Background characterization for the GERDA experiment

Neslihan Becerici-Schmidt

Max-Planck-Institut für Physik, München

Workshop in Low Radioactivity Techniques @ LNGS, 10-12 April 2013

Outline

- Physics motivation and goals of the GERDA experiment
- Experimental setup and status of Phase-I data taking
- Analysis of Phase-I data:
 - \rightarrow measurement of the T_{1/2} of 2νββ decay of ⁷⁶Ge
 - background due to alpha-induced events
 - decomposition of the background spectrum
- Conclusions

Motivation

GERDA experiment is searching for the neutrinoless double beta ($0\nu\beta\beta$) decay of 76 Ge.

Neutrino accompanied double beta decay $(2\nu\beta\beta)$

$$(A, Z) \rightarrow (A, Z+2) + 2e^{-} + 2\overline{\nu}_{e}$$

- → SM process, observed
- \rightarrow T_{1/2} \sim (10¹⁹ 10²⁴) yr Rarest decay measured in lab
- → Experimental signature: continuous spectrum of the sum of electrons kinetic energies

Neutrinoless double beta decay $(0v\beta\beta)$

$$(A, Z) \rightarrow (A, Z+2) + 2e^{-}$$

- → Non SM process: $\Delta L = 2$
- \rightarrow More rare than 2νββ
- \rightarrow Experimental signature: peak at $Q_{\beta\beta}$

Goals

GERDA experiment is searching for the neutrinoless double beta ($0\nu\beta\beta$) decay of 76 Ge.

limit: $T_{1/2}^{0\nu}(^{76}\text{Ge}) > 1.9 \times 10^{25} \text{ y (90\% C.L.)}$ from HdM Collaboration [Eur. Phys. J. A 12, 147154 (2001)]

claim: $T_{1/2}^{0\nu}(^{76}\text{Ge}) = 1.2 \times 10^{25} \text{ y}$ [Phys. Lett. B 586 (2004) 198-212]

Phase-I: $T_{1/2} > 2 \times 10^{25} \text{ y} \rightarrow \text{test the claim}$

Phase-II: $T_{1/2} > 10^{26} \text{ y}$

For a higher sensitivity on the $T_{1/2}$

- → larger exposure
- \rightarrow lower background rate around Q_{BB}
 - ▶ Background characterization & suppression

[Phys. Rev. D 74, 092003 (2006)]

Experimental setup

GERDA @ LNGS of INFN, Italy

- HPGe detectors directly submerged in LAr
- ♦ High-purity shields: LAr, H₂O

- ◆ Active muon veto: detection of Cherenkov radiation in water
- Minimal amount of screened material around the detectors

Phase-I started on 9 November 2011 with 3 natGe and 8 enrGe (from HdM and IGEX) coax detectors

2 ^{nat}Ge detectors removed, 5 ^{enr}Ge BEGe detectors deployed on July 2012

enrGe mass for physics analysis: 14.6 kg (coaxial) and 3.6 kg (BEGe)

Energy resolution: FWHM at $Q_{\beta\beta}=4.5$ keV (mass weighted average for the ^{enr}Ge coax detectors)

Stability: energy resolution within ~ 0.5 keV, energy scale within ~ 1 keV.

Phase-I background spectrum

9 November 20 11 - 5 January 2013

Live time: 340.94 days

Detectors: 6 enrGe coax (14.63 kg)

Total exposure: 13.65 kg \times yr

Background components:

No contribution at $Q_{\beta\beta}$

 39 Ar ($Q_{\beta} = 565 \text{ keV}$), $2\nu\beta\beta$, 40 K, 228 Ac

Contribution at $Q_{\beta\beta}$

•
42
K (42 Ar) \rightarrow Q _{β} = 3.5 MeV, E _{γ} = 2.4 MeV

•
214
Bi (238 U) → $Q_{\beta} = 3.3$ MeV, $E_{\gamma} = 2.1, 2.2, 2.4$ MeV

• 208TI (232Th)
$$\rightarrow$$
 E_Y = 2.6 MeV

• **60Co**
$$\to$$
 Q_B = 2.8 MeV

• α-induced events (from isotopes in ²³⁸U chain)

Background index in $Q_{\beta\beta} \pm 100 \text{ keV}$

0.022 cts/(keV kg yr) for 13.6 kg·yr data excluding 1.30 kg·yr (period following detector substitutions in July):

0.017 cts/(keV kg yr) for 12.3 kg·yr

10x lower than previous experiments (HdM, IGEX)

Phase I: Measurement of the $T_{1/2}$ of $2\nu\beta\beta$ of 76 Ge

enrGe coax detectors, total exposure: 5 kg·yr

2vββ spectrum clearly visible with the first 126 days data

Binned maximum likelihood fit

Fit window: 600 - 1800 keV

- \rightarrow above ³⁹Ar end-point energy (Q_B = 565 keV)
- \rightarrow in E>1800 keV range 0.02% probability of 2vββ

Background components: ⁴⁰K and ²¹⁴Bi close source, ⁴²K in LAr

Fit Parameters: Active detector masses, enrichment fractions, background contributions, $T_{1/2}$ common parameter background contributions, $T_{1/2}$ backgro

$$T_{1/2}^{2\nu} = \left(1.84_{-0.08 \text{ fit } -0.06 \text{ syst}}^{+0.11}\right) \times 10^{21} \text{yr} = \left(1.84_{-0.10}^{+0.14}\right) \times 10^{21} \text{yr}$$

Item	Uncer	tainty on $T_{1/2}^{2\nu}$ (%)
Non-identified background components Energy spectra from 42 K, 40 K and 214 Bi Shape of the $2\nu\beta\beta$ decay spectrum	+5.3 ±2.1 ±1	
Subtotal fit model		+5.8 -2.3
Precision of the Monte Carlo geometry model Accuracy of the Monte Carlo tracking	±1 ±2	
Subtotal Monte Carlo		±2.2
Data acquisition and selection		±0.5
Grand total		+6.2 -3.3

Phase I: Measurement of the $T_{1/2}$ of $2\nu\beta\beta$ of $^{76}Ge^{-1}$

The GERDA collaboration [J. Phys. G 40 (2013) 035110]

$$T_{1/2}^{2\nu} = (1.84_{-0.08 \text{ fit } -0.06 \text{ syst}}^{+0.11}) \times 10^{21} \text{yr} = (1.84_{-0.10}^{+0.14}) \times 10^{21} \text{yr}$$

Signal-to-background ratio in the fit range 4:1

→ uncertainty comparable to previous measurements despite much smaller exposure

Good agreement with reanalysis of HdM data (HdM-K, HdM-B)

- Range of alphas with E ~ 4 MeV 9 MeV
- \rightarrow 14 µm 41 µm in Ge
- \rightarrow 34 μ m 113 μ m in LAr
- Possible origin of alpha-induced events:
 - → Separate ²²⁶Ra and ²¹⁰Po contaminations on thin dead layer (thinDL) surfaces.

```
^{226}Ra (E<sub>g</sub> = 4.8 MeV,
               T_{1/2} = 1600 \text{ y}
^{222}Rn (E<sub>a</sub> = 5.5 MeV,
               T_{1/2} = 3.8 d
^{218}Po (E<sub>\alpha</sub> = 6.0 MeV,
              T_{1/2} = 183 s)
<sup>214</sup>Pb (T_{1/2} = 0.45 \text{ h})
^{214}Bi (T_{1/2} = 0.33 h)
<sup>214</sup>Po (E_{\alpha} = 7.7 \text{ MeV},
              T_{1/2} = 164 \mu s
<sup>210</sup>Pb (T_{1/2} = 22.3 \text{ y})
^{210}Bi (T_{1/2} = 5.01 d)
^{210}Po (E<sub>a</sub> = 5.3 MeV,
              T_{1/2} = 138.4 d
<sup>206</sup>Pb (stable)
```


Results from fitting the event rate distributions (details in the backup):

	$rac{ ext{C}}{ ext{[cts/day]}}$	$egin{array}{c} \mathbf{N}_0 \ [\mathbf{cts/day}] \end{array}$	$egin{array}{c} \mathbf{T}_{1/2} \ [\mathbf{days}] \end{array}$	p-value
$(3.5{ m MeV}{<}{ m E}{<}5.3{ m MeV})$				
expo		9.26 ± 0.26	138.4 ± 0.2	0.11
$\exp o + const$	0.57 ± 0.16	7.91 ± 0.44	138.4 ± 0.2	0.87
$(5.3{ m MeV}{<}{ m E}{<}7.5{ m MeV})$				
const	0.09 ± 0.02			0.86

Given a strong prior probability on the half life parameter

226Ra (
$$E_{\alpha}$$
 = 4.8 MeV,
 $T_{1/2}$ = 1600 y)
222Rn (E_{α} = 5.5 MeV,
 $T_{1/2}$ = 3.8 d)
218Po (E_{α} = 6.0 MeV,
 $T_{1/2}$ = 183 s)
214Pb ($T_{1/2}$ = 0.45 h)
214Pi ($T_{1/2}$ = 0.33 h)
214Po (E_{α} = 7.7 MeV,
 $T_{1/2}$ = 164 μs)
210Pb ($T_{1/2}$ = 22.3 y)
210Pb ($T_{1/2}$ = 5.01 d)
210Po (E_{α} = 5.3 MeV,
 $T_{1/2}$ = 138.4 d)

MC simulations to model the energy spectrum:

- 1) ²¹⁰Po on thinDL surface
- 2) ²²⁶Ra & daughters on thinDL surface
- 3) ²²²Rn & daughters in LAr close to thinDL surfaces

thinDL thickness: 300 ... 600 nm

226
Ra (E $_{\alpha}$ = 4.8 MeV, $T_{1/2}$ = 1600 y)

 222 Rn (E $_{\alpha}$ = 5.5 MeV, $T_{1/2}$ = 3.8 d)

 218 Po (E $_{\alpha}$ = 6.0 MeV, $T_{1/2}$ = 183 s)

 214 Pb ($T_{1/2}$ = 0.45 h)

 214 Bi ($T_{1/2}$ = 0.33 h)

 214 Po (E $_{\alpha}$ = 7.7 MeV, $T_{1/2}$ = 164 μs)

 210 Pb ($T_{1/2}$ = 22.3 y)

 210 Bi ($T_{1/2}$ = 5.01 d)

 210 Po (E $_{\alpha}$ = 5.3 MeV, $T_{1/2}$ = 138.4 d)

enrGe coaxials, exposure: 13.65 kg·yr

Binned maximum likelihood fit Fit window: 3500 - 7500 keV

p-value: 0.7

Note: the model explains the α -induced events in ^{nat}Ge detectors as well (backup)

Colored probability intervals:

[R. Aggarwal and A. Caldwell, Eur. Phys. J. Plus 127 24 (2012)]

Extrapolation of the alpha-induced event model to ROI (160 keV): (1939 - 2019) plus (2059 - 2139) keV

enrGe coaxials, exposure: 13.65 kg·yr

Binned maximum likelihood fit Fit window: 3500 - 7500 keV

p-value: 0.7

Note: the model explains the α -induced events in ^{nat}Ge detectors as well (backup)

Extrapolation of the alpha-induced event model to ROI (160 keV): (1939 - 2019) plus (2059 - 2139) keV

enrGe coaxials, exposure: 13.65 kg·yr

Binned maximum likelihood fit

Fit window: 3500 – 7500 keV

p-value: 0.7

Note: the model explains the α -induced events in ^{nat}Ge detectors as well (backup)

- → data: 49 events
- \rightarrow alpha model: 4.55^{+1.25}_{-0.95} events
- ~ 9% contribution from alphas

Phase-I: decomposition of the background spectrum

Binned maximum posterior fit to the sum en Ge coax spectrum in (570 - 7500) keV window

- \bullet fit window enlarged to include $Q_{\beta\beta}$
- background components considered in the global fit:
 - → K-42, K-40, Bi-214, Ac-228 & Th228 (beta- / gamma-induced events) and alpha-induced event model
- p-value of the fit: 0.3

Work in progress: analysis with more background components, various source positions, different data sets is ongoing. systematics under investigation

Preliminary: Dominant background contributions around $Q_{\beta\beta}$ \rightarrow K-42, Bi-214, Tl-208 and alphas

Conclusions

- GERDA Phase I started in Nov 2011 ongoing.
- Phase I background an order of magnitude lower than HdM, IGEX.
- Measurement of $T_{1/2}$ of $2\nu\beta\beta$ with the first 5 kg·yr (s:b = 4:1)

$$T_{1/2}^{2\nu} = \left(1.84_{-0.08 \text{ fit } -0.06 \text{ syst}}^{+0.11}\right) \times 10^{21} \text{yr} = \left(1.84_{-0.10}^{+0.14}\right) \times 10^{21} \text{yr}$$

- $_{\mbox{\scriptsize o}}$ Blind analysis: 40 keV window around $Q_{\beta\beta}=$ 2039 keV is blinded.
 - → unblinding: after 20 kg·yr exposure collected (Spring 2013)
- Model the background energy spectrum before unblinding: Promising "preliminary" results!
 - for the upcoming $0\nu\beta\beta$ analysis: expected number of background events, shape of the background spectrum around $Q_{\beta\beta}$
 - → for Phase II: understand the background sources in Phase I & mitigate it further

Analysis of event rate distributions:

- Fit the distribution with an exponential function $N(t) = N_0 \cdot e^{-ln2\,t/T_{1/2}}$
- Maximized quantity posterior probability:

$$P(\vec{\lambda}|\vec{n}) \propto P(\vec{n}|\vec{\lambda})P_0(\vec{\lambda})$$

- Set a prior on the half life parameter: $P_0 (T_{1/2}) = Gaus(138.4 days, 0.2 days)$ half-life of ²¹⁰Po
- Likelihood:

$$P(\vec{n}|\vec{\lambda}) = \prod_{i} P(n_i|\lambda_i) = \prod_{i} \frac{e^{-\lambda_i} \lambda_i^{n_i}}{n_i!}$$

$$\begin{split} &n_i: \text{raw number of counts in i-th bin}\\ &(\text{not scaled, not corrected for live time fraction,}\\ &\lambda_i: \text{expectation in the i-th bin}\\ &\text{corrected with the live time fraction in that bin} \end{split}$$

$$\lambda_i = \epsilon_i \int_{(i-1)\Delta t}^{i\Delta t} N_0 \cdot e^{-\ln 2t/T_{1/2}} dt$$

Event rate distribution of events with 3500 keV < E < 5300 keV in sum enrGe-coax

Model: exponentially decaying event rate

Event rate distribution of events with 3500 keV < E < 5300 keV in sum enrGe-coax

Model: exponential + constant rate

Parameters:

$$C = (0.57 \pm 0.16) \text{ cts/day}$$

$$N_0 = (7.91 \pm 0.44) \text{ cts/day}$$

$$T_{1/2} = (138.4 \pm 0.2)$$
 days

p-value of the fit: 0.87

Event rate distribution of events with E > 5300 keV in sum enrGe-coax

Model: constant rate

Parameters:

$$C = (0.09 \pm 0.02) \text{ cts/day}$$

p-value of the fit: 0.86

Simulated energy spectrum of different model components

Binned maximum posterior fit to the sum enrGe-coax spectrum in (3500 - 7500) keV window

Maximized the posterior probability using Markov Chain Monte Carlo in Bayesian Analysis Toolkit BAT:

[A. Caldwell et. al., Comput. Phys. Commun. 180, 2197 (2009)]

Posterior probability: $P(\vec{\lambda}|\vec{n}) \propto P(\vec{n}|\vec{\lambda})P_0(\vec{\lambda})$

Likelihood:

$$P(\vec{n}|\vec{\lambda}) = \prod_{i} P(n_i|\lambda_i) = \prod_{i} \frac{e^{-\lambda_i} \lambda_i^{n_i}}{n_i!}$$

 n_i number of observed, λ_i number of expected events in i-th bin

$$\lambda_i = \sum \lambda_{i,M} \quad o$$
 sum contribution of each model component M

$$\lambda_i = \sum \lambda_{i,M} o ext{sum contribution of each model component M}$$

$$\lambda_{i,M} = N_M \int_{\Delta E_i} f_M(E) dE$$

$$\int_{\text{scaling parameter for the component M}}$$

energy (keV)

sumEnrCoax, all runs fit window: (3500 - 7500) keV p-value: 0.72

Parameters	Mode
	(smallest int.)
Po-210 sur	1205 (1160, 1240)
Ra-226 sur	39.5 (30.0, 55.0)
Rn-222 sur	20.5 (14.0, 28.0)
Po-218 sur	11.5 (7.0, 16.0)
Rn-222 in LAr	40.5 (26.0, 61.0)
Po-218 in LAr	22.5 (14.0, 38.0)
Po-214 in LAr	14.5 (9.0, 21.0)

Ra-226	on	p+	surfa	ce:
--------	----	----	-------	-----

A = 81.3/340.96/24/3600

 $A = 3 \mu Bq$

	BI [10 ⁻³ cts/(keV kg yr)]
alpha model	2.85 (2.3, 3.4)
Po-210 on surface	0.67 (0.64, 0.70)
Ra-226 & daughters on surface	0.045 (0.03, 0.06)
Rn-222 & daughters in LAr	2.15 (1.6, 2.7)

GTF112, golden data set fit window: (3500 - 7500) keV p-value: 0.89

Parameters	Mode (smallest int.)
Po-210 sur	55.0 (40, 70)
Ra-226 sur	18.5 (13, 26)
Rn-222 sur	10.5 (6, 15)
Po-218 sur	9.5 (6, 14)
Rn-222 in LAr	17.5 (9, 25)
Po-218 in LAr	15.5 (9, 24)
Po-214 in LAr	15.5 (10, 22)

Ra-226	on	p+ s	urface:
--------	----	------	---------

A = 38/308.37/24/3600

 $A = 1.4 \mu Bq$

	BI [10 ⁻³ cts/(keV kg yr)]
alpha model	6.4 (5.1, 7.9)
Po-210 on surface	0.17 (0.13, 0.20)
Ra-226 & daughters on surface	0.16 (0.12, 0.20)
Rn-222 & daughters in LAr	6.1 (4.7, 7.5)