

Neutrinoless double-beta decay in the GERDA Phase II

Carla Macolino per la collaborazione GERDA

INFN, Laboratori Nazionali del Gran Sasso

Congresso Nazionale SIF Trieste, 25.02.2013

- Science motivation for Phase II
- On the way to GERDA Phase II
- Pulse-Shape Discrimination (PSD) Analysis for BEGes
- LAr instrumentation

Science motivation

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

with $\langle m_{\beta\beta} \rangle$ = effective electron neutrino mass $\langle m_{\beta\beta} \rangle \equiv |U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{i\phi} + |U_{e3}|^2 m_3 e^{i\phi_3}$

 m_i =masses of the neutrino mass eigenstates U_{ei} =elements of the neutrino mixing matrix $e^{i\phi_2}$ and $e^{i\phi_2}$ the relative CP phases

 \rightarrow information on the absolute mass scale!

- Phase I result: Bl $\sim 10^{-2}$ cts/(keV kg yr) and ~ 20 kg yr exposure \rightarrow limit on $\langle m_{ee} \rangle$ between 0.2 and 0.4 eV
- **Phase II goal**: BI $\sim 10^{-3}$ cts/(keV kg yr) and 100 kg yr exposure \rightarrow sensitivity on $\langle m_{ee} \rangle \sim 100$ meV

Carla Macolino (LNGS)

On the way to GERDA Phase II

How to get a higher sensitivity for the Phase II:

- Understand background sources and reduce radiation sources
- Improve background rejection
- Increase mass

Strategy:

- Transition currently ongoing at LNGS
- Increase mass: additional 30 enriched BEGe detectors (about 20 kg)
- Suppress background contamination by a factor of 10 w.r.t. GERDA Phase I:
 - Use BEGes with Pulse-Shape Analysis for high background recognition efficiency
 - Use LAr scintillation light for background recognition and rejection
 - Use lower background Signal and HV cables w.r.t. Phase I
 - Use lower background Very Front End electronics w.r.t. Phase I
- Minimize material around sources and special care in crystal production
- Start commissioning in Autumn 2013 Spring 2014

Carla Macolino (LNGS)

Phase II BEGe detectors

Broad Energy Germanium detectors allow a highly efficient discrimination of the background:

5 / 10

PSD on Phase II BEGe detectors

A/E parameter allows to separate SSE events from MSE, n^+ and p^+ events

Carla Macolino (LNGS)

PSD on Phase II BEGe detectors

Experimental evidence of efficient ⁴²K rejection by PSD on GERDA Phase I data The GERDA Collaboration, The European Physics Journal C, *in press*

Carla Macolino (LNGS)

Liquid Argon instrumentation for Phase II

PMT LAr instrumentation studies for Phase II in LArGe (a smaller GERDA facility)

Different possible hardware configurations:

- SiPM fiber curtain
- PMTs on top and bottom of the array
- Hybrid solution
- Meshed copper shroud around strings
- Transparent mini-shroud
- VM2000 coated mini-shroud with large area SiPMs between detectors

Carla Macolino (LNGS)

Background

To light detector

128 nm scintillation light

Signal

Liquid Areon

Background for GERDA Phase II

Background suppression measurements with PMT veto and different possible configurations

Experimental condition	1540-3000 keV ¹ cts/(kg d)	Suppression to bare BEGe
Bare BEGe, PMTs off	514(18)	1
MMS, HV = 0, PMTs off	552(16)	0.9
MMS, HV = 0, PMTs on	154(9)	3.3
MMS, HV = +4kV, PMTs on	58(8)	8.9
Nylon MS, PMTs off	203(10)	2.5
Nylon MS, PMTs on	64(3)	8.0
Nylon MS, PMTs on ²	60(6)	8.6
Nylon MS, PMTs off	58(4)	8.9
Foil MS + SiPM, PMTs off	69(4)	7.5
Foil MS + SiPM, PMTs off	61(3)	8.4
Foil MS + SiPM, PMTs on	49(4)	10.5
LAr refilling		
Foil MS + SiPM, PMTs off	k*81(4)	~ 5.8
Glued Nylon MS, PMTs off	K*28(2)	~ 17

Carla Macolino (LNGS)

Conclusions

- GERDA Phase I/Phase II transition currently ongoing
- On the way to improve GERDA sensitivity:
 - Increase mass:
 - 30 additional BEGes (\sim 20 kg)
 - already produced and completely tested in Hades (Belgium)
 - BEGe detectors already tested in the real environment in the Phase I
 - Suppress background by a factor of 10 w.r.t. Phase I:
 - Very efficient Pulse-Shape Discrimination for background recognition
 - Liquid Argon veto by detecting scintillation light
 - HV cable and VFE electronics with lower background
 - New lock system for the detector deployment into the cryostat
- Many important contributions from the GERDA Italian groups (Padova, Milano Bicocca and LNGS) on BEGe characterization, VFE electronics, data processing, MC simulations, data analysis
- Commissioning foreseen in Autumn 2013 Spring 2014

Carla Macolino (LNGS)