
butions, a change was observed for 42K on the p+-surface. The mode grew by
0.3 ·10−3 cts/(keV ·kg ·yr) and the lower and upper limit of the 68 % probability
interval increased by 1.1·10−3 cts/(keV·kg·yr) and 1.4·10−3 cts/(keV·kg·yr). The
90 % quantile derived for the contribution from decays of 42K on the n+-surface
fell by 1.2 · 10−3 cts/(keV · kg · yr).

Enrichment fraction Analogously to what explained for the golden data set, the
2νββ energy spectrum was reproduced to represent the two extreme cases of
maximal and minimal f76 for each detector. This did not affect the total BI pre-
dictions. The only change in the model composition was found for the marginal-
ized mode of 42K on the p+-surface, which increased by 1.2·10−3 cts/(keV·kg·yr).

Source positions The influence of varying source position was again studied using
the case of 214Bi sub-chain decays. The energy spectrum of the decays in the
holders representing the close source was exchanged by that of decays in the
mini-shrouds and by that of decays on the n+-surface. For the medium dis-
tant source, usually represented by the spectrum of decays in the shroud, the
energy spectrum due to decays in the LAr was used. The global as well as
the marginalized mode of the total BI rose by 1.1 · 10−3 cts/(keV · kg · yr) for
the case of decays in the mini-shrouds representing the close source. This in-
crease was reflected also in the limits of the 68 % interval, which increased
by 0.7 · 10−3 cts/(keV · kg · yr). On the contrary, when the spectrum from
decays on the n+-surface was used as close source spectrum, a decrease of
0.5 · 10−3 cts/(keV · kg · yr) was observed for the global mode of the total BI .
The marginalized mode and limits did not change. No change in the total BI

of the best-fit model was observed when the energy spectrum due to decays in
the shroud was replaced by that of decays in the LAr. However, the marginal-
ized mode of the total BI increased by 1.0 · 10−3 cts/(keV · kg · yr) and the lim-
its of the smallest interval increased by 0.3 · 10−3 cts/(keV · kg · yr). Regarding
the composition of the spectrum around Qββ , several changes could be noted.
The global mode describing the decays of 42K on the p+-surface decreased by
0.9 · 10−3 cts/(keV · kg · yr), whereas that of 42K on the n+-surface increased by
2.4·10−3 cts/(keV·kg·yr)when the spectrum from decays in the mini-shroud was
used. The marginalized mode of 42K on the p+-surface, on the other hand, grew
by 0.9 · 10−3 cts/(keV · kg · yr). The corresponding lower limit did not change,
whereas the upper limit increased by 0.3 ·10−3 cts/(keV ·kg ·yr). The 90 % quan-
tile of 42K on the n+-surface followed the trend of the global mode, it increased
by 0.8 ·10−3 cts/(keV ·kg ·yr). The opposite behaviour was observed when using
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214Bi sub-chain decays on the n+-surface as the close source representative. The
global mode of 42K on the p+-surface increased by 1.2 ·10−3 cts/(keV ·kg ·yr) and
that of 42K on the n+-surface diminished by 2.9 · 10−3 cts/(keV · kg · yr). Again,
in the first case, the marginalized mode showed the opposite trend, decreasing
by 0.7 · 10−3 cts/(keV · kg · yr), while the limits remained unchanged. For the
case of 42K on the n+-surface, the behaviour of the global mode was followed,
the 90 % quantile decreased by 0.5 · 10−3 cts/(keV · kg · yr). In addition, the con-
tributions due to 214Bi close source events rose by 0.9 · 10−3 cts/(keV · kg · yr)
for the global mode, by 0.5 · 10−3 cts/(keV · kg · yr) for the marginalized mode,
and by 0.6 · 10−3 cts/(keV · kg · yr) for the upper limit of the smallest 68 % inter-
val. For the alternative position of the medium distant 214Bi sub-chain source,
the marginalized mode for 214Bi sub-chain close source decays increased by
0.8·10−3 cts/(keV·kg·yr), the lower limit increased by 0.2·10−3 cts/(keV·kg·yr),
and the upper limit by 0.4·10−3 cts/(keV·kg·yr). The marginalized mode for the
42K on the p+-surface contribution rose by 1.1 ·10−3 cts/(keV ·kg ·yr). No change
was observed for the limits of this contribution. The quantile describing the con-
tributions from 42K on the n+-surface decreased by 0.7 · 10−3 cts/(keV · kg · yr).

Binning Several changes were observed when studying the model stability for differ-
ent binwidths. The total BI rose by 1.3 · 10−3 cts/(keV · kg · yr) (global mode
and values from marginalized distribution) for the smaller bins, whereas the
global mode fell by 0.5 · 10−3 cts/(keV · kg · yr) and the marginalized mode
and 68 % interval limits fell by 1.2 · 10−3 cts/(keV · kg · yr) for the wider bins.
The global modes of the single contributions were affected by large changes.
For the 10 keV binning, the contribution from close source 214Bi sub-chain de-
cays decreased by 1.4 · 10−3 cts/(keV · kg · yr). The composition of 228Th sub-
chain contributions changed significantly. The close source contribution grew
by 1.7 · 10−3 cts/(keV · kg · yr), whereas the medium distant source contribution
was reduced by 2.7 · 10−3 cts/(keV · kg · yr). The largest contribution came from
the before absent distant source with 4.0 · 10−3 cts/(keV · kg · yr). Also the 68Ga
decays gave an increased contribution of 3.9 ·10−3 cts/(keV ·kg · yr). The contri-
butions of 42K on the p+-surface and n+-surface fell by 3.0 ·10−3 cts/(keV ·kg ·yr)
and 1.5 · 10−3 cts/(keV · kg · yr), respectively. The values deriving from the
marginalized posterior distributions turned out to be much stabler. The only
significant changes of the marginalized mode were observed for 42K on the p+-
contact, which decreased by 1.3 · 10−3 cts/(keV · kg · yr) and for close source
214Bi, which decreased by 0.4 · 10−3 cts/(keV · kg · yr). The lower limit of the
42K contamination on the p+-surface decreased by 0.3 · 10−3 cts/(keV · kg · yr).
All other lower limits of the smallest 68 % interval remained unchanged. The
upper limits of the close and medium distant 214Bi sub-chain sources decreased
by 0.8 · 10−3 cts/(keV · kg · yr) and 0.5 · 10−3 cts/(keV · kg · yr), respectively. The
upper limit of 42K on the p+-surface increased by 0.2 · 10−3 cts/(keV · kg · yr).
Also for the alpha model, a change was observed. The upper limit of the small-
est 68 % interval rose by 0.7 · 10−3 cts/(keV · kg · yr). The 90 % quantile on the
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contribution from 42K on the n+-contact grew by 2.2 ·10−3 cts/(keV · kg · yr). For
the external 60Co contamination, a mode of 1.5 · 10−3 cts/(keV · kg · yr) and a
smallest 68 % interval of [0.4, 2.5] · 10−3 cts/(keV · kg · yr) were found, whereas
in the standard fit only an upper limit of 4.2 · 10−3 cts/(keV · kg · yr) was de-
termined. Also for the fit using 50 keV-wide bins, the global modes of the in-
dividual components were affected by notable changes. The 214Bi sub-chain
close source contamination was reduced by 2.7 · 10−3 cts/(keV · kg · yr). The
228Th sub-chain contributions of close and medium distant sources increased
by 4.7 · 10−3 cts/(keV · kg · yr) and 0.4 · 10−3 cts/(keV · kg · yr), respectively. No
contribution due to external 60Co was present in the best-fit model, whereas
the 68Ga contribution increased by 4.1 · 10−3 cts/(keV · kg · yr). There were no
events attributed to 42K on the p+-surface, but the contribution from 42K on the
n+-surface grew by 5.7 · 10−3 cts/(keV · kg · yr). The absence of a contribution
from 42K on the p+-surface was reflected also in the results from the marginal-
ized parameter distribution. Only the 90 % quantile could be determined for
this contamination. It resulted to be 11.6 · 10−3 cts/(keV · kg · yr). The 90 %
quantile for 42K on the n+-surface was reduced by 1.7 · 10−3 cts/(keV · kg · yr).
A decrease of 0.3 · 10−3 cts/(keV · kg · yr) was observed for the marginalized
mode of close source 214Bi sub-chain decays. While the lower limit of this con-
tribution increased by 0.2 · 10−3 cts/(keV · kg · yr), the upper limit decreased by
0.6 · 10−3 cts/(keV · kg · yr). For 228Th sub-chain contributions, the upper lim-
its of the 68 % probability interval due to close and medium distant sources
increased by 1.5 · 10−3 cts/(keV · kg · yr) and 1.8 · 10−3 cts/(keV · kg · yr), respec-
tively. The 90 % quantile for the contribution from far sources increased by
2.0 · 10−3 cts/(keV · kg · yr).

Summarizing, it can be said that a change of the prior limits on 214Bi and 228Th
sub-chain decays did not change the total BI prediction, but provoked small changes
in the model composition. The same was the case for a variation of the enrich-
ment fractions of the detectors within their uncertainties. Changing the active vol-
ume fractions within their uncertainties, when processing the energy spectra for
the internal sources produced an increase in the marginalized mode of the total
BI of 0.3 · 10−3 cts/(keV · kg · yr) as well as an increase in the contribution from
42K on the p+-contact. Using the upper limit of the n+-deadlayer thickness for the
simulation of 42K on the n+-surface decreased the global mode of the total BI by
0.4 · 10−3 cts/(keV · kg · yr) and increased the marginalized mode of the total BI by
0.5 · 10−3 cts/(keV · kg · yr). The contributions from 42K on the p+-surface and on
the n+-surface were affected for both the case of maximum and minimum deadlayer
thickness. Variations of the source locations for close and medium distant 214Bi sub-
chain decays lead to a maximum increase of 1.1 · 10−3 cts/(keV · kg · yr) for the global
and the marginalized mode of the total BI . The maximum decrease for the global
mode was 0.5 · 10−3 cts/(keV · kg · yr), whereas no decrease was observed for the
marginalized mode. Again, the contributions from 42K surface decays changed no-
ticeably. Also the results obtained for 214Bi sub-chain events were altered. The largest
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changes in the background model were observed for the variations of the width of the
bins of the energy spectra. The reason for this lies in the small number of events con-
tained in the data energy spectrum for the BEGe sum data set and the consequently
enhanced effects due to the binning. For the 10 keV-bins, the expected fluctuations
for the single bins were very large. For the 50 keV-bins, the already small photon-
peaks were completely washed out, making the identification of background sources
and the distinction between similar spectra even more difficult. The modes of the
total BI rose by 1.3 · 10−3 cts/(keV · kg · yr) for the case of smaller bins and fell by
0.5 ·10−3 cts/(keV ·kg ·yr) (global mode) and 1.2 ·10−3 cts/(keV ·kg ·yr) (marginalized
mode) for the case of wider bins. In both cases, a substantial change in the best-fit
model composition was present, involving almost all model components. The unsta-
bilities in the composition of the background model for the BEGe sum data set were
considerably higher than for the golden data set. Nevertheless, the maximal variations
of the total BI did not exceed 1.3·10−3 cts/(keV·kg·yr) and thus remained well within
the uncertainty interval3.

Also for the BEGe sum data set, the blinding of the data in the 40 keV-window
around Qββ was partly removed after the definition of the background model had been
finalized. Due to the better resolution of the BEGe detectors compared to the coaxial
detectors, it was possible to open a 32 keV-window for analysis, leaving blinded only
the 8 keV-window around Qββ , without risking to enter the 0νββ signal region. The
unblinded window contained two counts, whereas the background model expecta-
tion was 3.1 counts (global and marginalized mode), with a smallest 68 % probability
interval of [2.8, 3.5]. The probability to observe two counts considering the model
prediction was 22 %.

As shown for the case of the golden data set, also for the BEGe sum data the
background in the ROI can be approximated by a constant. This becomes evident
from the fit shown in the lower panel of Fig. 9.10, where a constant was used to
describe the model in the energy window between 1930 keV and 2190 keV, exclud-
ing the two background peaks at 2104 keV and 2119 keV. An analogous fit was per-
formed using a first order polynomial. The expected number of events in the window
turned out to be in agreement within < 1 % for both fit results. Therefore, also for
the BEGe sum data set, the BI at Qββ was estimated from the number of events in
the data spectrum between 1930 keV and 2190 keV, excluding the 10 keV-windows
around the background peaks and the 40 keV-window around Qββ . The result is
43.8+11.7

−9.5 · 10−3 cts/(keV · kg · yr). When the unblinded 32 keV-region is added, the
BI results in 41.3+10.4

−8.4 ·10−3 cts/(keV ·kg ·yr). The model prediction at Qββ agrees very
well with both results.

3The result for T 2ν
1/2 changed by +0.08 · 1021 yr, when using 50 keV-bins and by −0.06 · 1021 yr,

when using 10 keV-bins. The variations with varying fact and varying f76 were ±0.07 · 1021 yr and
±0.02·1021 yr, respectively. The effect due to the change in the energy spectrum of 42K on the n+-surface
for variations in the deadlayer thicknesses was estimated to be ±0.01 · 1021 yr. Also the alternative
positions of the 214Bi sub-chain decays provoked a maximal change of ±0.01 · 1021 yr on T 2ν

1/2.
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9.4 Summary

Background models were developed for both the golden and the BEGe sum data sets.
They describe the full energy region between 570 keV and 7500 keV. Several cross-
checks were carried out to test the stability of the results under changes in the con-
ditions of the fit used to define the models. The predictions for the total BI around
Qββ deduced from the models resulted to be stable within their uncertainties. With
the help of the background models it was shown that the background in the 260 keV-
window around Qββ could be described as a constant, when the two known photon
peaks at 2104 keV and 2119 keV were excluded from the analysis. This legitimated
the determination of the BI as anticipated in Sec. 7.4 and used in Chapter 11 for
the analysis of 0νββ . Eventhough no background model could be developed for the
silver data set, it was assumed that also in this case the background in the window
around Qββ was approximately constant, since its background composition was as-
sumed to be similar to that of the golden data set, with additional contributions from
the natural decay chains of 232Th and 238U, see also Sec. 7.5. Counting the events in
the 230 keV-window between 1930 keV and 2190 keV (excluding the 10 keV-windows
around 2104 keV and 2119 keV and the still blinded 10 keV-window around Qββ) gives
BI = 63.4+18.0

−14.3 for the silver data set.





Chapter 10

Neutrino Accompanied Double Beta

Decay and Neutrinoless Double Beta

Decay with Majoron Emission in

GERDA Phase I

The half-life of 2νββ was measured using the golden and BEGe sum data sets. The
analysis employed the background models described in Chapter 9. Also, a search for
0νββχ(χ) was performed, leading to improved lower limits on T

0νχ(χ)
1/2 of 76Ge for all

possible decay modes (spectral index n= 1, 2, 3 and 7).

10.1 Statistical Analysis Method

The analysis was based on a similar statistical approach as that used for the devel-
opment of the background models and described in Sec. 9.1. The information from
the golden and the BEGe sum data set was combined in one fit, while keeping their
energy spectra separate. The combined likelihood, P(ngold,nBEGe|λgold,λBEGe), for the
observed data spectra of the golden data set, ngold, and the BEGe sum data set, nBEGe,
given the models λgold and λBEGe, could then be written as the product of the individual
probabilities for the two data sets,

P(ngold,nBEGe|λgold,λBEGe) =
∏

i

P(n
gold
i |λ

gold
i ) ·
∏

j

P(nBEGe
j
|λBEGe

j
), (10.1)

with n
gold
i (nBEGe

i
) the number of events in the i-th bin of the measured data spectrum

for the golden (BEGe sum) data set. The expected number of events in the i-th bin of
the golden and the BEGe sum data set, λgold

i and λBEGe
i

, could be expressed as the sum
of their single model contributions, c, for the total of Mgold and MBEGe contributions,
respectively,

λ
gold
i =

Mgold
∑

c=1

λ
gold, c

i (10.2)
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and

λBEGe
i
=

MBEGe
∑

c=1

λ
BEGe, c

i . (10.3)

Also in this case, the posterior probability distribution, P(λgold,λBEGe|ngold,nBEGe),
was determined from a fit performed within the BAT framework [150]. The
marginalized posterior distributions for the single parameters, P(λgold, c|ngold,nBEGe)

and P(λBEGe, c|ngold,nBEGe), were obtained as described in Sec. 9.1.
The fit contained (Mgold − 2) + (MBEGe − 2) parameters for all contributions other

than 2νββ and 0νββχ(χ), allowing for independent contributions to the energy
spectrum of the golden and BEGe sum data set. They were defined according to
Equation (9.6) as

λ
gold, c

i =N gold, c

∫

∆Ei

φgold, c,norm(E) dE, (10.4)

and

λ
BEGe, c

i =N BEGe, c

∫

∆Ei

φBEGe, c,norm(E) dE, (10.5)

with φgold, c,norm(E) and φBEGe, c,norm(E) the normalized simulated energy spectra
of the component c for the golden and BEGe sum data set, respectively, and
∫

∆Ei

φgold, c,norm(E) dE and
∫

∆Ei

φBEGe, c,norm(E) dE the fraction of the energy spectrum
in the i-th bin.

One common parameter, t2ν
1/2, described the contributions due to 2νββ for both

the golden and the BEGe sum data set. For the i-th bin, this resulted in

λ
gold, 2ν
i =

k0

t2ν
1/2

∫

∆Ei

φgold, 2ν(E) dE (10.6)

and

λ
BEGe, 2ν
i =

k0

t2ν
1/2

∫

∆Ei

φBEGe, 2ν(E) dE, (10.7)

respectively, in analogy to Equation (9.13).
A fit using these (Mgold − 2) + (MBEGe − 2) + 1 parameters without the possibility

of a contribution from 0νββχ(χ) decay was performed to determine T 2ν
1/2.

When studying the possible contributions from majoron accompanied decay
modes, a separate fit was performed for each spectral index. Hence, one additional
parameter, inv_t

0νχ(χ)
1/2 , was considered, again in common for the two datasets. It was

defined as the inverse of the half-life of the respective majoron accompanied mode in
units of 1021 yr. Following the definitions for T 2ν

1/2 in Sec. 9.1, the contributions in the
i-th bin due to 0νββχ(χ) for the golden data set could then be written as

λ
gold, 0νχ(χ)
i = inv_t

0νχ(χ)
1/2 · k0

∫

∆Ei

φgold, 0νχ(χ)(E) dE, (10.8)
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whereas that of the BEGe sum data set were defined as

λ
BEGe, 0νχ(χ)
i = inv_t

0νχ(χ)
1/2 · k0

∫

∆Ei

φBEGe, 0νχ(χ)(E) dE. (10.9)

The energy distributions φgold, 0νχ(χ) and φBEGe, 0νχ(χ)(E) were those deriving from the
simulations and post-processing of the majoron accompanied decay mode in question
for the golden and the BEGe sum data set, respectively.

10.2 Fit Results

The fit range extended from 570 keV to 7500 keV for both the golden and the BEGe
sum data set. This maximized the information available in the fit in order to fix the
background contributions. The data spectra after unblinding were used, containing
also the events in the 40 keV-window around Qββ . The total fit range was divided into
231 bins of 30 keV width each. The background contributions considered in the fit
models for the golden and the BEGe sum data sets were those described in Sec. 9.2.2
and 9.3.2, that is the alpha model, 214Bi sub-chain decays from close and medium
distant sources as well as on the p+-surface, 228Ac close and medium distant sources,
228Th sub-chain decays from close, medium distant, and distant sources, 60Co exter-
nal and internal sources, 40K external sources, and 42K decays in the LAr, on the p+-
contact, and on the n+-contact. For the BEGe sum data set, an additional parameter
describing the contribution from 68Ga internal decays was needed. This accounted to
15 parameters for the golden data set and 16 parameters for the BEGe sum data set.
All prior probabilities were defined in analogy to the background model analysis.

In addition, the parameter t2ν
1/2, in common to the data sets, was used to describe

the contributions from 2νββ in the energy spectra. Its prior distribution was chosen
flat between zero and five, corresponding to T 2ν

1/2 between zero and 5 · 1021 yr. Since
both values are very distant from the results of previous measurements, see Table 4.1,
this prior probability could be considered uninformative.

The parameter inv_t
0νχ(χ)
1/2 was used to estimate the contributions from majoron ac-

companied decay. A separate fit was performed for each decay mode n= 1, 2, 3 and 7,
with inv_t

0νχ(χ)
1/2 in common to the golden and the BEGe sum data set. The prior prob-

ability distribution was chosen flat between zero and one, meaning that T
0νχ(χ)
1/2 was

required to be greater than 1021 yr. Since this is well below the limits deduced from
previous measurements, see Table 4.2, the prior could be regarded as uninformative.

Note that the statistical analysis was dominated by the golden data set, which had
a more than seven times larger exposure than the BEGe sum data set.

10.2.1 Measurement of T2ν
1/2

In order to determine T 2ν
1/2, a fit was performed considering only the (Mgold − 2) = 15

parameters for the golden data set background contaminations, the (MBEGe − 2) = 16
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parameters for the BEGe sum data set background contaminations, and one parameter
for the half-life of 2νββ without any contribution from any of the majoron accompa-
nied modes, resulting in a total of 32 parameters. The best-fit models for the golden
and the BEGe data sets in the energy range between 570 keV and 2040 keV are shown
in Fig. 10.1 together with the data spectra. The contributions from the total model, the
background model, defined as the total model without the contributions from 2νββ ,
and the 2νββ energy spectra scaled according to the global modes are also depicted.
Also indicated is the smallest 68 % probability interval for the total model expecta-
tion. The models contain a total of 35902.3 events for the golden data set and 5062.1
events for the BEGe sum data set, whereas the data energy spectra contain 35868 and
5035 events, respectively. This good agreement between data and model is confirmed
also by the good p-value of 0.13.

The energy spectrum in the region between 570 keV and 1800 keV is dominated
by 2νββ , whereas above this energy the contributions from 2νββ are negligible. MC
simulations show that the probability for a 2νββ decay in the active volume of the
detectors to deposit an energy above 1800 keV is < 0.02 %. According to the best-
fit model prediction, 74.6 % of the total spectrum between 570 keV and 1800 keV of
the golden data set can be accounted to 2νββ . For the BEGe data set, the fraction of
2νββ events in this range was 73.2 %. Thus, for both data sets a signal-to-background
ratio of ≈ 3 : 1 was reached.

The half-life of 2νββ was determined from the marginalized posterior distribution
for t2ν

1/2, shown in Fig. 10.2. From the marginalized mode and smallest 68 % probabil-
ity interval for t2ν

1/2, which represents T 2ν
1/2 in units of 1021 yr, the half-life of 2νββ was

found to be

T 2ν
1/2 = 1.96 [1.93, 1.99] · 1021 yr. (10.10)

Note that the statistical uncertainty of this result, unlike the one presented in Ap-
pendix B, does not yet contain the uncertainties on f76 and fact . Instead, these had
to be taken into account when estimating the systematical uncertainty. It does, how-
ever, already contain the uncertainty related to the background sources, as all possible
sources and source positions were considered in the fit model.

10.2.2 Limits for T
0νχ(χ)

1/2

The fits performed to search for the decay modes with majoron emission accounted
for an additional parameter, inv_t

0νχ(χ)
1/2 , and thus contained a total of 33 parameters.

Separate fits were performed for the four modes.
The global model for the case of spectral index n= 1 is shown in Fig. 10.3 together

with the data energy spectra for both the golden and the BEGe sum data sets. The
contributions from the background contaminations, the combined spectra from the
background contaminations and 2νββ , and from 2νββ only are drawn separately.
The corresponding figures for the cases n = 2, 3 and 7 are depicted in Fig. C.1, C.3,
and C.5 in Appendix C.
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Figure 10.1: Best-fit model and data energy spectrum for the golden and the BEGe sum data
set. The contributions from 2νββ and the background contributions are shown separately.
The smallest interval of 68 % probability for the model expectation is indicated in grey.

The 35868 events in the data spectrum of the golden data set were matched
with 35834.0, 35794.7, 35841.5, and 35795.8 events in the best-fit model for n =

1, 2, 3 and 7, respectively. Of those events, 54.5, 234.0, 384.9, and 9.7, respectively,
were attributed to 0νββχ(χ) for the four modes. For the BEGe sum data set, the best-
fit models contained 5081.4, 5061.8, 5046.4, and 5049.6 counts, respectively, for the
5035 measured events. In this case, 7.8, 33.6, 55.1, and 1.4 events were considered
as deriving from 0νββχ(χ). Note that for the depicted best-fit models, the possible
contributions from 0νββχ(χ) were not considered. The p-values of 0.13 for n = 1
and n = 7, 0.14 for n = 2, and 0.12 for n = 3 confirm the good agreement between
the data and the models.
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Figure 10.2: Marginalized posterior probability distribution P(t2ν
1/2|n) for the parameter t2ν

1/2,

which represents T2ν
1/2 in units of 1021 yr. The mode and smallest interval of 68 % probability

are marked.

The half-life of 2νββ , determined from the marginalized posterior distributions
of t2ν

1/2, resulted in T 2ν
1/2 = 1.96 · 1021 yr for n = 1, T 2ν

1/2 = 1.97 · 1021 yr for n = 2,
T 2ν

1/2 = 1.98 · 1021 yr for n = 3, and T 2ν
1/2 = 1.99 · 1021 yr for n = 7. Hence, it remained

within the statistical uncertainties of Equation (10.10) for all four cases.
The information about the half-life of 0νββχ(χ) was extracted from the marginal-

ized posterior distributions of inv_t
0νχ(χ)
1/2 . As an example, Fig. 10.4 shows the

marginalized distribution for n = 1. The corresponding marginalized posterior dis-
tributions for the cases n = 2, 3 and 7 have similar shapes. They are shown in
Fig. C.2, C.4, and C.6 in Appendix C.

As expected, for all four cases the smallest 68 % interval extended down to zero,
corresponding to T

0νχ(χ)
1/2 = ∞. Therefore, only lower limits on the half-life could be

given for all four modes. They were obtained from the 90 % quantiles of the marginal-
ized posterior distributions. These were 0.00229, 0.00523, 0.01066, and 0.02895 for
n = 1, 2, 3 and 7, respectively. For the mode with spectral index n = 1, this converts
into

T
0νχ
1/2 > 4.36 · 1023 yr. (10.11)

For n= 2, a lower limit of
T

0νχ
1/2 > 1.91 · 1023 yr (10.12)

was determined. The analysis of the decay mode with n= 3 resulted in

T
0νχ(χ)
1/2 > 0.94 · 1023 yr. (10.13)
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Figure 10.3: Best-fit model and data energy spectrum for the golden and the BEGe sum data
set for the case of spectral index n = 1. The contributions from 2νββ and the background
contributions are shown separately. The best-fit model does not contain the contributions
from 0νββχ . The smallest interval of 68 % probability for the model expectation is indicated
in grey. Also shown is the upper limit for 0νββχ with n = 1 as determined from the 90 %
quantile of the marginalized posterior probability for inv_t

0νχ(χ)
1/2 .

The result for n= 7 was

T
0νχ(χ)
1/2 > 0.35 · 1023 yr. (10.14)

Note that these results do not yet account for systematic uncertainties.
For the mode with n = 1, 95 % of all decays in the active volume of a coaxial or

BEGe detector lead to an energy deposit in the range analyzed in the fit. For the case
of n = 2, the detection efficiency was reduced to 91 %, and for the mode with n = 3,
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Figure 10.4: Marginalized posterior probability distribution P(inv_t
0νχ(χ)
1/2 |n) for the param-

eter inv_t
0νχ(χ)
1/2 , which represents 1/T0νχ(χ)

1/2 in units of (1021 yr)−1 for the case of spectral
index n= 1. The 90 % quantile is marked. Also drawn is the posterior probability distribution
after folding in the systematic uncertainty distribution, shown in the inset, and the resulting
90 % quantile.

the detection efficiency dropped to 84 %. The energy spectrum for the 0νββχχ mode
with n = 7 exhibits a maximum around 400 keV and thus below the analysis range.
The detection efficiency in the analysis window was reduced to 49 %. Even more
importantly, the background for 0νββχ(χ) in the experiment was distinctly higher for
lower energies, as the region up to 1800 keV was dominated by the 2νββ spectrum.
Therefore, the higher the spectral index, that is the more the energy spectrum of
0νββχ(χ) was shifted towards lower energies, the more the sensitivity was reduced.
This explains why the strongest limit was determined for the mode with n = 1. With
increasing spectral indices, the limits get weaker. As expected, for the mode with
n = 7, the sensitivity was the smallest, since the entire energy spectrum lies in the
region dominated by 2νββ .

10.3 Systematic Uncertainties

In order to estimate the systematic uncertainty on the results for T 2ν
1/2 and T

0νχ(χ)
1/2 , sev-

eral aspects had to be taken into account. They were grouped into the three categories
fit model, MC simulation, and data acquisition and selection. The contributions to the
total systematic uncertainty on T 2ν

1/2 and T
0νχ(χ)
1/2 are summarized in Table 10.1.
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10.3.1 Fit Model

Several parameters that enter the fit model via the MC simulations or the prior proba-
bilities were known only within an uncertainty. In Sec. 9.2.2 and 9.3.2 it was shown,
how these uncertainties affect the background model around Qββ . In the following,

their impact on the result for T 2ν
1/2 and the limits on T

0νχ(χ)
1/2 will be discussed.

The fit model containing the contributions from the mode with n = 1 was chosen
as a representative and all possible variations of the input parameters were studied for
this case. They were then applied also to the other fit models. Due to the similarity
of the fit models, it is reasonable to assume that the results for n = 1 were good
approximations also for the cases of n = 2, 3 and 7, as well as for the case of 2νββ
only.

Regarding the fit model, the following sources of uncertainty were considered:

Uncertainty on screening measurement results The results from the screening
measurements listed in Table 8.1 were used to set lower limits on the num-
ber of events expected from close and medium distant sources of the 214Bi and
228Th sub-chain decays. The lower limits were recalculated taking into account
the maximum and minimum activity for each source and a fit was run for each
possbile change in the prior probability of the corresponding model components
for the golden and the BEGe data set. The result for t2ν

1/2 remained unchanged

for all variations. The 90 % quantile for inv_t
0νχ(χ)
1/2 showed its maximal increase

of 0.5 %, when the lower limit for the activity of the 214Bi sub-chain medium
distant sources was used for the fit. The maximal decrease of 1.3 % was ob-
served for the case of the upper limit for the activity of close sources of the 214Bi
sub-chain.

Binning For the standard fit, a bin width of 30 keV was used. As mentioned in
Sec. 9.2.2, the smallest and largest meaningful sizes for the bins were 10 keV
and 50 keV. The fit was repeated for both bin widths in order to estimate the im-
pact. A small change was observed for t2ν

1/2. For the larger bin size, it increased by
0.5 % and it decreased by the same amount for the smaller bin size. The change
in the 90 % quantile for inv_t

0νχ(χ)
1/2 was much more pronounced. Whereas only

a 2.6 % growth was observed for the case of 10 keV bins, the value increased by
16.1 % for the case of 50 keV bins. This large increase can be explained by the
fact that peak structures were washed out for such a coarse binning. For 2νββ ,
this did not affect the results in a decisive manner due to the large signal-to-
background ratio. For 0νββχ(χ), on the other hand, the sensitivity dropped,
as the possibility to distinguish between the energy spectra of the background
components and the 0νββχ(χ) energy spectrum was reduced.

Active volume fraction (n+-deadlayer thickness) The uncertainties on the active
volume fractions entered the model in several ways. On the one hand, the MC
energy spectra for all internal sources, that is for 2νββ , 0νββχ(χ), 60Co, and
68Ga, were affected, as the fraction of decays taking place in the active and
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dead part of the detectors changes with changing fact . For the coaxial detec-
tors, the total uncertainty on fact was ≈ 6 %, whereas for the BEGe detectors, it
was ≈ 3 %, as can be seen from Table 6.1. Both the uncertainties of the coaxial
as well as of the BEGe detectors were sufficiently small to allow a linear ap-
proach. The post-processing of the concerned model components was repeated
using the upper and lower limit for fact , respectively, for each detector. The fit
was repeated twice, once by replacing the standard energy spectra with those
for the upper limit and once by replacing them with those for the lower limit.
The change in t2ν

1/2 was +5.6 % for the first case and −5.6 % for the latter case,
and thus of the same order as the uncertainties on fact . This was not surprising,
since T 2ν

1/2 depends directly on fact . The larger uncertainty of the coaxial detec-
tors dominated the total uncertainty due to their larger exposure. An analogous
effect was observed for inv_t

0νχ(χ)
1/2 , which also varied by ±5.6 %. Note that for

each detector the maximum uncertainty was considered and no distinction was
made between correlated and uncorrelated contributions, see Table B.1. There-
fore, this approach gives a rather conservative estimate of the effect on T 2ν

1/2 and

T
0νχ(χ)
1/2 .

The uncertainty on the active volume fraction also plays a role for the shape of
the energy spectrum due to 42K decays on the n+-surface. Larger fact means thin-
ner n+-deadlayer and thus the possibility of an increased contribution from the
electrons to the spectrum. For smaller fact and thicker n+-deadlayer, their con-
tributions are expected to be reduced. The effect of this change was estimated
by repeating the analysis using alternative MC spectra for 42K on the n+-surface.
For the golden data set, the spectra from MC simulations with the upper and
lower limit for fact of ANG3 were used. For the BEGe sum data set, the results of
simulations of a BEGe detector with deadlayer thicknesses corresponding to the
mass weighted average upper and lower limit for the BEGe detectors, 1.0 mm
and 0.7 mm, were used. As described in 8.3.2, a transition layer was considered
for the BEGe detectors. The result for t2ν

1/2 did not change at all when using the

alternative spectra for 42K on the n+-surface. The result for inv_t
0νχ(χ)
1/2 changed

by +0.9 % for the case of thicker deadlayer and by −5.7 % for the case of thinner
deadlayer.

The total uncertainty on t2ν
1/2 due to the uncertainty on the size of the active

volume was ±5.6 %. The total uncertainty on the 90 % quantile for inv_t
0νχ(χ)
1/2

was obtained by summing the single contributions in quadrature, resulting in a
total of +5.7

−8.0 %.

Enrichment fraction The effect of the uncertainty on the enrichment fraction, f76,
was estimated in a similar manner as that of the active volume fraction. The only
components affected were 2νββ and 0νββχ(χ). Again, their post-processing
was repeated for the cases of maximal and minimal f76 for all of the detectors
and the resulting spectra were used instead of the standard spectra for the fit
model.
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The result for t2ν
1/2 was altered by ±2.0 % for the two cases, whereas the result

for inv_t
0νχ(χ)
1/2 varied by ±1.7 %. Also in this case, the estimate can be regarded

as a conservative estimate of the systematic uncertainty.

Source positions The source positions were characterized as close, medium distant,
and distant, and represented by decays in the holders, the shroud, and the heat-
exchanger, respectively. The impact of a change in the representative source
positions was estimated for the 214Bi sub-chain decays. For other background
components, the effect was expected to be of the same size or smaller. For varia-
tions of the close source position, the fit was repeated twice, once replacing the
energy spectra from 214Bi sub-chain decays in the holders with those from decays
in the mini-shrouds and once by replacing them with those from decays close to
the n+-surface. In order to estimate the change for variations in the medium
distant source position, the fit was repeated with the energy spectra from 214Bi
sub-chain decays in the LAr replacing those of the decays in the shroud.

The result for t2ν
1/2 did not change for any of the alterations of the model.

The result for inv_t
0νχ(χ)
1/2 increased by 12.6 % for the case of the decays in the

mini-shrouds representing the close source. For the case of the decays on the
n+-surface representing the close source it decreased by 8.3 %. The change in
the position of the medium distant source only lead to a small decrease by 1.3 %.

Transition layer As discussed in Sec. 8.3.2, for the simulations of 42K on the n+-
surface of the BEGe detectors, a transition layer was taken into account. The
partial charge collection in a part of the deadlayer is also expected to affect the
energy spectra from 2νββ and 0νββχ(χ) by enhancing the number of events
in the low energy region. Dedicated studies and simulations were still ongoing
during the writing of this thesis, so that no final results could be considered.
For a first estimate of the effect, simulations were carried out for GD32D [165]
with the same transition layer model that was used for the case of 42K on the n+-
surface. The outer 40 % of the n+-layer were assumed completely dead, whereas
for the inner 60 % a linearly increasing charge collection was considered. A com-
parison with the simulations for the case of 100 % dead n+-layer suggested an
increase in the detection efficiency in the energy window considered for the fit of
1.7 % for 2νββ and of 2.0 % for 0νββχ(χ). As the effect is energy-dependent,
the shape of the energy spectra was slightly changed. The increase in efficiency
was more pronounced in the low-energy region and decreased with growing en-
ergy. In general, an increase in efficiency would lead to a decrease in the half-life
estimate. However, due to the change in the spectral shape, also an increase in
the half-life is possible as the contribution of 2νββ or 0νββχ(χ) to the total
model might be reduced in the fit, leading to a smaller number of attributed
events. The impact of the presence of a transition layer on the final fit results
was estimated by recalculating t2ν

1/2 and the 90 % quantile for inv_t
0νχ(χ)
1/2 for a

variation of the number of 2νββ events by ±1.7 % and for a variation of the
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number of 0νββχ(χ) events by ±2.0 % in the BEGe sum data set. The number
of events in the golden data set remained unchanged. Both the result for t2ν

1/2

and the result for inv_t
0νχ(χ)
1/2 varied by ±0.5 %. No results are available regard-

ing the existence of a transition layer in coaxial detectors. Due to the similarity
of the production process it is likely that also in this case such a region of partial
charge collection is present. However, the history of the coaxial detectors used
in the experiment was different from that of the BEGe detectors. Also, their
n+-layers were systematically thicker as they grow over time. These differences
did now allow to draw any conclusions on the transition layer effects for the
coaxial detectors and thus no estimate of the size of a related uncertainty could
be included in this analysis.

The total systematic uncertainty deriving from the fit model was determined by
summing up in quadrature all individual contributions. For the half-life of 2νββ , this
turned out to be ±6.0 %. For the limit on the half-life of 0νββχ(χ) it amounted to
+21.3
−11.7 %.

As mentioned above, for the case of the active volume and the enrichment frac-
tions, the systematic uncertainty was determined in a rather conservative way. The
maximal effect of the single contributions was determined and the final uncertainty
was calculated by summing up in quadrature these contributions. A less cautious
estimate of the systematic uncertainty could be provided by the use of a sampling
method. The fit would have to be repeated many times. For each of the sources of un-
certainty listed above, a probability distribution would have to be provided. For every
fit, random numbers would be drawn for all sources of uncertainty according to these
distributions. This would then be used to define the input to the fit. Correlations could
be accounted for by the definition of the probability distributions. The marginalized
posterior distributions for t2ν

1/2 and inv_t
0νχ(χ)
1/2 derived from each individual fit would

be summed up to the final posterior probability distributions for t2ν
1/2 and inv_t

0νχ(χ)
1/2 .

As these final posterior distributions would already incorporate not only the statistical
but also the systematic uncertainties, they would provide directly access to the final
results. However, this approach is very time-consuming and could not be implemented
in the time-frame of this thesis. It will be adopted for a future iteration of this analy-
sis. Estimates based on the results presented in Appendix B suggest a reduction of the
systematic uncertainties on t2ν

1/2 and inv_t
0νχ(χ)
1/2 of the order of (1− 2)% of the mode

and 90 % quantile, respectively, if the systematic uncertainty is determined with the
alternative method.

10.3.2 MC Simulation

The sources of uncertainty due to the MC simulation were two-fold.

MC geometry The setup of the GERDA experiment was implemented in the MC frame-
work. However, some small details might not be accounted for. One example
is the implementation of the detectors, which does not take into account the
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rounding of the detector corners. This leads to a 0.6 % difference in the to-
tal mass of the coaxial detectors, when comparing MC to the real experiment.
Furthermore, some variations in the dimensions or placement of experimental
components might be present. An extensive study on the impact of these im-
precisions had been carried out for the analysis described in Appendix B. The
uncertainty on T 2ν

1/2 had been evaluated to be 1.0 %. This was assumed to be a

good estimate also for the uncertainty on T
0νχ(χ)
1/2 .

MC tracking This item considered the uncertainties on cross-sections and final states,
which are relevant for the simulated particle interactions with matter. They
mainly affect the propagation of photons and thus have a larger effect on the
background components than on the simulation of 2νββ and 0νββχ(χ). From
validations of the GEANT4 particle tracking for electromagnetic processes in the
energy range relevant for γ-ray spectroscopy [171–173], this uncertainty was
deduced to be 2 %.

10.3.3 Data Acquisition and Selection

The uncertainty due to data acquisition and selection was expected to be very small.
As possible sources, the calculation of the live time as well as reconstruction and
trigger efficiencies had to be considered. Another uncertainty arises from the fact
that unphysical events might be present in the data sets. In total, the impact of this
component was expected to be not larger than 0.5 % for both T 2ν

1/2 as well as for T
0νχ(χ)
1/2 .

10.3.4 Total Systematic Uncertainty

Systematic uncertainty on T2ν
1/2

The single contributions to the systematic uncertainty for t2ν
1/2 are listed in Table 10.1.

The precision of the measurement was limited by the uncertainty on the active vol-
ume fractions of the coaxial detectors. Eventhough the systematic uncertainty might
be slightly reduced, if determined with the alternative method described above, this
uncertainty will still be the limiting factor. This fact provides the possibility to im-
prove the precision of the measurement of T 2ν

1/2 without the need to accumulate new
data sets, but simply by performing more precise measurements of the active mass
fractions of the coaxial detectors.

The total systematic uncertainty was obtained by summing in quadrature the in-
dividual contributions. For t2ν

1/2, this lead to ±6.4 %, corresponding to a systematic
uncertainty of ±0.13 · 1021 yr on T 2ν

1/2.

Systematic uncertainty on the limits for T
0νχ(χ)

1/2

The total systematic uncertainty on the 90 % quantile for inv_t
0νχ(χ)
1/2 , obtained by

summing in quadrature the single contributions listed in Table 10.1, turned out to
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Table 10.1: Systematic uncertainties on T2ν
1/2 and the 90 % quantile for 1/T0νχ(χ)

1/2 , which are
not included in the fitting procedure.

Item Uncertainty on T 2ν
1/2 Uncertainty on 1/T 0νχ(χ)

1/2

(%) (% on 90 % quantile)

Screening results – +0.5
−1.3

Binning ±0.5 +16.1

Active volume fraction ±5.6 +5.7
−8.0

Enrichment fraction ±2.0 ±1.7

Source positions – +12.6
−8.3

Transition layer ±0.5 ±0.5

Total fit model ±6.0 +21.3
−11.7

MC geometry ±1.0 ±1.0

MC tracking ±2.0 ±2.0

Total MC simulation ±2.2 ±2.2

Data acquisition and selection ±0.5 ±0.5

Total systematic uncertainty ±6.4 +21.4
−12.0

be +21.4
−12.0 %. Again, as already seen for the case of T 2ν

1/2, the uncertainty on the active
volume fractions was a major contribution to the total uncertainty on the limits for
T

0νχ(χ)
1/2 . However, in this case it was not the dominating uncertainty. Instead, the

largest source of uncertainty was the composition of the fit model and the individual
background contributions. This becomes obvious from the fact that the most impor-
tant changes in the result were observed for the case of a fit with increased bin size
for the energy spectra and for changes in the position of the background sources.

As already mentioned above, for the case of large bin size, the power to distin-
guish between background components and the 0νββχ(χ) spectrum was reduced
significantly. This was due to the fact that structures deriving from photon peaks in
the background spectra were washed out, leading to an ambiguity between the back-
ground and the 0νββχ(χ) spectra.

Variations in the source position of a background source, on the other hand, lead
to small changes in the shape of the corresponding energy spectrum. A little rela-
tive variation of one of the background contributions can have a large impact on the
contribution from 0νββχ(χ) due to its small size compared to the background con-
tributions. This effect was also observed for the variation in the 42K spectrum from
decays on the n+-surface for minimum deadlayer thickness, which provoked a large
change in the result for T

0νχ(χ)
1/2 .

In summary, the most important restriction of the sensitivity to 0νββχ(χ) derived
from the uncertainties on the background composition. Therefore, in order to reach a
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significant improvement in future analyses, the background needs to be known with
an even higher precision, necessitating a complete and detailed screening campaign
of all components used in the experimental setup. Also, an increase of the exposure
and a decrease of the BI would allow to improve the precision of the measurement.
The latter might be achieved by the use of PSA methods, which would have to be
implemented also for the MC simulations.

In order to take into account the systematic uncertainty when determining the
final results for the limits on T

0νχ(χ)
1/2 , the distribution describing the systematic un-

certainties had to be folded in the posterior probability distributions for inv_t
0νχ(χ)
1/2 .

This distribution was composed by two normal distributions with widths correspond-
ing to the positive and negative part of the systematic uncertainty, respectively. The
asymmetric function is shown in the inset in Fig. 10.4. The mean value of the distribu-
tion was µ = 1. In order to fold this function in the posterior probability distribution
of inv_t

0νχ(χ)
1/2 , for each entry in the posterior distribution (that is for the result for

inv_t
0νχ(χ)
1/2 at each step of the MCMC), p, a random number, r, was drawn from the

systematic uncertainty distribution. A new histogram was filled with the product p · r.
This represented the final posterior probability distribution, comprising the statistical
and systematic uncertainties. The final result for inv_t

0νχ(χ)
1/2 , from which the limit on

T
0νχ(χ)
1/2 was deduced, was determined as the 90 % quantile of this distribution. For

the mode with n = 1, this final distribution is depicted in Fig. 10.4. For the cases of
n = 2, 3 and 7, the same systematic uncertainty distribution was used. Their final
posterior probability distributions are shown in Appendix C.

10.4 Final Results and Discussion

10.4.1 Results for 2νββ

The final result for the measurement of T 2ν
1/2 of 76Ge was determined to be

T 2ν
1/2 = (1.96± 0.03fit± 0.13syst) · 1021 yr= (1.96± 0.13) · 1021 yr, (10.15)

combining the fit and systematic uncertainty in quadrature.
Due to the extremely low background level in the GERDA experiment, allowing a

signal-to-background ratio of 3 : 1, the half-life of 2νββ of 76Ge was measured with a
precision unprecedented by previous experiments [4]. A total exposure of 20.3 kg · yr
was sufficient to reduce the fit error to 1.5 %.

Figure 10.5 shows a summary of the most recent measurements of T 2ν
1/2. Shown

are nine measurements from experiments prior to the GERDA experiment and two
weighted averages. Clearly, a trend towards longer half-life over time is visible. This
is likely due to the always improving signal-to-background ratio, which lessens the
impact of the chosen background model. Also shown are the results of the official
GERDA analysis presented in Appendix B and of the present analysis. Both results are
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Figure 10.5: Results of measurements of T2ν
1/2 of 76Ge as a function of the publication year.

Shown are the results from ITEP-YPI [174], PNL-USC (natGe) [175], PNL-USC-ITEP-YPI [176,
177], HdM [4, 105] and IGEX [178, 179], from the re-analysis of the HdM data by Klapdor-
Kleingrothaus et al. [180] (HdM-K) and by Bakalyarov et al. [181] (HdM-B). The NNDC-
recommended value [182] and the global weighted average evaluated by Barabash [183] are
also shown. The first result from GERDA Phase I data, published in [86] and described in
Appendix B, and the result from the analysis described in this chapter are also given. Graphic
based on [86].

in good agreement. Due to the small exposure of the data set, the systematic uncer-
tainty of the former result had been dominated by possible unidentified background
sources. The larger exposure of the present analysis allowed the determination of a
complete background model. The uncertainty due to the model contributions was al-
ready comprised in the fit uncertainty and much reduced compared to the previous
case. As the larger data set allowed to clearly establish the presence of the formerly
only suspected additional background sources, the result for T 2ν

1/2 was higher. This had
been anticipated by the estimate of the systematic uncertainty in the first analysis.

Using Equation (3.2) and the phase space factors calculated in [184], the nuclear
matrix element deriving from the new result for T 2ν

1/2, given in Equation (10.15), was
calculated. It resulted in |M2ν | = (0.129± 0.004)MeV−1. The nuclear matrix element
can also be estimated from charge exchange reactions. The most recent studies for
(d,2 He) result in (0.159± 0.023)MeV−1 [185], whereas the analysis of the reaction
(3He, t) gives (0.23± 0.07)MeV−1 [186]. Both results seem to be slightly higher than
the one deduced in this work. All values agree within 2σ.
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Table 10.2: Results for the limits on T
0νχ(χ)
1/2 of 76Ge for the majoron models introduced in

Sec. 3.3. Also given are the resulting limits on the effective coupling constants, 〈g〉. All limits
correspond to the 90 % quantiles. For the case of n = 1, the nuclear matrix element, M0νχ(χ),
from [187–193] and the phase space factor, G0νχ(χ), from [56] were used for the calculation
of 〈g〉. The given range covers the variations of M0νχ(χ) in these works. For n = 3 and 7, 〈g〉
was determined using the matrix elements and phase space factors from [82]. The results for
0νββχχ (n= 3, 7) account for the uncertainty on M0νχ(χ).

Model Mode n T
0νχ(χ)
1/2 M0νχ(χ) G0νχ(χ) 〈g〉
(1023 yr) (yr−1)

IB χ 1 > 4.15 (2.30− 5.82) 5.86 · 10−17 < (3.5− 8.8) · 10−5

IC χ 1 > 4.15 (2.30− 5.82) 5.86 · 10−17 < (3.5− 8.8) · 10−5

ID χχ 3 > 0.89 10−3±1 6.32 · 10−19 < 2.1+4.4
−1.4

IE χχ 3 > 0.89 10−3±1 6.32 · 10−19 < 2.1+4.4
−1.4

IF (bulk) χ 2 > 1.82 – – –

IIB χ 1 > 4.15 (2.30− 5.82) 5.86 · 10−17 < (3.5− 8.8) · 10−5

IIC χ 3 > 0.89 0.16 2.07 · 10−19 < 4.6 · 10−2

IID χχ 3 > 0.89 10−3±1 6.32 · 10−19 < 2.1+4.4
−1.4

IIE χχ 7 > 0.33 10−3±1 1.21 · 10−18 < 2.2+4.9
−1.4

IIF χ 3 > 0.89 0.16 2.07 · 10−19 < 4.6 · 10−2

10.4.2 Results for 0νββχ(χ)

The lower limits on T
0νχ(χ)
1/2 were determined from the 90 % quantiles of the posterior

probability distributions for inv_t
0νχ(χ)
1/2 after folding in the systematic uncertainties.

The final results are listed in Table 10.2 for the different majoron models introduced
in Sec. 3.3.

The limits on T
0νχ(χ)
1/2 presented here are the most stringent limits obtained to date

for 76Ge. The limits for n = 1 and n = 3 were improved by more than a factor
six [4], the limit for n = 7 was improved by a factor five [95] compared to previous
measurements. The limit for the mode with n= 2 was measured for the first time.

From the lower limits on T
0νχ(χ)
1/2 , the upper limits on the effective neutrino-

majoron coupling constants 〈g〉 for the models with n = 1, 3 and 7 were calculated
using Equations (3.8) and (3.9). The matrix element for the case of n= 1, MF −MGT ,
was taken from [187–193], whereas the phase space factor, G0νχ , was that of [56].
The matrix element MCR for the case of 0νββχ with n = 3 and MFw2 −MGTw2 for the
cases of 0νββχχ with n = 3 and n = 7, as well as the corresponding phase space
factors were taken from [82]. The results for the upper limits on 〈g〉 are also shown
in Table 10.2.

The coupling constants allow a comparison with other isotopes. The best limits
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on 0νββχ(χ) decay of isotopes other than 76Ge have been obtained for 100Mo [83]
and 136Xe [92], as shown in Table 4.2. When comparing with the case of 100Mo, it
becomes obvious that the limits on T

0νχ(χ)
1/2 determined in the present analysis were

about one order of magnitude more stringent, for the case of n = 7 even two orders
of magnitude. However, due to the differences in the matrix elements and the phase
space factors, the resulting limits on 〈g〉 from 100Mo and 76Ge are comparable. The
limits for 〈g〉 derived from 136Xe result to be a factor two to five lower due to the
higher limits that had been measured for T

0νχ(χ)
1/2 .



Chapter 11

Neutrinoless Double Beta Decay in

GERDA Phase I

The energy spectrum in the ROI around Qββ was analyzed for the golden, silver, and
BEGe sum data set. Two different statistical approaches were adopted for the analysis.
One envisaged the counting method described in [194], the other one used the spec-
tral fit method presented in [166]. For both methods, no indications for contributions
from 0νββ were found and lower limits on T 0ν

1/2 of 76Ge were established.

11.1 Statistical Analysis Method

When analyzing the data spectrum in the ROI around Qββ , two different hypotheses
can be made. In the first case, hypothesis H, one assumes that all counts are due ex-
clusively to background processes and that 0νββ does not contribute to the spectrum.
In the second case, hypothesis H̄, the assumption is made that the contributions in the
energy spectrum derive from background sources as well as from 0νββ . In a first step,
it has to be determined which hypothesis is preferred by the data. If the probability
of H̄ is larger than a predefined threshold, in a second step an estimate of T 0ν

1/2 can be
given. In the opposite case, a lower limit can be set.

For the analysis of the GERDA Phase I data, different statistical approaches are
possible. In the following, an analysis using the counting method described in [194],
as well as an analysis using a binned maximum likelihood fit as suggested in [166]
are presented. The former method will be referred to as Counting Method, whereas
the latter approach will be referred to as Spectral Fit.

11.1.1 Counting Method

When adapting the counting method, the number of observed events in a small win-
dow around Qββ , the region of interest (ROI), is counted. Assuming the validity of
H, the probability to observe xd events in the ROI for data set d when ξd events are
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expected from background, P(xd |ξd , H), is

P(xd |ξd , H) =
e−ξdξ

xd

d

xd!
. (11.1)

If instead H̄ is assumed to hold, the probability to observe xd events has to be calcu-
lated taking into account not only the number of expected background events, ξd , but
also the number of expected signal events, that is events due to 0νββ , ωd ,

P(xd |ξd ,ωd , H̄) =
e−(ξd+ωd )(ξd +ωd)

xd

xd!
. (11.2)

For the case of D data sets, the combined likelihoods, P(x|ξ, H) and P(x|ξ,ω, H̄), for
the set of observed counts x = (x1, x2, ..., xD) and the sets of expected counts for the
background, ξ= (ξ1,ξ2, ...,ξD), and for the signal, ω = (ω1,ω2, ...,ωD), are obtained
as the product of the individual probabilities for the single data sets,

P(x|ξ, H) =

D
∏

d=1

P(xd |ξd , H) (11.3)

and

P(x|ξ,ω, H̄) =

D
∏

d=1

P(xd |ξd ,ωd , H̄). (11.4)

Using Bayes’ theorem, the probability for H given the observations x becomes

P(H|x) =
P(x|H)P0(H)

P(x|H)P0(H) + P(x|H̄)P0(H̄)
(11.5)

and the probability for H̄ given x becomes

P(H̄|x) =
P(x|H̄)P0(H̄)

P(x|H)P0(H) + P(x|H̄)P0(H̄)
, (11.6)

with the prior probabilities P0(H) and P0(H̄) for H and H̄, respectively. It holds that
P(H|x) + P(H̄|x) = 1, as well as P0(H) + P0(H̄) = 1. The probabilities P(x|H) and
P(x|H̄) are obtained by integrating over all possibilities for the expected number of
background or background and signal events, respectively,

P(x|H) =
∫

P(x|ξ, H)P0(ξ) dξ (11.7)

and

P(x|H̄) =
∫

h

∫

P(x|ξ,ω, H̄)P0(ξ) dξ
i

P0(ω) dω. (11.8)

In Chapter 9 it was shown, that for all GERDA Phase I data sets the background in
the ROI could be approximated by a constant. In this case, the number of expected
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background events, ξd , for data set d can be expressed as the product of the exposure
of the data set, Ed , its background index, BId , and the width of the window in which
the events were counted, ROId ,

ξd = Ed · BId · ROId . (11.9)

The parameters determined in the fit were the background indices, BId .
In general, the number of observed 0νββ events, N 0ν

obs
, is connected to the half-life

via

T 0ν
1/2 =

ln(2) · NA

m76
·

1

N 0ν
obs

· E · ε, (11.10)

with Avogadro’s number NA, m76 = 75.95 g/mol the molar mass of 76Ge, E the expo-
sure, and ε the total signal detection efficiency. Therefore, for the fitting procedure,
the number of expected signal events for data set d, could be expressed as

ωd = inv_t0ν
1/2 · κ0 · Ed · 〈ǫ〉d · ǫPSA,d · ǫROI ,d , (11.11)

with inv_t0ν
1/2 the inverse of the half-life of 0νββ in units of 1025 yr and κ0 = (ln(2) ·

NA)/(m76·1025 yr) = 0.549 (kg·yr)−1 the decay rate due to 0νββ for 1 kg of germanium
enriched to 100 % in 76Ge for T 0ν

1/2 = 1025 yr. The detection efficiency, 〈ǫ〉d , accounts for
the active volume fractions, the enrichment fractions, and the efficiencies for detecting
the full energy peak. The efficiency factor ǫPSA,d gives the signal acceptance after the
application of pulse shape analysis (PSA) methods, and ǫROI ,d , defined as

ǫROI ,d =

∫ Qββ+ROId/2

Qββ−ROId/2

1
p

2πσd

e
−
(E−Qββ )

2

2σ2
d dE, (11.12)

is a function of ROId and σd = 1/(2
p

2 ln(2)) · FWHMd and corrects the expected
number of signal events for the fraction of events expected outside the ROI . The
parameter determined in the fit was inv_t0ν

1/2, which was in common to all D data sets.
Using the above, the combined likelihood for the case that H̄ is true, defined in

Equation (11.4), can be expressed as a function of inv_t0ν
1/2 and the set of background

indices BI= (BI1, BI2, ..., BID),

P(x|ξ,ω, H̄) = P(x|BI, inv_t0ν
1/2, H̄). (11.13)

In the following, the condition H̄ has been dropped from all expressions, as its validity
is implicit. With Bayes’ theorem, the global posterior probability can be written as

P(BI, inv_t0ν
1/2|x) =

P(x|BI, inv_t0ν
1/2)P0(BI)P0(inv_t0ν

1/2)
∫
h
∫

P(x|BI, inv_t0ν
1/2)P0(BI) dBI
i

P0(inv_t0ν
1/2) dinv_t0ν

1/2

. (11.14)

Marginalization with respect to inv_t0ν
1/2,

P(inv_t0ν
1/2|x) =
∫

P(BI, inv_t0ν
1/2|x) dBI, (11.15)

allows to extract an estimate for inv_t0ν
1/2 in case H̄ is more likely than H. For the

contrary case, Equation (11.15) can be used to extract a lower limit on inv_t0ν
1/2.
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11.1.2 Spectral Fit

The statistical analysis adopted in case of a spectral fit is a binned maximum likeli-
hood approach similar to the one described in Sec. 9.1. If H holds, the probability
P(nd |λd , H) for the observed data spectrum, nd , for data set d given a certain expecta-
tion for the background spectrum, λd , can be written as the product of the probabilities
of the single bins, P(ni,d |λi,d , H),

P(nd |λd , H) =
∏

i

P(ni,d |λi,d , H) =
∏

i

e−λi,dλ
ni,d

i,d

ni,d!
. (11.16)

The expected number of events in the i-th bin of the background spectrum for data
set d is denoted with λi,d , whereas ni,d is the number of events in the i-th bin of the
measured spectrum of data set d. For the case in which H̄ is valid, also contributions
from 0νββ have to be taken into account. With υd the expectation for the signal
spectrum in data set d and υi,d the expected number of signal events in the i-th bin,
the conditional probability for the data becomes

P(nd |λd ,υd , H̄) =
∏

i

P(ni,d |λi,d ,υi,d , H̄) =
∏

i

e−(λi,d+υi,d )(λi,d +υi,d)
ni,d

ni,d!
. (11.17)

When the information of D data sets is combined, the likelihoods P(N|Λ, H) and
P(N|Λ,Υ , H̄) for the set of data spectra N = (n1,n2, ...,nD) and the sets of expected
background and signal spectra, Λ = (λ1,λ2, ...,λD) and Υ = (υ1,υ2, ...,υD), are calcu-
lated as the product of the individual probabilities,

P(N|Λ, H) =

D
∏

d=1

P(nd |λd , H) (11.18)

and

P(N|Λ,Υ , H̄) =

D
∏

d=1

P(nd |λd ,υd , H̄). (11.19)

With Bayes’s theorem and given a set of measured energy spectra, N, the probability
for H can be calculated as

P(H|N) =
P(N|H)P0(H)

P(N|H)P0(H) + P(N|H̄)P0(H̄)
, (11.20)

whereas the probability for H̄ is defined by

P(H̄|N) =
P(N|H̄)P0(H̄)

P(N|H)P0(H) + P(N|H̄)P0(H̄)
. (11.21)

Also in this case, the prior probabilities and the posterior probabilities, respectively,
sum up to unitiy, P0(H) + P0(H̄) = 1 and P(H|N) + P(H̄|N) = 1. The probabilities
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P(N|H) and P(N|H̄) are determined by the integral over all possible configurations for
Λ and Υ ,

P(N|H) =
∫

P(N|Λ, H)P0(Λ) dΛ (11.22)

and

P(N|H̄) =
∫

h

∫

P(N|Λ,Υ , H̄)P0(Λ) dΛ
i

P0(Υ ) dΥ . (11.23)

The analysis was confined to the window between 1930 keV and 2190 keV and the
±5 keV regions around the background peaks at 2104 keV and 2119 keV were excluded
from the analysis. Approximating the spectral shape of the background in this range
with a constant, as suggested in Chapter 9, leads to

λi,d = Ed · BId ·∆Ei,d (11.24)

for the number of expected background events in the i-th bin of data set d, with Ed

the exposure of the data set, BId its background index, and ∆Ei,d the width of the i-th
bin. The background indices, BId , were the parameters determined in the fit.

With Equation (11.10) and the definitions of Equation (11.11), the number of
expected signal events in the i-th bin of data set d can be written as

υi,d = inv_t0ν
1/2 · κ0 · Ed · 〈ǫ〉d · ǫPSA,d ·

∫

∆Ei,d

f 0ν
d
(E) dE. (11.25)

The normalized functional form of the signal shape, f 0ν
d
(E), is given by a Gaussian

peak with standard deviation σd = 1/(2
p

2 ln(2)) · FWHMd and mean µ=Qββ ,

f 0ν
d
(E) =

1
p

2πσd

e
− (E−µ)

2

2σ2
d (11.26)

and
∫

∆Ei,d
f 0ν
d
(E) dE gives the fraction of the signal spectrum in the i-th bin of data set

d. The parameter inv_t0ν
1/2, in common to all data sets, was determined in the fit.

In analogy to Equation (11.13), the above defined expressions for λi,d and υi,d can
be used to express P(N|Λ,Υ , H̄) from Equation (11.19) in terms of inv_t0ν

1/2 and the
set of background indices, BI= (BI1, BI2, ..., BID),

P(N|Λ,Υ , H̄) = P(N|BI, inv_t0ν
1/2, H̄). (11.27)

Omitting the explicit writing of H̄, the global posterior probability is defined as

P(BI, inv_t0ν
1/2|N) =

P(N|BI, inv_t0ν
1/2)P0(BI)P0(inv_t0ν

1/2)
∫
h
∫

P(N|BI, inv_t0ν
1/2)P0(BI) dBI
i

P0(inv_t0ν
1/2) dinv_t0ν

1/2

.

(11.28)
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Integrating over all possibilities for BI gives the marginalized posterior probability
distribution for inv_t0ν

1/2,

P(inv_t0ν
1/2|N) =
∫

P(BI, inv_t0ν
1/2|N) dBI. (11.29)

From this, an estimate or lower limit for inv_t0ν
1/2 can be deduced for the case that H

or H̄ is valid, respectively.

11.1.3 Common Definitions

The fitting procedures for both the counting method and the spectral fit were per-
formed within the Bayesian analysis toolkit BAT [150]. The data was divided into
three data sets, the golden, the silver, and the BEGe sum data set, as defined in
Sec. 7.4.

For both statistical methods, in a first step hypothesis H was adopted, and in a
second step the validity of H̄ was assumed.

In case of the counting method, the prior probabilities on BId were defined as
Poissonian distributions with mean according to the background index after the appli-
cation of PSA, BI PSA

d
, given in Table 11.2. For the spectral fit, the information from

the background region was used in the fit. This did not allow a Poissonian prior based
on the knowledge about BI PSA

d
, since in this case the same information would have

been used twice, once for the fit and once for the definition of the prior probabilities.
Therefore, for the spectral fit, uninformative prior probabilities on BId , defined as flat
distributions between zero and 1 cts/(keV · kg · yr), were chosen.

For inv_t0ν
1/2, a flat prior distribution between zero and ten was chosen, correspond-

ing to T 0ν
1/2 > 1024 yr. Since previous measurements suggest lower limits on T 0ν

1/2 well
above 1024 yr [4,5], the prior distribution could be regarded as uninformative.

In order to determine, which of the two hypotheses was more likely, the Bayes’

factor (BF) was used. It allows to measure the plausibility of one hypothesis compared
to another based on the observed data. For the counting method, the Bayes’ factor is
defined as

BF =
P(x|H̄)
P(x|H) , (11.30)

with P(x|H) and P(x|H̄) given by Equations (11.7) and (11.8).
For the spectral fit, it is determined by

BF =
P(N|H̄)
P(N|H) , (11.31)

with P(N|H) and P(N|H̄) defined in Equations (11.22) and (11.23). In practice, the
BF was calculated directly using a function provided by BAT. The prior probabilities
for the two hypotheses were assumed equal, P0(H) = P0(H̄) = 0.5, for both statistical
approaches.
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Using the scale given by Harold Jeffreys [195], if BF < 1, the data clearly supports
hypothesis H, whereas for BF > 100, there is decisive evidence for the validity of H̄.

As an a priori criterion for the present analysis it was decided, that for BF < 1,
H̄ would be rejected and a lower limit for T 0ν

1/2 had to be determined. For BF > 100,
on the other hand, H̄ would be accepted and an estimate for the value of T 0ν

1/2 was
calculated. For 1≤ BF ≤ 100, the data would not allow a decisive conclusion.

After the validity of either one of the two hypotheses was established for both
statistical approaches, the half-life or lower limit on the half-life of 0νββ had to be es-
timated from the marginalized posterior probability distribution of inv_t0ν

1/2, defined by
Equation (11.15) and (11.29), respectively. As explained in Section 9.1, the marginal-
ized posterior probability distributions were obtained by normalizing the frequency
distributions of inv_t0ν

1/2 to the number of Markov Chain Monte Carlo (MCMC) steps
used to obtain the fit results. From these distributions, the marginalized mode and
smallest interval of 68 % probability was calculated for the case that H̄ was valid. For
the case that H̄ could not be confirmed, the 90 % quantile was determined.

11.2 Pulse Shape Analysis

As mentioned in Chapter 5, a reduction of the background can be achieved by means
of pulse shape analysis (PSA). Such PSA algorithms were developed for the coaxial
and the BEGe detectors employed in the first phase of the GERDA experiment and used
for the search for 0νββ described in the following. The PSA methods are described
in detail in [125] and references therein. Their main characteristics and results are
summarized here.

Note that all PSA algorithms were developed prior to the unblinding of the data in
order to avoid biasing and no changes were applied after the unblinding procedure.
All PSA methods aim at the separation of multi-site events (MSE) from single-site
events (SSE), as in the search for 0νββ the signal events are almost exclusively of
the SSE type, whereas most background events are due to Compton-scattered photons
and therefore of the MSE type. It is important to take care that the reduction of the
background does not go at the expense of a large reduction in the signal efficiency, as
this could lead to a reduced sensitivity.

11.2.1 PSA for the BEGe detectors

In Sec. 5.5 it was pointed out, that an event selection based on the parameter A/E, that
is the ratio between the amplitude of the current pulse, A, and the deposited energy,
E, has shown very good results when aiming at separating SSE from MSE. The distri-
bution of A/E for SSE in the bulk of a detector can be approximated by a Gaussian
distribution, where the width is dominated by the energy resolution. For MSE, A/E is
typically smaller, since they consist of more than one current pulse, with the individual
current pulses separated in time, see Fig. 5.4. This leads to a smaller amplitude and
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therefore smaller A/E. Also particles penetrating through the n+-layer are character-
ized by a small A/E. Events that take place close to the p+-surface, on the other hand,
exhibit an unusually large current amplitude and can therefore be identified by their
large A/E. It has to be noted that energy losses due to Bremsstrahlung of the elec-
trons emitted in double beta decays can reduce the current amplitude of such events,
whereas double beta decays close to the p+-surface are characterized by increased A.
This leads to a low-side and high-side tail, respectively, in the A/E distributions for
2νββ and 0νββ events, so that a cut based on the width of the Gaussian distribution
will always lead to an acceptance efficiency lower than one.

The PSA method and performance for the BEGe detectors was developed based
on the calibration runs performed with 228Th while recording the BEGe sum data set,
see Sec. 7.2. For each detector, A/E was calculated for all events with an energy of ≈
1593 keV, corresponding to the double escape peak (DEP) of the 2.6 MeV peak of 208Tl.
Due to the event topology, the DEP is expected to be constituted by a large fraction
of SSE. The A/E distributions of these events featured a Gaussian peak, dominated by
SSE, with a tail towards lower A/E, populated by MSE. Small corrections had to be
applied to account for time shifts of the mean of the Gaussian distributions and energy
dependencies of A/E, before combining the distributions of the single detectors. The
standard deviation of the Gaussian part of the distribution, σA/E, was determined
from a fit with a Gaussian function. For convenience, the distributions were rescaled
in order to have unity as the mean of the Gaussian distribution. The distribution of
A/E was also analyzed for the events in the Compton continuum between 1.0 MeV
and 1.3 MeV in the calibration data. The σA/E determined from this analysis was in
agreement with the result for the DEP. Figure 11.1(a) shows the distribution of A/E

for the events in the Compton continuum.

The applicability of the results to the physics data was verified by repeating the
analysis with the events between 1.0 MeV and 1.3 MeV, that is in the region dominated
by 2νββ , in the BEGE sum data set. The results agreed very well with those derived
from calibration data.

The selection cut was tuned in order to maximize the background reduction, while
keeping a good signal efficiency. All events with A/E < 2σA/E or A/E > 4σA/E were
rejected as background events. The cut on the high-side could be chosen twice wider
than that on the low-side due to the much lower occurence and the better separation
from the Gaussian distribution of the events on the p+-surface .

The acceptance efficiency for SSE after the application of PSA was estimated from
the DEP survival fraction and MC simulations of 0νββ . It was determined to be
ǫPSA = 0.92± 0.02. The uncertainty was due to the statistical uncertainty on the DEP
survival fraction, the uncertainty from the energy dependence of A/E, the differences
in the derived selection criteria between the analysis based on calibration data and
the analysis based on the BEGe sum data set, and the differences between the survival
fraction measured for the DEP and that derived by means of a MC simulation of 0νββ
that included modelling of the pulse shapes.

An estimate of the survival fraction for 2νββ events was deduced from the events
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(a) (b)

Figure 11.1: (a) Distribution of A/E for the Compton continuum between 1.0 MeV and
1.3 MeV in the BEGe calibration data. (b) Simulated current pulses of SSE in a coaxial detec-
tor for interaction positions between the n+-surface (radius 38 mm) and the bore hole (radius
6 mm). Both graphics taken from [125].

between 1.0 MeV and 1.45 MeV in the BEGe sum data set, taking into account the
survival probabilities for the different classes of events other than 2νββ and the back-
ground composition in this range, as given in [149]. A comparison with ǫPSA gave
good agreement.

The selection cut was applied to the BEGe sum data set in the window used to de-
fine the background, that is between 1930 keV and 2190 keV, excluding the ±5 keV re-
gions around the background peaks at 2104 keV and 2119 keV and the ±4 keV blinded
window around Qββ . Only three of the 23 events in the window survived the selection,
resulting in BI PSA

BEGe = 5.4+5.2
−2.9 ·10−3 cts/(keV ·kg ·yr). The reduction was consistent with

the expectation, which was calculated taking into account the survival probabilities
for different event types and the background composition in the window.

11.2.2 PSA for the coaxial detectors

The geometrical differences of the coaxial detectors with respect to the BEGe detec-
tors lead to distinct differences in the weighting potential, which defines the pulse
shapes, see Sec. 5.4.2, so that a larger part of the volume is relevant for the current
signal. In Fig. 11.1(b), simulated current pulses of SSE are shown for different in-
teraction positions. A variety of different shapes can be distinguished. Therefore, a
selection based on A/E is not useful in distinguishing between SSE and MSE. Instead,
an analysis with an artificial neural network (ANN) was performed, which used the
information of the rising part of the charge pulses. After subtraction of the baseline,
smoothing with an 80 ns moving window, and normalization of the pulse height, the
times of 1 %, 3 %, ..., 99 % of total pulse height were determined via linear interpo-
lation and used as input to the ANN. The data taking period was divided into three
periods, corresponding to the data taking for the golden data set before the period of
the silver data set, the period of the silver data set, and the part of the golden data set
that was recorded after the period of the silver data set. All steps of the analysis were
performed separately for the three periods. The training of the ANN was achieved
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using the data from the 228Th calibration runs performed during the respective data
taking period. Events corresponding to the DEP served as representatives of the SSE,
whereas the MSE were represented by events from the 1621 keV peak of 212Bi. For
each charge pulse, the ANN returned a qualifier, that is a number between 0 and 1,
with 0 representing a MSE and 1 representing a SSE. The selection cut based on the
qualifier was defined such that 90 % of the events in the DEP survived the cut. The
method was cross-checked by applying it to the data of the golden and silver data
sets in different energy regions and comparing the resulting qualifier distributions to
expectations.

The acceptance efficiency was assumed to be equal for 0νββ events and the events
in the DEP. In order to verify the validity of this assumption, the PSA was applied to
the events between 1.0 MeV and 1.3 MeV in the golden and silver data sets, that is
in the region dominated by 2νββ . Assuming a background composition according to
the results presented in [149] and the survival fraction for Compton events equal to
that determined for the 1621 keV peak in the calibration data, the survival efficiency
for 2νββ events was calculated. It was in good agreement with that determined
for DEP events. Applying the PSA to the events in the calibration data close to the
Compton edge of the 2.6 MeV peak of 208Tl at 2.4 MeV, a region enhanced in SSE,
allowed to establish the absence of an energy dependency of the survival efficiency.
The total uncertainty on the acceptance efficiency was estimated from the deviations
from 90 % for the 2νββ and Compton edge events. The final result was determined
to be ǫPSA = 0.90+0.05

−0.09.

When the PSA was applied to the data in the background window, that is between
1930 keV and 2190 keV, excluding the ±5 keV regions around the background peaks
at 2104 keV and 2119 keV and the ±5 keV blinded window around Qββ , in the golden
data set 45 of the 77 events survived the selection, whereas in the silver data set 9 of
19 events remained. The corresponding BI are BI PSA

golden = 10.9+1.9
−1.6·10−3 cts/(keV·kg·yr)

and BI PSA
silver = 30.1+13.7

−9.8 · 10−3 cts/(keV · kg · yr).

Two alternative PSA methods were developed for the coaxial detectors. The first
was a likelihood analysis based on eight input variables calculated from the height of
the charge pulse at different times. The training of the method was performed using
the events in the Compton edge of the 2.6 MeV peak in the calibration data as repre-
sentatives for SSE and the events between 2.45 MeV and 2.57 MeV, that is above the
Compton edge and below the full energy peak as representatives for MSE. The two
samples were used to define likelihood functions for the signal and the background.
For each analyzed pulse, the method returned a qualifier defined by these two likeli-
hoods.

The second alternative method selected the events according to a parameter that
combined the A/E information and the asymmetry of the current pulse, defined by the
difference when integrating the part left and right of A, respectively.

All events that were removed by the ANN in the 230 keV window described above
were also removed by at least one of the alternative methods. In 90 % of the cases,
the events were removed by all three PSA methods.
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11.3 Input Parameters

The expected number of signal and background events, defined in Equations (11.11)
and (11.9) for the counting method and in Equations (11.25) and (11.24) for the
spectral fit, are expressed as functions of several efficiency parameters and the expo-
sures of the data sets. For the case of the counting method, also the width of the ROI

has to be specified. In the following, the values relevant for the fitting procedures
are described. All detector parameters needed for their evaluation are summarized
in Table 11.1. Table 11.2 lists all final results for the input parameters used in the
analyses.

Exposure, Ed The exposures for the individual detectors i in a data set were deter-
mined as described in Sec. 7.3 from the product of the total detector mass, Mi,
and the detector’s live time in the data set, t i,d , Ei,d = Mi · t i,d . Summing these
individual contributions gave the total exposure for the data set, Ed =

∑

i
Ei,d .

Energy resolution, FWHMd In order to calculate the average energy resolution for
data set d, FWHMd , the exposures of the single detectors were taken into ac-
count. For details refer to Sec. 7.2 and 7.3.

Detection efficiency, 〈ǫ〉d The detection efficiency 〈ǫ〉d = 〈 f76 fact fF EP〉d accounted for
the enrichment fraction, f76, the active volume fraction, fact , and the efficiency
for detecting the full energy peak, fF EP , of data set d. It was needed to con-
vert the expected number of signal events into an estimate of T 0ν

1/2, see Equa-
tions (11.11) and (11.25).

The total detection efficiency for data set d was defined as the exposure-
weighted average efficiency over all Nd detectors in the data set,

〈ǫ〉d =
∑Nd

i=1 Ei,d · f76,i · fact,i · fF EP,i

Ed

, (11.32)

with Ei,d the exposure of detector i in data set d. Note that in order to increase
the statistical significance, the Ei,d for the golden and the silver data set were
summed and one common value for 〈ǫ〉 was calculated. This was possible since
the detectors contributing to the data sets were identical.

The values of the enrichment fraction and active volume fraction for the single
detectors, f76,i and fact,i, were those reported in Sec. 6.2.1.

The individual efficiencies for detecting the full energy peak, fF EP,i, were deter-
mined from MC simulations [196]. For each of the six enriched coaxial detectors
(four enriched BEGe detectors), the primary spectrum of 106 (107) 0νββ decays
was sampled using DECAY0 [163]. It was then fed into the MAGE [153] frame-
work for the propagation of the decay products. In case of the coaxial detectors,
all decays were placed in the active volume of the detector under study, whereas
for the BEGe detectors, the decays were located in the total detector volume. For
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the latter, the confinement of the decays to the active volume of the detectors
was realized during post-processing. No energy smearing was applied. For each
detector, the number of events with an energy deposit in a 1 keV-window around
Qββ , NF EP,i, was counted. The detection efficiency for the full energy peak for
detector i, fF EP,i was determined as the ratio of the events contributing to the
peak and the number of events simulated in the active volume of the detector,
NMC ,act i

, ǫF EP,i = NF EP,i/NMC ,act i
. No decays in other detectors or in the dead vol-

ume of the detector had to be taken into account as they cannot contribute to
the full energy peak. The statistical uncertainty due to the MC simulation was
≈ 0.14 %. The systematic uncertainty included contributions from uncertainties
on the accuracy of the MC tracking and the precision of the geometry model. It
amounted to a total of ≈ 2 %. The total uncertainty on fF EP,i was obtained by
summing in quadrature the statistical and systematic uncertainties, resulting in
2 % for all detectors.

In order to calculate the uncertainty on 〈ǫ〉d , the MC approach from [197] was
adapted. The value of 〈ǫ〉d was calculated 108 times. Each time, the values
for f76,i, fact,i, and fF EP,i were sampled from Gaussian probability distribution
functions with mean and standard deviation according to Table 11.1. The un-
certainty on fF EP,i was considered completely correlated among the detectors,
since it was dominated by the uncertainties from to the MC simulation. Also a
part of the uncertainty on fact,i was correlated among the detectors. This was
taken into account when sampling the respective values1. For each step of the
sampling, the value for 〈ǫ〉d was filled into a histogram. A Gaussian function
was fitted to the distribution. The mean value and uncertainty for 〈ǫ〉d were
determined as the mean and standard deviation of the Gaussian function. The
distributions for the coaxial enriched detectors and the BEGe detectors with the
fit function are shown in Figs. D.1 and D.2 in Appendix D. For the coaxial en-
riched detectors, 〈ǫ〉d resulted to be 0.688± 0.031, whereas for the BEGe sum
data set a value of 0.720± 0.019 was calculated.

Signal acceptance after PSA, ǫPSA,d The signal acceptance after the application of
PSA methods was defined by the results presented in Sec. 11.2. For the golden
and the silver data set, it resulted to be ǫPSA,golden = ǫPSA,silver = 0.90+0.05

−0.09, whereas
for the BEGe sum data set the acceptance efficiency was ǫPSA,BEGe = 0.92± 0.02.

Width of the counting window, ROId For the counting method, the width of the
window in which the events around Qββ were counted had to be defined. The
efficiency for a signal event to fall within ROId , ǫROI ,d , is defined in Equa-
tion (11.12). It depends on ROId and the energy resolution of the data set,
FWHMd . The efficiency rises with increasing ROId , since more and more of the

1In practice, the correlation between two parameters p1 and p2, described by Gaussian functions
with means µ1 and µ2 and standard deviations σ1 and σ2, respectively, was taken into account by
sampling a random number r from a Gaussian distribution centered at zero and with standard deviation
σ = 1. The random values for p1 and p2 were then defined as p1 = µ1 + r ·σ1 and p2 = µ2 + r ·σ2.
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signal falls inside the window, until ǫROI ,d = 1 is reached, when all signal events
are comprised inside ROId . On the other hand, also the number of expected
background events, given by Equation (11.9), depends on the width of ROId .
The wider the window, the more background events are expected inside ROId ,
so that the sensitivity to the signal might be reduced. Therefore, the optimal
ROId has to be a trade-off between the largest possible efficiency and the small-
est possible number of expected background events.

The ROId was optimized for the best expected average limit on T 0ν
1/2 following

the procedure described in [194]. The average of the expected limit for a data
set d with a given exposure, Ed , background index, BI PSA

d
, detection efficiency,

〈ǫ〉d , signal acceptance after PSA, ǫPSA,d , and energy resolution, FWHMd , can
then be expressed as

〈T 0ν
1/2〉=

∞
∑

xd=1

P(xd |ξd ,ωd = 0, H̄) · 〈ǫ〉d · ǫPSA,d · ǫROI ,d ·κ0 · Ed

1

ωd(90 %)
, (11.33)

with P(xd |ξd ,ωd = 0, H̄), ξd , ωd , and κ0 defined via Equations (11.2), (11.9),
and (11.11). The expression ωd(90 %) indicates the number of expected signal
counts corresponding to the 90 % quantile of the marginalized posterior proba-
bility. In Fig. 11.2, 〈T 0ν

1/2〉 is shown as a function of ROId for the three data sets.
The optimal width for ROId can be identified in all three cases as the one that
maximizes 〈T 0ν

1/2〉. They resulted in ROIgolden = 8.0 keV, ROIsilver = 9.5 keV, and
ROIBEGe = 8.0 keV. The optimal window for the silver data set was larger than
those of the other two data sets, since the smaller exposure lead to a small num-
ber of expected background events, allowing to maximize the efficiency without
loss of sensitivity. The effiency resulted in ǫROI = 98.4 % for the silver data set.
For the BEGe sum data set, the small BI after application of PSA and the smaller
exposure compared to the golden data set allowed a window of the same size as
that of the golden data set. Since the energy resolution was better than in the
case of the coaxial detectors, ǫROI was very high, 99.6 %, compared to 94.9 % for
the golden data set.

The uncertainty on ROId was dominated by the uncertainty on FWHMd . In order
to estimate its size, the optimal window size was determined assuming an energy
resolution of FWHMd+σFWHMd

and FWHMd−σFWHMd
, respectively, with σFWHMd

the uncertainty on FWHMd , as given in Table 11.2. This gave the final results for
the optimal window size, ROIgolden = (8.0± 0.3)keV, ROIsilver = (9.5± 0.4)keV,
and ROIBEGe = (8.0± 0.4)keV.

Background index after application of PSA, BIPSA
d

The background index after the
application of PSA methods was used as input to the prior probabilities for
the counting method. It was determined in the window between 1930 keV
and 2190 keV excluding the ±5 keV-windows around the background peaks at
2104 keV and 2119 keV and the ±5 keV-window (±4 keV-window for the BEGe
sum data set) around Qββ . The results were BI PSA

golden = 10.9+1.9
−1.6·10−3 cts/(keV·kg·
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Figure 11.2: Average limit 〈T0ν
1/2〉 as a function of the width of ROId for the golden, silver,

and BEGe sum data sets.

yr), BI PSA
silver = 30.1+13.7

−9.8 ·10−3 cts/(keV·kg·yr), and BI PSA
BEGe = 5.4+5.2

−2.9 ·10−3 cts/(keV·
kg · yr).

11.4 Sensitivity

The sensitivity of GERDA Phase I to 0νββ was estimated following the approach
in [166]. Possible outcomes of the experiment were sampled using MC methods.
To this scope, the number of background events between 1930 keV and 2190 keV for
each data set d was sampled from a Poisson distribution with mean according to BI PSA

d
.

Since the background was assumed to be constant in this region, the event energies
were distributed between 1930 keV and 2190 keV according to a flat random distribu-
tion. The number of signal events was sampled from a Poisson distribution with mean
according to the expectation for a certain T 0ν

1/2. The energies for the signal events were
drawn from a Gaussian random distribution with width defined by FWHMd and mean
value µ = Qββ . The combined signal and background spectra for the three data sets
were then used as input for the two statistical approaches described above.

In order to study the sensitivity in the absence of 0νββ , 1000 energy spectra were
sampled without signal contributions. The hypothesis including a signal contribution,
H̄, was rejected by BF < 1 in 99.8 % of all cases for the counting method and in 100 %
of all cases for the spectral fit. In none of the experiments, BF > 100, so that H̄ was
never assumed true. The distributions of BF are shown in Fig. 11.3(a) and 11.3(b).
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Table 11.1: Main characteristics of the detectors used in this analysis: total exposure, E , iso-
topic abundance of 76Ge, f76, fraction of active mass, fact , and the efficiency for detecting the
full energy peak, fF EP . For the coaxial detectors, the first uncertainty on fact is the uncorrelated
part, the second one the correlated contribution.

Detector E f76 fact fF EP

(kg·yr) (%) (%) (%)

Enriched Coaxial Detectors

ANG2 3.81 86.6± 2.5 87.1± 4.3± 2.8 92± 2

ANG3 3.21 88.3± 2.6 86.6± 4.9± 2.8 92± 2

ANG4 3.19 86.3± 1.3 90.1± 4.9± 2.9 92± 2

ANG5 3.69 85.6± 1.3 83.1± 4.0± 2.7 92± 2

RG1 2.84 85.5± 1.5 90.4± 5.2± 2.9 92± 2

RG2 2.47 85.5± 1.5 83.1± 4.6± 2.7 91± 2

Enriched BEGe Detectors

GD32B 0.55 87.7± 1.3 89.0± 2.7 90± 2

GD32C 0.62 87.7± 1.3 91.1± 3.0 90± 2

GD32D 0.56 87.7± 1.3 92.3± 2.6 90± 2

GD35B 0.67 87.7± 1.3 91.4± 2.9 90± 2

Table 11.2: Main characteristics of the data sets used in this analysis: total exposure, E ,
FWHM at Qββ , average efficiency, 〈ǫ〉 = 〈 f76 fact fF EP〉, the signal acceptance after application
of PSA, ǫPSA, the optimized window for the counting method, ROI , and the background index
after PSA, BI PSA.

Data set E FWHM 〈ǫ〉 ǫPSA ROI BI PSA

(kg·yr) (keV) (%) (%) (keV) (10−3 cts/(keV · kg · yr))

golden 17.9 4.83± 0.19 68.8± 3.1 90+5
−9 8.0± 0.3 10.9+1.9

−1.6

silver 1.3 4.63± 0.24 68.8± 3.1 90+5
−9 9.5± 0.4 30.1+13.7

−9.8

BEGe sum 2.4 3.24± 0.17 72.0± 1.9 92± 2 8.0± 0.4 5.4+5.2
−2.9
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For the counting method (spectral fit), in 86.0 % (86.6 %) of all experiments, the
smallest 68 % probability interval of the marginalized distribution for inv_t0ν

1/2 ex-
tended down to inv_t0ν

1/2 = 0, corresponding to infinite T 0ν
1/2. For each experiment, the

upper limit on inv_t0ν
1/2 was defined as the 90 % quantile of the marginalized distribu-

tion. The median sensitivity was then obtained as the median of the frequency distri-
bution of these limits. In case of the counting method, it resulted in inv_t0ν

1/2 < 0.534,
corresponding to T 0ν

1/2 > 1.87 · 1025 yr. For the spectral fit, the sensitivity was slightly
higher with inv_t0ν

1/2 < 0.489, corresponding to T 0ν
1/2 > 2.04 · 1025 yr. Figures 11.3(c)

and 11.3(d) depict the frequency distributions of the 90 % quantiles of all samples.
The sensitivity study was also performed assuming a signal with T 0ν

1/2 = 1.19 ·
1025 yr, as claimed by [9]2. Again, 1000 possible outcomes of the experiment were
simulated.

When analyzing all samples with the counting method, for 11.1 % the hypothesis
H̄ of the presence of a signal was accepted due to BF > 100. In 63.3 % of all cases
BF < 1, so that H̄ would have been rejected and only a limit would have been calcu-
lated. Figure 11.3(a) shows the distribution of BF . When looking at the marginalized
distribution for inv_t0ν

1/2, in only 5.7 % of all cases the mode was consistent with zero
within the interval of 68 % probability. The median of the frequency distribution of
the marginalized modes was inv_t0ν

1/2 = 0.811, corresponding to T 0ν
1/2 = 1.23 · 1025 yr

and thus in agreement with the assumptions for the generation of the energy spec-
tra. The median limit on T 0ν

1/2, derived as described above, was T 0ν
1/2 > 0.71 · 1025 yr.

The distributions of the marginalized modes and the 90 % quantiles are depicted in
Figs. 11.3(e) and 11.3(c), respectively.

When the spectral fit method was applied, BF > 100 in 16.5 % of all cases. The
signal hypothesis was rejected in 60.6 % of all cases due to BF < 1. The correspond-
ing distribution of BF is shown in Fig. 11.3(b). The 68 % probability interval of the
marginalized inv_t0ν

1/2 distribution extended down to zero only for 4.7 % of the sam-
ples. The median mode was inv_t0ν

1/2 = 0.811, corresponding to T 0ν
1/2 = 1.23·1025 yr, as

expected from the assumption used for the sample generation. Also in this case, only a
very weak median limit on T 0ν

1/2 of T 0ν
1/2 > 0.66 · 1025 yr could be given. Figures 11.3(f)

and 11.3(d) depict the respective frequency distributions of the marginalized modes
and 90 % quantiles of inv_t0ν

1/2.
Summarizing, in absence of a contribution from 0νββ to the energy spectra, the

signal hypothesis is expected to be clearly refuted by the GERDA experiment. The
median sensitivity of the counting method was determined to be T 0ν

1/2 > 1.87 · 1025 yr,
whereas that of the spectral fit was calculated to be T 0ν

1/2 > 2.04 · 1025 yr. Note that no
systematic uncertainties were considered for the sensitivity calculations.

In the presence of the signal process with a half-life corresponding to [9], the signal
hypothesis was accepted in 11.1 % (16.5 %) of all cases when analyzing the data with
the counting method (spectral fit). The background-only hypothesis was not refuted in
63.3 % (60.6 %) of all cases. However, for almost all samples the mode of inv_t0ν

1/2 was

2An update of the analysis from [9] was reported in [106]. However, inconsistencies were found for
this second analysis [107]. Therefore, all comparisons of this work refer to the result presented in [9].
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Figure 11.3: Distributions of the Bayes’ factor, BF , for the analysis with (a) the counting
method and (b) the spectral fit, the 90 % quantile of inv_t0ν

1/2 for the analysis with (c) the

counting method and (d) the spectral fit, and the marginalized mode of inv_t0ν
1/2 for the anal-

ysis with (e) the counting method and (f) the spectral fit.

not consistent with zero, indicating tension with the no-signal hypothesis. In addition,
the lower limit on T 0ν

1/2 was much weaker than in the absence of the signal process.
Therefore, the analysis of the GERDA Phase I data clearly provides the possibility to test
the claim of observation of 0νββ .
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Table 11.3: Information about all events contained in Qββ ±5 keV. Given is the data set they
are contained in, the detector which detected them, the event energy, E, and the date and time
of detection. The last column indicates if the event passed the PSA cut.

Data set Detector E (keV) Date Passed PSA

golden ANG5 2041.8 Nov 18, 2011 22:52 –

silver ANG5 2036.9 Jun 23, 2012 23:02
p

golden RG2 2041.3 Dec 16, 2012 00:09
p

BEGe GD32B 2036.6 Dec 28, 2012 09:50 –

golden RG1 2035.5 Jan 29, 2013 03:35
p

golden ANG3 2037.4 Mar 2, 2013 08:08 –

golden RG1 2041.7 Apr 27, 2013 22:21 –

11.5 Data Analysis

The data analysis was performed after unblinding also the energy region around Qββ .
From the BI before PSA, derived in Chapter 9, the number of expected background
events in the 10 keV-wide (8 keV for the BEGe sum data set) window could be calcu-
lated. The expectations were 3.3±0.4 events for the golden data set and 0.8±0.2 for
the silver and for the BEGe sum data set, respectively.

When the blinded windows were opened, they contained five events in the golden
data set, one event in the silver data set and one event in the BEGe sum data set.
The probability to observe five or more events, when 3.3 were expected, is 24 %,
whereas the probability to observe at least one event when 0.8 were anticipated is
55 %. Table 11.3 lists the details of all seven events contained in the previously blinded
window. After the use of PSA methods, in the golden data set, two events remained
and in the silver data set, one event remained3. The event in the BEGe sum data set
was rejected by the A/E cut. From BI PSA

d
, a total of 2.5+0.4

−0.3 events had been expected
in the previously blinded windows (2.0± 0.3 for the golden data set, 0.4+0.2

−0.1 for the
silver data set, and 0.1± 0.1 for the BEGe sum data set). The probability to observe
three or more events, when 2.5 were expected, is 46 %.

This allows to deduce that the observations did not hint at any excess beyond the
background expectation.

None of the remaining events was contained in Qββ±σd , withσd = 1/(2
p

2 ln(2))·
FWHMd . All three remaining events were contained in the respective ROId . The
sum data spectrum for all three data sets between 1930 keV and 2190 keV before and
after PSA is shown in Fig. 11.4. Also, a zoom to the ±20 keV-window around Qββ is
depicted.

The analysis was performed running 107 iterations of the MCMC for both the

3For five of the six events in the coaxial detectors, the classification was in agreement with at least
one of the alternative PSA methods.
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Figure 11.4: Sum spectrum from the data of the golden, silver, and BEGe sum data sets before
and after the application of PSA. The upper panel shows the ±20 keV region around Qββ . In
the lower panel, the region between 1930 keV and 2190 keV used for the determination of
the BI is depicted. The regions that are excluded for the BI calculation are indicated. In the
upper panel, also the expectation assuming T0ν

1/2 = 1.83 · 1025 yr, corresponding to the 90 %

quantile derived in this work, is shown. In addition, the expectation for T0ν
1/2 = 1.19 · 1025 yr,

corresponding to the claim in [9], is indicated.
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counting method and the spectral fit.

The analysis of the data with the counting method clearly indicated a preference
for the background-only model, as BF = 1.7 · 10−5. Figure 11.5 depicts the marginal-
ized posterior distribution of inv_t0ν

1/2 for the fit assuming a signal contribution. The
smallest interval of 68 % probability extends down to zero, implying an infinite half-
life. The quantile of 90 % probability is at 0.630, corresponding to a limit on the
half-life of T 0ν

1/2 > 1.59 · 1025 yr or an expectation of < 3.6 signal events for the golden
data set, < 0.3 signal events for the silver data set, and < 0.5 signal events for the
BEGe sum data set in the respective ROId .

Also when performing the analysis with the spectral fit method, the hypothesis of
a signal contribution was clearly rejected, as BF = 2.7 · 10−6. Again, the mode of
the marginalized posterior distribution of inv_t0ν

1/2, shown in Fig. 11.6, is consistent
with zero. The 90 % quantile was determined to be 0.535, so that a lower limit of
T 0ν

1/2 > 1.87 · 1025 yr could be given, corresponding to an expectation of < 3.3 signal
events for the golden data set, < 0.2 signal events for the silver data set, and < 0.5
signal events for the BEGe sum data set.
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Figure 11.6: Marginalized posterior probability distribution P(inv_t0ν
1/2|N) for the parameter

inv_t0ν
1/2, which represents 1/T0ν

1/2 in units of (1025 yr)−1 for the analysis performed with the
spectral fit. The 90 % quantile is marked. Also drawn is the posterior probability distribution
with folded in systematic uncertainties and the resulting 90 % quantile.

11.6 Systematic Uncertainties

The analysis described above does not yet account for the uncertainties on the input
parameters used in the analysis. In order to take these uncertainties into account
when determining T 0ν

1/2, a Monte Carlo approach was followed. For each source of
uncertainty, a probability distribution was provided, so that each parameter used as
input to the analysis could be drawn as a random number from these probability
distributions. Possible correlations between parameters could be considered by the
definition of the distributions.

For both the counting method as well as the spectral fit, the analysis was repeated
1000 times, each time sampling a new set of input parameters. Each repetition pro-
vided a marginalized posterior distribution of inv_t0ν

1/2. All 1000 posterior distributions
were added up to the final posterior distribution for the respective analysis method.
The final posterior distributions incorporated all statistical as well as systematical un-
certainties. For each individual repetition of the analysis, 104 steps of the MCMC were
performed, so that the final posterior distributions for both methods contained the
same number of entries as in the case of the fits without consideration of systematic
uncertainties. In a last step, the final posterior distributions were normalized to the
number of entries. The final value for the limit on inv_t0ν

1/2 for each analysis method
was determined as the quantile of 90 % probability of the respective final distribution.
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The uncertainties of the following parameters had to be accounted for in the anal-
ysis:

Detection efficiency, 〈ǫ〉d The detection efficiencies for all three data sets can be de-
scribed by Gaussian distributions with mean and standard deviation according
to Table 11.2. Since one common value had been determined for the golden and
the silver data set, the uncertainty was completely correlated for these two data
sets. No correlation was taken into account for the uncertainty on 〈ǫ〉BEGe.

Energy resolution, FWHMd The energy resolutions were given by Gaussian distribu-
tions defined by the values listed in Table 11.2. No correlations were taken into
account between FWHMd of different data sets.

Width of the counting window, ROId The optimal width for the counting window of
a data set, ROId , was directly dependent on its energy resolution, FWHMd . This
correlation was taken into account when sampling ROId from its Gaussian dis-
tribution, defined by the mean and standard deviation given in Table 11.2. Note
that a change of the window width could lead to a change in the number of
observed events attributed to the ROId and to the background region, respec-
tively. The uncertainty on ROId entered only the analysis based on the counting
method.

Signal acceptance after PSA, ǫPSA,d For the BEGe sum data set, ǫPSA,d was sampled
from a Gaussian distribution, described by the values in Table 11.2. For the
golden and the silver data sets, the probability distribution was defined by an
asymmetric Gaussian function, with the standard deviations of the left and right
half according to the lower and upper uncertainties given in the table. The
uncertainty was completely correlated for the golden and the silver data set,
whereas no correlation was considered for the BEGe sum data set.

Position of the signal peak, µ0ν For the spectral fit, the possibility of a shift in the
signal peak position µ0ν due to systematic shifts in the energy calibration was
taken into account. It was described by a Gaussian function centered at Qββ .
The standard deviation was 0.2 keV. The shift was correlated for all data sets.

For both analysis methods, the lower limit on the half-life of 0νββ was weakened
by ≈ 2 %. The analysis with the counting method gave inv_t0ν

1/2 < 0.641, correspond-
ing to a limit on the half-life of T 0ν

1/2 > 1.56·1025 yr, or< 3.7,< 0.3, and< 0.6 events in
the ROId for the golden, silver, and BEGe sum data set, respectively. When the spectral
fit method was applied, the result was inv_t0ν

1/2 < 0.547, that is T 0ν
1/2 > 1.83 · 1025 yr,

corresponding to < 3.3 signal events for the golden data set, < 0.2 signal events for
the silver data set, and < 0.5 signal events for the BEGe sum data set. The correspond-
ing marginalized posterior probability distributions of inv_t0ν

1/2 are shown in Figs. 11.5
and 11.6, respectively.
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11.7 Final Results and Discussion

The analysis of the GERDA Phase I data did not indicate the presence of a peak at Qββ .
A model accounting for contributions from 0νββ as well as from a flat background
was rejected by two different statistical approaches, one based on a counting method,
the other one based on a spectral fit. Instead, the background-only model was favored
by both methods. The lower limits on the half-life of 0νββ of 76Ge resulted in

T 0ν
1/2 > 1.56 · 1025 yr (11.34)

in case the counting method was used for the analysis and

T 0ν
1/2 > 1.83 · 1025 yr (11.35)

in case a spectral fit was used for the analysis. Both results account for statistical as
well as systematic uncertainties. The latter limit on the half-life corresponds to an
expectation of < 4.0 signal events in the combined energy spectrum from the golden,
silver, and BEGe sum data set. This expectation is drawn together with the sum data
spectrum in Fig. 11.4.

The result is one of the most stringent lower limits on 0νββ of 76Ge obtained to
date. The low background in the GERDA experiment allowed to extract it from data
with a total exposure of only 21.6 kg · yr, collected in less than 19 months of data
taking.

Assuming the half-life of 0νββ claimed in [9], T 0ν
1/2 = 1.19+0.37

−0.23 · 1025 yr, and sum-
ming the expected signal events in the respective ROId for all data sets, gives a total
expectation of 5.9±1.4 signal events. The corresponding total expectation from back-
ground, when considering the respective ROId for each data set, was 2.0±0.3 events.
Figure 11.4 shows the superposition of the expectation with the GERDA data, where
a total of three events was observed inside the ROId . The hypothesis accounting for
contributions from 0νββ was rejected by both analysis methods due to BF < 14. In
both cases, the mode of the marginalized posterior distribution for inv_t0ν

1/2 was con-
sistent with zero, corresponding to infinite T 0ν

1/2, and strong limits on T 0ν
1/2 were found.

Following the observations in Sec. 11.4, it was concluded that the claim of observation
of 0νββ was not supported by the GERDA Phase I data.

The lower limits on T 0ν
1/2 were in agreement with those derived by HdM [105] and

IGEX [104].
From the lower limit on T 0ν

1/2, an upper limit on the effective Majorana neutrino
mass 〈mββ〉 can be derived using Equation (3.5), if the exchange of light Majorana
neutrinos is assumed as the dominating mechanism leading to 0νββ . The phase space
factor, G0ν , was taken from [184] and the nuclear matrix elements, |M0ν |, were those
of [187–193]. The matrix elements were scaled as discussed in [198] to account for
differences in their calculation. Using the more stringent limit on T 0ν

1/2 derived with

4For the counting method, a Bayes’ factor of BF = 1.7 · 10−5, and for the spectral fit, a Bayes’ factor
of BF = 2.7 · 10−6 was determined (see Sec. 11.5).
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Figure 11.7: Effective Majorana neutrino mass as a function of the lightest neutrino
mass [65]. The result from this work is indicated.

the spectral fit method gave

〈mββ〉< (0.3− 0.5)eV. (11.36)

Figure 11.7 shows 〈mββ〉 as a function of the lightest neutrino mass, see Chapter 3,
superposed with the result from this work. It explores the region of degenerate hier-
archy.

An alternative analysis of the GERDA Phase I data based on a profile likelihood
approach is described in [6]. Its final result gave T 0ν

1/2 > 2.1 · 1025 yr (90 % C.L.).
The reference also presents an extended analysis accounting for two additional data
sets, one containing the HdM data and one containing the IGEX data. The combined
analysis again strongly disfavored the claim and allowed to extract a lower limit of
T 0ν

1/2 > 3.0 · 1025 yr. The exclusion of the claim was confirmed, when the results for
76Ge were combined with those derived from 136Xe [7, 8]. Note that in this case the
strength of the exclusion depends on the choice of the matrix elements.



Chapter 12

Conclusions and Outlook

The GERDA experiment, located at the INFN Laboratori Nazionali del Gran Sasso
(LNGS) in Italy, was designed for the search of neutrinoless double beta decay (0νββ)
of 76Ge. The background due to environmental radiation was much reduced compared
to previous experiments, thanks to the graded shielding design and the novel tech-
nique of submerging the germanium detectors directly into liquid argon (LAr). The
first phase of the experiment was conducted between November 2011 and May 2013.
A total of ten enriched germanium detectors, six coaxial and four BEGe detectors, ac-
cumulated a total exposure of 21.6 kg · yr. The data was divided into three subsets
according to their background level around the Q-value of 0νββ , Qββ = 2039 keV.
The golden data set contained data recorded with the coaxial detectors. It made up
83 % of all data. The BEGe sum data set contained all data accumulated with the
BEGe detectors. It accounted for 11 % of the exposure. The remaining 6 % of the total
exposure, the silver data set, was collected with the coaxial detectors during a period
affected by higher background contamination following the immersion of the BEGe
detectors. The data energy spectra were blinded in the 40 keV-window around Qββ in
order to allow for an unbiased analysis.

In a first step, the most prominent background contaminations above 570 keV were
identified by their characteristic photon lines in the energy spectra. They comprised
isotopes from the natural decay chains of 238U and 232Th, 40K, 60Co, as well as 42K,
the daughter-isotope of 42Ar. The analysis of the high-energy part of the spectra also
suggested the presence of alpha contaminations from the 238U decay chain on and in
the vicinity of the p+-surface of the detectors. Screening measurements of a variety of
components used in the setup of the experiment confirmed these observations.

A Monte Carlo campaign was launched in order to obtain a complete set of simula-
tions describing all possible contributions in the data energy spectra. The simulations
were carried out within the GEANT4 based MAGE framework, which incorporates a de-
tailed description of the experimental setup of the GERDA experiment, including the
individual characterization of all detectors. All contributions that had been identified
in the energy spectra or by screening measurements were simulated, taking into ac-
count a variety of different positions of each source. The simulation comprised alpha
and beta decays of the 238U chain, beta decays of the 232Th chain, as well as the decays
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of 60Co, 40K, and 42K. In addition, the contributions from neutrino accompanied double
beta decay (2νββ), as well as the intrinsic contaminations from 68Ga, the successor
of 68Ge, and 60Co, which are produced by cosmic activation, were simulated.

The simulated energy spectra were used to decompose the energy spectra of the
golden and the BEGe sum data set above 570 keV into their single contributions. With
the help of a maximum likelihood fit, the individual contributions from each back-
ground contamination were identified and complete background models were devel-
oped.

The background composition around Qββ was examined in great detail. For both
data sets, the dominating contributions to the energy spectrum in this region were
alpha and beta decays of the 238U chain, beta decays of the 232Th chain, as well as
decays of 42K. For the BEGe sum data set, the contributions from 42K decays on the
detector surfaces were enhanced compared to the golden data set. The stability of the
background model was verified by several cross-checks of the analysis. In a first step of
unblinding, a part of the data in the 40 keV-window around Qββ was made available
for analysis. Only the innermost ±5 keV (±4 keV) remained blinded, whereas the
rest of the window was opened for the golden and silver (BEGe sum) data sets. The
predictions of the background models for the opened window were in good agreement
with the data.

The window between 1930 keV and 2190 keV was used to determine the back-
ground index (BI). The ±5 keV windows around the single-escape peak of 208Tl at
2104 keV and the 212Bi photon line at 2119 keV, as well as the±5 keV (±4 keV) blinded
window for the golden data set (BEGe sum data set) around Qββ were excluded. It
was shown that the spectral shape of the background model in this window could be
approximated by a flat distribution. Hence, the BI could be determined by counting
all events in the window and dividing by its width and the exposure of the data set.
For the golden data set, BI = 18.5+2.3

−2.2 · 10−3 cts/(keV · kg · yr), whereas for the BEGe
sum data set BI = 41.3+10.4

−8.4 · 10−3 cts/(keV · kg · yr). Due to the limited exposure of
the silver data set, no individual background model could be developed. However,
its background composition was assumed to be similar to that of the golden data set,
with additional contributions from the natural decay chains of 232Th and 238U. There-
fore, also in this case a constant background around Qββ could be assumed. It was
determined to be BI = 63.4+18.0

−14.3 · 10−3 cts/(keV · kg · yr).
A combined analysis of the energy spectra of the golden and the BEGe sum data

sets with an analogous approach as the one used to define the background model
composition allowed to measure the half-life of 2νββ , T 2ν

1/2. This lepton number con-
serving Standard-Model permitted process has been observed for several isotopes.
Thanks to the extremely low background level in the GERDA experiment, a signal-
to-background ratio of 3 : 1 could be reached. This allowed for a precision of the
measurement of T 2ν

1/2 of 76Ge unprecedented by previous experiments. The half-life
was determined to be

T 2ν
1/2 = (1.96± 0.13) · 1021 yr.

The result was in good agreement with a previous analysis of a subset of the golden
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data set.
Several theories exist that predict neutrinoless double beta decay with emission

of an additional particle, the majoron (0νββχ), or even two majorons (0νββχχ).
According to the theory, these beyond-Standard Model processes can be lepton num-
ber conserving or lepton number violating. The various models predicting 0νββχ
or 0νββχχ can be grouped into categories defined by the energy spectrum of the
electrons released in the decay. They are classified by their spectral index, n, with
n= 1, 2, 3, and 7.

In order to search for 0νββχ(χ) in the GERDA data, the analysis framework devel-
oped to measure the half-life of 2νββ was expanded to allow also for the contributions
of the decay mode corresponding to a certain spectral index. The analysis was per-
formed for all four possibilities of n. No indication for a contribution of 0νββχ or
0νββχχ was found in any of the cases. Lower limits on the half-lives, T

0νχ(χ)
1/2 , were

determined from the quantiles of 90 % probability of the posterior probability distribu-
tions. The results constitute the most stringent limits on 0νββχ(χ) of 76Ge obtained
to date. For the standard mode (n= 1), the lower limit was determined to be

T
0νχ
1/2 > 4.15 · 1023 yr.

From the lower limit on T
0νχ
1/2 , an upper limit on on the effective neutrino-majoron

coupling constant, 〈g〉, can be inferred,

〈g〉< (3.5− 8.8) · 10−5.

Finally, a search for 0νββ of 76Ge was conducted using the GERDA Phase I data.
This process violates lepton number by two and is therefore not allowed by the Stan-
dard Model. The existence of 0νββ would establish the Majorana nature of at least a
part of the neutrino mass. If the exchange of a light Majorana neutrino is assumed as
the dominating mechanism leading to the decay, its half-life, T 0ν

1/2, would allow direct
conclusions on the mass and the Majorana nature of the neutrino. The experimental
signature of 0νββ is a peak at Qββ .

A combined analysis of the golden, silver, and BEGe sum data sets was performed.
The previously blinded ±5 keV windows (±4 keV for the BEGe sum data set) around
Qββ contained a total of seven events, whereas 4.9± 0.5 events were expected from
background. After the application of pulse shape analysis (PSA) methods, three events
remained, none of them within one standard deviation of the energy resolution of Qββ .
The expected number of background events after the application of PSA was 2.5+0.4

−0.3.
Two statistical approaches were adapted to analyze the energy spectra around Qββ ,

one based on a counting method, the other one based on a spectral fit. In both cases,
a model envisaging not only the contributions from a flat background, but also from
0νββ was clearly rejected, whereas the background-only model was favored. Thus,
there was no indication for a contribution from 0νββ of 76Ge in the GERDA Phase I
data. Lower limits on T 0ν

1/2 were extracted as the quantiles of 90 % probability of the
posterior probability distributions. The most stringent limit was obtained with the



166 Conclusions and Outlook

spectral fit method, which gave

T 0ν
1/2 > 1.83 · 1025 yr.

The result was in agreement with limits from previous experiments and an alternative
analysis of the GERDA Phase I data. When the exchange of a light Majorana neutrino is
assumed as the dominating mechanism of the process, the lower limit on T 0ν

1/2 allows
to calculate an upper limit on the effective Majorana neutrino mass,

〈mββ〉< (0.3− 0.5)eV.

The excellent performance of the GERDA experiment in its first phase allowed the
most precise measurement of T 2ν

1/2 of 76Ge to date, improved lower limits on T
0νχ(χ)
1/2 of

76Ge for all modes of 0νββχ(χ) with n = 1, 2, 3, and 7, as well as a very stringent
lower limit on T 0ν

1/2.
The second phase of the experiment envisages 30 BEGe detectors with a total of

20 kg in addition to the coaxial detectors. The good performance of the PSA for the
BEGe detectors, as well as the read-out of scintillation light in the LAr will reduce
the background by one order of magnitude compared to Phase I. With an exposure
of 100 kg, a sensitivity corresponding to T 0ν

1/2 > 2.0 · 1026 yr could be reached. Also,

important improvements on the precision of T 2ν
1/2 and the lower limits of T

0νχ(χ)
1/2 are

expected.



Appendix A

List of Monte Carlo Simulations

This appendix gives a summary of all MC simulations used for data analysis. For details
about the simulation procedure refer to Chapter 8. The number of decays simulated
for each source was chosen such that the statistical uncertainty due to the MC spectra
would be negligible in the fitting procedures.

A.1 Alpha Model

Table A.1: Summary of all MC simulations needed for the alpha model. The simulations
were used for the analysis of the golden as well as for the BEGe sum data set. Given are the
simulated sources, the location of the decays, the simulation mode, the configuration, and the
number of simulated decays, Nsim. For the simulation modes, the abbreviations FA for Full

array, SD in FA for Single detectors in full array, and SD for Single detector are used. For
all isotopes, the simulations were performed for p+-layer thicknesses of 100 nm, 200 nm, ...,
1000 nm.

Isotope Location Mode Configuration Nsim

210Po p+-surface SD configANG3 108

226Ra p+-surface SD configANG3 107

222Rn p+-surface SD configANG3 107

218Po p+-surface SD configANG3 107

214Po p+-surface SD configANG3 107

226Ra LAr at p+-surface SD configANG3 107

222Rn LAr at p+-surface SD configANG3 107

218Po LAr at p+-surface SD configANG3 107

214Po LAr at p+-surface SD configANG3 107
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A.2 Golden Data Set

Table A.2: Part I: Summary of all MC simulations for the golden
data set, excluding those for the alpha model. Given are the simu-
lated sources, the location of the decays, the simulation mode, the
configuration, and the number of simulated decays, Nsim. For the
simulation modes, the abbreviations FA for Full array, SD in FA

for Single detectors in full array, and SD for Single detector are
used.

Isotope Location Mode Configuration Nsim

214Pb p+-surface SD configANG3 107

214Pb n+-surface SD configANG3 107

214Pb LAr at p+-surface SD configANG3 107

214Pb holders FA configNAT 108

214Pb mini-shrouds FA configNAT 108

214Pb shroud FA configNAT 109

214Bi p+-surface SD configANG3 107

214Bi n+-surface SD configANG3 107

214Bi LAr at p+-surface SD configANG3 107

214Bi holders FA configNAT 108

214Bi mini-shrouds FA configNAT 108

214Bi shroud FA configNAT 109

228Ac holders FA configNAT 108

228Ac shroud FA configNAT 109

212Bi holders FA configNAT 108

212Bi shroud FA configNAT 109

208Tl holders FA configNAT 108

208Tl shroud FA configNAT 109

208Tl heatexchanger FA configNAT 1010
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Table A.3: Part II: Summary of all MC simulations for the golden data set, excluding
those for the alpha model. Given are the simulated sources, the location of the decays,
the simulation mode, the configuration, and the number of simulated decays, Nsim.
For the simulation modes, the abbreviations FA for Full array, SD in FA for Single

detectors in full array, and SD for Single detector are used. For the isotopes marked
with “*”, the simulations were used for the determination of systematic uncertainties.

Isotope Location Mode Configuration Nsim

42K in LAr FA configNAT 109

42K p+-surface SD configANG3 106

42K n+-surface SD configANG3 108

42K* n+-surface SD configANG3 a 108

42K* n+-surface SD configANG3 b 108

60Co holders FA configNAT 107

60Co in active volume SD in FA configNAT 9× 106 c

60Co in dead volume SD in FA configNAT 9× 106 c

40K holders FA configNAT 108

2νββ in active volume SD in FA configNAT 9× 106 c

2νββ in dead volume SD in FA configNAT 9× 106 c

0νββχ (n=1) in active volume SD in FA configNAT 9× 106 c

0νββχ (n=1) in dead volume SD in FA configNAT 9× 106 c

0νββχ (n=2) in active volume SD in FA configNAT 9× 106 c

0νββχ (n=2) in dead volume SD in FA configNAT 9× 106 c

0νββχ(χ) (n=3) in active volume SD in FA configNAT 9× 106 c

0νββχ(χ) (n=3) in dead volume SD in FA configNAT 9× 106 c

0νββχχ (n=7) in active volume SD in FA configNAT 9× 106 c

0νββχχ (n=7) in dead volume SD in FA configNAT 9× 106 c

a dn+ = µ(dn+)−σ(dn+) = 1.2 mm
b dn+ = µ(dn+) +σ(dn+) = 2.6 mm
c 106 decays for each of the nine coaxial detectors in the array, excluding

the two natural detectors in the 1-string arm.
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A.3 BEGe Sum Data Set

Table A.4: Part I: Summary of all MC simulations for the BEGe
sum data set, excluding those for the alpha model. Given are
the simulated sources, the location of the decays, the simulation
mode, the configuration, and the number of simulated decays,
Nsim. For the simulation modes the abbreviations FA for Full ar-

ray, SD in FA for Single detectors in full array, and SD for Single

detector are used.

Isotope Location Mode Configuration Nsim

214Pb p+-surface SD configGD32B 106

214Pb n+-surface SD configGD32B 107

214Pb LAr at p+-surface SD configGD32B 108

214Pb holders FA configBEGE 108

214Pb mini-shrouds FA configBEGE 108

214Pb shroud FA configBEGE 109

214Bi p+-surface SD configGD32B 106

214Bi n+-surface SD configGD32B 107

214Bi LAr at p+-surface SD configGD32B 108

214Bi holders FA configBEGE 108

214Bi mini-shrouds FA configBEGE 108

214Bi shroud FA configBEGE 109

228Ac holders FA configBEGE 108

228Ac shroud FA configBEGE 109

212Bi holders FA configBEGE 108

212Bi shroud FA configBEGE 109

208Tl holders FA configBEGE 108

208Tl shroud FA configBEGE 109



Table A.5: Part II: Summary of all MC simulations for the BEGe sum data set, ex-
cluding those for the alpha model. Given are the simulated sources, the location of
the decays, the simulation mode, the configuration, and the number of simulated de-
cays, Nsim. For the simulation modes the abbreviations FA for Full array, SD in FA

for Single detectors in full array, and SD for Single detector are used.

Isotope Location Mode Configuration Nsim

42K in LAr FA configBEGE 109

42K p+-surface SD configGD32B 106

42K n+-surface SD a 4× 108

60Co holders FA configBEGE 108

60Co in active volume SD in FA configBEGE 5× 106 b

60Co in dead volume SD in FA configBEGE 5× 106 b

68Ga in active volume SD in FA configBEGE 5× 106 b

68Ga in dead volume SD in FA configBEGE 5× 106 b

40K holders FA configBEGE 108

2νββ in active volume SD in FA configBEGE 5× 106 b

2νββ in dead volume SD in FA configBEGE 5× 106 b

0νββχ (n=1) in active volume SD in FA configBEGE 5× 106 b

0νββχ (n=1) in dead volume SD in FA configBEGE 5× 106 b

0νββχ (n=2) in active volume SD in FA configBEGE 5× 106 b

0νββχ (n=2) in dead volume SD in FA configBEGE 5× 106 b

0νββχ(χ) (n=3) in active volume SD in FA configBEGE 5× 106 b

0νββχ(χ) (n=3) in dead volume SD in FA configBEGE 5× 106 b

0νββχχ (n=7) in active volume SD in FA configBEGE 5× 106 b

0νββχχ (n=7) in dead volume SD in FA configBEGE 5× 106 b

a Separate MC simulation for each of the four active BEGe detectors, taking
into account a transition layer.

b 106 decays for each of the five BEGe detectors in the array.





Appendix B

First Measurement of the Half-life of

Neutrino Accompanied Double Beta

Decay with GERDA Phase I

An analysis to determine the half-life of 2νββ in 76Ge, T 2ν
1/2, was performed on a subset

of the golden data set [86,199,200].

B.1 The Data Set

The data with a total exposure of 5.04 kg·yr was recorded with detectors ANG2-ANG5,
RG1 and RG2 between November 2011 and March 2012. The live time was 125.9 d
for all six detectors. The data was processed analogously to the procedure described in
Chapter 7. Since during this time period the detectors ANG1 and RG3 had not yet been
completely turned off, their energy information could be used for the detector anti-
coincidence cut. The energy range between 600 keV and 1800 keV was analyzed. This
range lies well above the endpoint of the 39Ar spectrum and is dominated by 2νββ .
From MC it was determined, that a 2νββ decay taking place in the active volume of
an enriched coaxial detector has a probability of 63.5 % to leave an energy deposit
inside the analyzed energy range. The probability to contribute to the spectrum above
1800 keV is < 0.02 %. The energy spectra of all six active enriched coaxial detectors
contained a total of 8796 events in the analyzed energy region. The single detector
spectra were not summed up, but considered separately for the analysis.

B.2 The Monte Carlo Simulation

The Monte Carlo (MC) simulation described in Chapter 8 for the golden data set was
used. While the simulation procedure was identical, the post-processing differed in
some points. The energy smearing of the spectra was based on the average FWHM
curves derived from the calibration runs during the data taking period of the analyzed
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GERDA Phase I

data set, that is between November 2011 and March 2012. For the detector anti-
coincidence cut, also ANG1 and RG3 were considered in analogy to the data. After the
smearing procedure and the anti-coincidence cut, the single detector spectra of each
simulation of a background contamination were normalized in the range between
600 keV and 1800 keV. The normalized distribution describing the energy spectrum of
contamination c in detector j is referred to as ϕc,norm

j (E).
The spectra resulting from the simulations of 2νββ in the active and dead volumes

of the six detectors considered for the analysis were normalized according to the num-
ber of simulated events to represent the detection efficiencies of the corresponding
detector for the active and dead volume, ǫact, j ·ϕ2ν ,norm

act, j (E) and ǫdead, j ·ϕ2ν ,norm
dead, j (E).

B.3 Statistical Analysis Method and Fit Model

The analysis adapted the binned maximum likelihood approach described in [166].
The energy region between 600 keV and 1800 keV was divided into 40 bins of 30 keV
width each. The model fitted to the data spectra contained the contributions from
2νββ , 42K in LAr, 214Bi in the holders, and 40K in the holders. Due to the small sta-
tistical significance of the contributions from 228Th, 228Ac, and 60Co and the resulting
lack in discriminating power, these contributions were not included in the fit. Also,
no contributions for different source positions were considered in the model, since the
small exposure of the data set would not have allowed a distinction. An estimate of the
impact of additional model components and varying source positions was determined
for the systematic uncertainty.

In contrast to the analysis described in Chapter 9, the energy spectra of the six de-
tectors were kept separate for the analysis. An individual background model was de-
veloped for each of them, with the only common parameter being T 2ν

1/2. Equation (9.2)
then becomes

P(n|λ) =
∏

i

∏

j

P(ni j|λi j) =
∏

i

∏

j

e−λi jλ
ni j

i j

ni j!
, (B.1)

with ni j describing the number of events in the i-th bin of the measured data spectrum
of the j-th detector. For the background contaminations, c, the expectation for the i-th
bin of detector j is

λc
i j
=N c

j

∫

∆Ei

ϕ
c,norm
j (E) dE. (B.2)

For the contributions due to 2νββ , the expected number of events in the i-th bin of
detector j is

λ2ν
i, j =

k0

t1/2
M j f76, j T j · [ fact, j ǫact, jF 2ν

act,i, j + (1− fact, j)ǫdead, jF 2ν
dead,i, j], (B.3)

with

F 2ν
act,i, j =

∫

∆Ei

ϕ
2ν ,norm
act, j (E) dE (B.4)
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Table B.1: Main characteristics of the detectors used in this analysis: isotopic abundance of
76Ge, f76, total mass, M , fraction of active mass, fact , with the uncorrelated and correlated
uncertainty. The last column gives the results for T2ν

1/2 from an individual analysis of each
detector.

Detector f76 M fact T 2ν
1/2

(%) (kg) (%) (1021 yr)

ANG2 86.6± 2.5 2.833 87± 4± 3 1.99+0.14
−0.15

ANG3 88.3± 2.6 2.391 87± 5± 3 1.69+0.15
−0.14

ANG4 86.3± 1.3 2.372 90± 5± 3 1.94+0.14
−0.15

ANG5 85.6± 1.3 2.746 83± 4± 3 1.79+0.12
−0.14

RG1 85.5± 1.5 2.110 90± 5± 3 1.94+0.18
−0.14

RG2 85.5± 1.5 2.166 83± 5± 3 1.93+0.16
−0.16

and

F 2ν
dead,i, j =

∫

∆Ei

ϕ
2ν ,norm
dead, j (E) dE, (B.5)

as already described in Equation (9.7). The factor k0 = (ln(2)·NA)/(m76 ·1021 ·365 d) =
15.06 (kg · d)−1, with NA Avogadro’s number and m76 = 75.95 g/mol the molar mass
of 76Ge, gives the decay rate of 1 kg of germanium enriched to 100 % of 76Ge for
T 2ν

1/2 = 1021 yr. The parameter determined in the fit was t1/2, which represents T 2ν
1/2

in units of 1021 yr. The contributions in detector j from decays in other detectors are
below 0.1 % and not taken into account in this analysis.

In addition to the model contributions, also the active volume fraction, fact, j, and
the enrichment fraction, f76, j, of the single detectors were considered parameters in
the fit.

The fit was performed using the Bayesian Analysis Toolkit BAT [150]. The prior
probabilities were chosen flat and non-negative for 42K, 40K, and 214Bi for all six de-
tectors. Also the prior distribution for t1/2 was uninformative: flat between 0 and 10,
with t1/2 = 10 corresponding to T 2ν

1/2 = 1022 yr, which is much larger than previous
results, as given in Table 4.1. For fact, j and f76, j, priors based on the knowledge about
these parameters from measurements, see Table 6.1, were given as input to the fit. The
uncertainty on fact, j is divided into an uncorrelated contribution, individual for each
detector, and a correlated contribution, in common to all six detectors. The first had a
Gaussian prior with the mean according to the measured value and σ according to the
uncorrelated uncertainty. The latter had a Gaussian prior centered on zero and with a
width corresponding to the correlated uncertainty. The priors on f76, j were Gaussian
with mean value and standard deviation according to the measurements. Both f76, j

and fact, j were required to be between 0 % and 100 %. All values used for the prior
probabilities are summarized in Table B.1.

The total number of parameters was 1+5 ·Ndet+1= 32 (t1/2,N 214Bi
j

,N 42K
j

,N 40K
j

,
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fact, j, f76, j for j = 1, ..., Ndet with Ndet = 6 the number of detectors, and one parameter
for the correlated uncertainty on the active volume fraction).

Figure B.1 shows the sum of the best-fit model energy spectra of all six detectors
together with the data energy spectrum. The global modes of the posterior probability
distributions are used to scale the background contributions and the 2νββ energy
spectrum of the single detectors before adding them up to the total model. The single
background components are also shown. The 8796 events in the measured spectrum
are matched with 8797.0 events in the model. The model is composed to 79.9 % of the
2νββ spectrum, 14.1 % of the 42K spectrum, 3.8 % of the 214Bi spectrum, and 2.1 %
of the 40K spectrum. The signal-to-background ratio is 4:1, and thus much improved
compared to the previous measurement by the HdM experiment, which reached a
ratio of 1:1 [4]. The p-value, calculated according to [169], is 0.77, indicating a very
good agreement between model and data. The good agreement is confirmed by the
ratio between data and model, shown in the lower panel of Fig. B.1. Also shown
are the smallest intervals of 68 %, 95 %, and 99.9 % probability of the ratio assuming
the best-fit expectations. The intervals contain 30, 39, and 40 of the 40 ratio points,
respectively. This matches very well the theoretical expectations for the fluctuations
of 27.2, 38.0, and 40.0.

The half-life of 2νββ is determined from the marginalized posterior probability
distribution, which is shown in Fig. B.2. The mode and smallest 68 % probability
interval result in

T 2ν
1/2 = 1.84 [1.76, 1.93] · 1021 yr. (B.6)

The uncertainty interval already incorporates the uncertainties from the nuisance pa-
rameters, that is the uncertainty on the active volume fraction and the enrichment
fraction. In fact, the uncertainties on these values drive the uncertainty on T 2ν

1/2. If they
were known with infinite precision, the smallest probability interval would shrink to
[1.81, 1.87] · 1021 yr.

Fits with individual t1/2, j for each detector were also performed. The results for
these individual half-lives are listed in Table B.1. The results are mutually consistent,
with χ2/ν = 3.02/5= 0.60.

B.4 Crosschecks and Systematic Uncertainties

Whereas the effects of the uncertainty on f76 and fact were already included in the
fitting procedure, several other components had to be taken into account when esti-
mating the systematic uncertainty. They can be grouped into three categories:

Fit model As mentioned above, the possible contributions from 60Co, 228Ac, 228Th or
even other contaminations were not included in the fit model due to the small
exposure of the data set and the thus reduced discrimination power. In order
to estimate the related systematic uncertainty, a fit was performed with a model
including also the spectra from 60Co in the holders, 228Ac in the holders, and a
constant contribution. The latter was added to describe the contributions from
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Figure B.1: Best-fit model and data energy spectrum for the sum of the six detectors. The
sum of the individual model components scaled according to the global modes are also drawn.
The lower panel shows the ratio of data and model and the smallest intervals of 68 % (green),
95 % (yellow), and 99.9 % (red) probability for the ratio assuming the best-fit parameters.

228Th, whose distribution can be approximated as flat due to the small number
of counts expected in the fit window, and to account for possible unidentified
sources. This added additional 18 parameters to the fit (N 60Co

j
, N 228Ac

j
, constant

K j, for j = 1, ...Ndet , with Ndet = 6). The uncertainty is asymmetric, since any
further background component can only reduce the number of events attributed
to 2νββ and thus lead to a longer T 2ν

1/2. It is estimated to be +5.3 %.

Another uncertainty arises from the shape of the energy spectra of the back-
ground contributions used in the model, that is of 214Bi, 42K, and 40K. Their de-
cays were simulated in the holders and no other source positions were taken into
account. Different source positions would lead to different peak-to-continuum
ratios in the energy spectra. Several fits were performed for different source
positions for all three contributions. Also, artificial variations of the peak-to-
continuum ratios were applied. For 42K, these were as large as 5 %, while for
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Figure B.2: Marginalized posterior probability distribution P(t1/2|n) for the parameter t1/2,
which represents T2ν

1/2 in units of 1021 yr. The mode and smallest 68 % interval are marked.

40K, the continuum was completely removed in one case and doubled in another
case. The total uncertainty derived from these variations was estimated to be
±2.1 %.

For the primary spectrum of 2νββ , the code DECAY0 was used. Its description
has been cross-checked for several isotopes, such as 82Se, 96Zn, and 150Nd with
high-statistics data of the NEMO experiment [83,93,96,201,202]. An alternative
description for the decay spectrum is the Primakoff-Rosen approximation [57],
used for earlier measurements of T 2ν

1/2 of 76Ge [180]. Rerunning the analysis
with the energy spectrum deriving from the parametrization of [180] leads to a
difference of the order of 1 %.

MC simulation A different source of uncertainty derives from the MC simulations.
There will always be small differences between the implementation of the ex-
perimental geometry into the simulation framework and the real experimental
setup. These can be variations in dimensions, placements, or small details that
are not simulated. One example is the total detector mass, which differs by 0.6 %
from the real total detector mass for the configNAT setup, as small details like
rounded detector corners are not accounted for by the MC. The contribution to
the systematic uncertainty from this item was evaluated by redoing the analy-
sis using simulations with displaced, removed, or resized volumes, for example
holders made out of vacuum or lead instead of copper, and changed distances
between the detector strings to take into account possible shielding effects. The
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Table B.2: Systematic uncertainties on T2ν
1/2, which are not included in the fitting procedure.

Item Uncertainty on T 2ν
1/2

(%)

Additional background components +5.3

Shape of 42K, 40K, 214Bi energy spectra ±2.1

Shape of 2νββ energy spectrum ±1

Total fit model +5.8
−2.3

Precision of the MC geometry ±1

Accuracy of the MC tracking ±2

Total MC ±2.2

Data acquisition and selection ±0.5

Total systematic uncertainty +6.2
−3.3

total uncertainty due to the geometry model in the MC amounts to 1 %.

In addition, the uncertainties on the simulated particle interactions with matter
deriving from uncertainties on cross-sections and final states have to be taken
into account. From validations of the GEANT4 particle tracking for electromag-
netic processes in the energy range relevant for γ-ray spectroscopy [171–173],
this uncertainty can be deduced to be 2 %. It is mainly due to the propagation
of the photons from the background contributions. The electrons emitted in
2νββ have a small range of the order of 1 mm in germanium and thus deposit
their energy very locally, apart from small losses due to escaping Bremsstrahlung
photons.

Data acquisition and selection Small uncertainties may derive from the calculation
of the live time, as well as the reconstruction and trigger efficiencies. Also,
unphysical events might be present in the data set. These effects are expected
to be very small and their effect on the fit result was estimated to be not larger
than 0.5 %.

The single contributions are summarized in Table B.2. They amount to a total of
+6.2
−3.3 % when summed up in quadrature, resulting in +0.11

−0.06 · 1021 yr.
Cross-checks regarding the stability of the fit were performed. These involved

variations of the energy range considered for the fit (but always excluding the region
below 570 keV) and of the width of the bins, from 10 keV-bins to 50 keV-bins. The
result for T 2ν

1/2 varied only within its statistical limits.
The fit was also repeated using alternative priors for f76, j and fact, j. For f76, j, flat

prior distributions between 0.8 and 0.9 were chosen, whereas for fact, j the prior prob-
abilities were flat between 0.7 and 1.0. The results were compatible with the one from
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the standard analysis, but exhibited larger fit uncertainties.

B.5 Results and Conclusion

The half-life of 2νββ of 76Ge was derived from a subset of the golden data set with a
total exposure of 5.04 kg · yr. An individual background model containing the contri-
butions from decays of 42K in the LAr, 214Bi in the holders, and 40K in the holders, was
developed for each of the six detectors considered in the analysis. The half-life was
estimated to be

T 2ν
1/2 = (1.84+0.09

−0.08 fit
+0.11
−0.06 syst) · 1021 yr= (1.84+0.14

−0.10) · 1021 yr, (B.7)

with the fit and systematic uncertainties combined in quadrature.



Appendix C

Fit Models and Posterior Probability

Distributions for 0νββχ(χ) with

n = 2, 3 and 7

In this Appendix, the fit models and posterior probability distributions for the cases of
0νββχ(χ) with n = 2, 3 and 7 resulting from the analysis described in Chapter 10
are shown.
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Figure C.1: Best-fit model and data energy spectrum for the golden and the BEGe sum data
set for the case of spectral index n = 2. The contributions from 2νββ and the background
contributions are shown separately. The best-fit model does not contain the contributions
from 0νββχ . The smallest interval of 68 % probability for the model expectation is indicated
in grey. Also shown is the upper limit for 0νββχ with n = 2 as determined from the 90 %
quantile of the marginalized posterior probability for inv_t

0νχ(χ)
1/2 .
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Figure C.2: Marginalized posterior probability distribution P(inv_t
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0νχ(χ)
1/2 , which represents 1/T0νχ(χ)

1/2 in units of (1021 yr)−1 for the case of spectral index
n = 2. The 90 % quantile is marked. Also drawn is the posterior probability distribution after
folding in the systematic uncertainty distribution, shown in the inset, and the resulting 90 %
quantile.
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Figure C.3: Best-fit model and data energy spectrum for the golden and the BEGe sum data
set for the case of spectral index n = 3. The contributions from 2νββ and the background
contributions are shown separately. The best-fit model does not contain the contributions
from 0νββχ . The smallest interval of 68 % probability for the model expectation is indicated
in grey. Also shown is the upper limit for 0νββχ with n = 3 as determined from the 90 %
quantile of the marginalized posterior probability for inv_t
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Figure C.4: Marginalized posterior probability distribution P(inv_t
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quantile.
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Figure C.5: Best-fit model and data energy spectrum for the golden and the BEGe sum data
set for the case of spectral index n = 7. The contributions from 2νββ and the background
contributions are shown separately. The best-fit model does not contain the contributions
from 0νββχ . The smallest interval of 68 % probability for the model expectation is indicated
in grey. Also shown is the upper limit for 0νββχ with n = 7 as determined from the 90 %
quantile of the marginalized posterior probability for inv_t
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Appendix D

Average Detection Efficiency 〈ǫ〉 of

0νββ

Distributions resulting from the sampling method used to determine the average de-
tection efficiency 〈ǫ〉 of 0νββ for the golden and silver, as well as for the BEGe sum
data sets. For details of the analysis refer to Sec. 11.3.
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Figure D.1: Distribution resulting from the sampling method used to determine 〈ǫ〉 for the
golden and the silver data set.
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