Background suppression in GERDA Phase II
and its study in the LARGE low background set-up

Dušan Budjáš
Technische Universität München
for the GERDA collaboration
http://www.mpi-hd.mpg.de/GERDA
Modified Broad-Energy Ge detectors

GERDA Phase I: semi-coaxial Ge detector

GERDA Phase 2: modified BEGe detector

BEGe advantages:

1) smaller p⁺ electrode ⇒ less capacitance ⇒ **less noise** ⇒ better energy resolution

2) favourable internal electric field distribution ⇒ **powerful PSD capability**

- narrow peak in current signal
- signal shape independent of interaction position (same final trajectory)
- current amplitude depends only on energy of interaction (~95% of volume)

Dušan Budjáš (TUM) [D. Budjáš et al., JINST 4:P10007,2009] [M. Agostini et al., JINST 6:P03005, 2011]
GERDA Phase II background identification tools

- Identification and discrimination of events by PSD and LAr veto:

 ββ-decay: β range in Ge ~mm
 γ-ray backgrounds: range in Ge ~cm

- Single-site event (SSE)
- Constant A/E

- Multi-site event (MSE)
- Reduced A/E

- Identification and discrimination of events by PSD and LAr veto:

 - α, β (Ra chain, 42K)
 - γ (Th, Ra chains)
 - γ+β (60Co, 68Ga)
 - Reduced A/E

- Surface backgrounds:
 - NSP
 - PCP
 - Contact pulse

Dušan Budjáš (TUM)
Background rejection using A/E cut with BEGes

A/E distribution from 228Th source

- **SSE** concentrated in a straight band
- **MSE region**
- **PSD cut**

- **DEP** 1593 keV
 - mostly SSE
 - 0νββ proxy
 - 90% survival

- **FEP** 1621 keV
 - mostly MSE
 - background
 - 10% survival

Dušan Budjáš (TUM)
PSD and LAr veto studies in LARGe

Low background test facility GERDA-LARGe at LNGS:

- Reflecting foil with wavelength shifter
- BEGe
- LAr
- PMTs

[228\text{Th} \text{near}]

- Without Cut
- PSD Cut
- LAr Veto Cut
- PSD + LAr Veto Cut

[228\text{Th} \text{far}]

- Without Cut
- PSD Cut
- LAr Veto Cut
- PSD + LAr Veto Cut

[226\text{Ra} \text{near}]

- Without Cut
- PSD Cut
- LAr Veto Cut
- PSD + LAr Veto Cut

[60\text{Co} \text{near}]

- Without Cut
- PSD Cut
- LAr Veto Cut
- PSD + LAr Veto Cut

Dušan Budjáš (TUM)

[M. Heisel, Dissertation, University of Heidelberg (2011)]
Production of ^{42}Ar for studying ^{42}K background

- $^7\text{Li}^{3+}$ irradiation; reaction: $^{40}\text{Ar}(^7\text{Li},\alpha \text{ p})^{42}\text{Ar}$
- Target cell with 500 mbar Ar gas
- Activated Ar inserted into LARGE

Tandem accelerator MLL Garching

Sample #2 spectra

- ^{44}Sc 271 keV
- ^{44}Sc 1157 keV
- ^{41}Ar 1293 keV
- ^{42}K 1524 keV
- 511 keV

Dušan Budjáš (TUM)
42K suppression methods studied in LARGe

Step 1: preventing 42K ions collection at detector surfaces

- **AC-coupled read-out** ⇒ outer electrode grounded, inner electrode shielded ⇒ “field-free”
- **Electrostatic shielding** (mesh on HV potential) ⇒ repelling ions and collecting them away from detector
- **Hermetic shroud** (transparent to XUV for LAr scintillation veto) ⇒ block ions from reaching detector

AC coupling high-voltage capacitor (radiopure)

- Suppression by factor 8
- Suppression by factor ~10
- Measurement ongoing

Dušan Budjáš (TUM)
42K suppression methods studied in LARGe

Step 2: reject the remaining 42K background via PSD
GERDA Phase II background summary

Background goal:
\[< 10^{-3} \text{ cts/(keV\cdot kg\cdot yr)} \]

<table>
<thead>
<tr>
<th>background</th>
<th>without cuts [cts/(keV\cdot kg\cdot yr)]</th>
<th>PSD survival</th>
<th>LAr veto survival</th>
<th>after cuts [cts/(keV\cdot kg\cdot yr)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{208}\text{Tl} \ (\gamma)$</td>
<td>≤ 0.01</td>
<td>0.43</td>
<td>$\leq 7.9\cdot 10^{-3}$</td>
<td>$\leq 3.4\cdot 10^{-5}$</td>
</tr>
<tr>
<td>$^{214}\text{Bi} \ (\gamma)$</td>
<td>≤ 0.0037</td>
<td>0.33</td>
<td>≤ 0.012 *</td>
<td>$\leq 4.5\cdot 10^{-5}$</td>
</tr>
<tr>
<td>$^{214}\text{Bi} \ (\beta \text{ on } p+)$</td>
<td>≤ 0.0098</td>
<td>< 0.003</td>
<td>0.21</td>
<td>$< 5.2\cdot 10^{-6}$</td>
</tr>
<tr>
<td>$^{60}\text{Co} \ (\gamma)$</td>
<td>$\leq 4\cdot 10^{-4}$</td>
<td>0.02</td>
<td>0.066</td>
<td>$\leq 5.2\cdot 10^{-7}$</td>
</tr>
<tr>
<td>$^{60}\text{Co} \ (\gamma+\beta \text{ in Ge})$</td>
<td>$3\cdot 10^{-4}$</td>
<td>0.02</td>
<td>0.066</td>
<td>$4.0\cdot 10^{-7}$</td>
</tr>
<tr>
<td>$^{68}\text{Ga} \ (\gamma+\beta \text{ in Ge})$</td>
<td>$2.3\cdot 10^{-3}$</td>
<td>0.09</td>
<td>0.2</td>
<td>$4.1\cdot 10^{-5}$</td>
</tr>
<tr>
<td>Ra-chain α on p+</td>
<td>$\leq 0.8\cdot 10^{-3}$</td>
<td>< 0.003</td>
<td>–</td>
<td>$< 2.4\cdot 10^{-6}$</td>
</tr>
<tr>
<td>$^{42}\text{K} \ (\text{surface } \beta)$</td>
<td>several solutions under investigation</td>
<td></td>
<td>goal: $< 3\cdot 10^{-4}$</td>
<td></td>
</tr>
</tbody>
</table>

PSD and veto combined acceptance of $0\nu\beta\beta$-decay events: 75% - 85% (depending on signal read-out noise performance)

* mean value for several different contributions
The GERDA Collaboration:

1. INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
2. Joint Institute for Nuclear Research, Dubna, Russia
3. Max-Planck-Institut für Kernphysik, Heidelberg, Germany
4. Institute of Physics, Jagiellonian University, Krakow, Poland
5. Università di Milano Bicocca e INFN Milano, Milano, Italy
6. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
7. Institute for Theoretical and Experimental Physics, Moscow, Russia
8. Russian Research Center Kurchatov Institute, Moscow, Russia
9. Max-Planck-Institut für Physik, München, Germany
10. Dipartimento di Fisica dell’Università di Padova e INFN Padova, Padova, Italy
11. Physikalisches Institut, Universität Tübingen, Germany
12. Institute for Reference Materials and Measurements, Geel, Belgium
13. Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Germany
14. Physik Institut der Universität Zürich, Switzerland
15. Physik Department E15, Technische Universität München, Germany

Other GERDA talks at DPG:

GERDA overview:
M. Heisel, HK 43.2, Tuesday 17:15
M. Agostini, T 103.1, Thursday 16:45

GERDA Phase I background:
N. Becerici-Schmidt, T 103.4, Thursday 17:40

GERDA Phase II K-42 background:
A. Lubashevskiy, HK66.7, Thursday 15:45

GERDA Phase II PSA:
A. Lazzaro, HK 66.6, Thursday 15:30
V. Wagner, T 110.2, Tuesday 17:05

GERDA Phase II detectors:
R. Falkenstein, T 110.1, Tuesday 16:45
B. Lehnert, T 110.3, Tuesday 17:20

GERDA Phase II LAr veto:
M. Walter, HK 46.8, Tuesday 18:30
Back-up
Backgrounds observed in Phase I:
- surface α from 226Ra chain
- surface β from 42K (from 42Ar in LAr)
- γ from Th and Ra decay chains

Additional bkg expected in Phase II:
- β/γ decays of 60Co and 68Ga from cosmogenic activation of Ge

→ see talk by:
 N. Becerici-Schmidt, T 103.4, Do 17:40
Ramo’s theorem:
\[I(t) = q \cdot \nabla \phi_w(\vec{r}(t)) \cdot \vec{v} \]

- \(q, r, v \) – charge, position and velocity of charge cluster
- \(\phi_w \) – weighing potential

- ~95% volumetric efficiency of \(A/E \) position independence
- **separation sensitivity**: <10 ns (current peaks) \(\Rightarrow \) <1.2 mm (interactions; 1D)*
- \(I_{max}/E \) resolution \(\approx 0.6\% \) \(\Rightarrow \) ~15 keV sensitivity for 2nd interaction in a 2 MeV MSE

* using \(12 \cdot 10^{-6} \) cm/s hole drift velocity [Bruyneel et al., NIM A 569 (2006) 764]
Pulse shape discrimination with BEGe

\[I_{\text{max}} / E \Rightarrow \text{discrimination parameter} \]

\[I_{\text{max}} \propto q \Rightarrow \]

SSE: single charge cluster:

\[q \propto E \Rightarrow (I_{\text{max}} / E)_{\text{SSE}} \approx \text{const.} \]

MSE: several charge clusters:

\[q_i < E \Rightarrow (I_{\text{max}} / E)_{\text{MSE}} < (I_{\text{max}} / E)_{\text{SSE}} \]

\[E = \text{total event energy} \]
BEGe performance studies: Surface events

n+ electrode (≤ mm) → n+ surface pulses (NSP) occurrence

Irradiation with 90Sr and 106Ru β sources

Map of I_{max}/E

region of p+ contact pulses (PCP) occurrence

Scanning of p+ contact with 241Am α source and 90Sr β source

Dušan Budjáš (TUM)
Performance studies: ^{90}Sr and ^{106}Ru n+ surface β events

^{106}Ru survival fraction as a function of energy (β and bremsstrahlung events)

Average = $8.2(6) \times 10^{-3}$

n+ surface β event PSD rejection power demonstrated stable in region 1 - 2 MeV

NSP/MSE cut tuned to 90% survival of $0\nu\beta\beta$

MC cut set to 0.1% survival of β-like events and 20% survival of γ-like (bremsstrahlung) events.

Dušan Budjáš (TUM)
A over E distributions

Sr90 on the groove in LAr - A/E distribution
A over E distributions

Sr90 on the groove in LAr - A/E distribution
Performance studies: 241Am p+ contact α events

PCP cut tuned to 99% survival of $0\nu\beta\beta$

<table>
<thead>
<tr>
<th>surface</th>
<th>p+ contact</th>
<th>groove inner</th>
<th>groove bottom</th>
<th>groove outer</th>
</tr>
</thead>
<tbody>
<tr>
<td>survival fraction *</td>
<td>< 1.1%</td>
<td>< 12%</td>
<td>< 1.0%</td>
<td>< 1.2%</td>
</tr>
</tbody>
</table>

* 90% confidence-level upper limits
results limited by background in test setup; improved measurement analysis under way

Dušan Budjáš (TUM)