The GERDA Phase II detector assembly

Tobias Bode1, Stefan Schönert1 und Bernhard Schwingenheuer2 for the GERDA collaboration

1Technische Universität München Physik Department
2Max-Planck Institut für Kernphysik
Outline

• Introduction to Phase II of the GERDA experiment
• Phase II detector mount
• Contacting solution
• Integration test
• Conclusion
GERDA Phase II

- New custom-made detectors of ~20 kg total mass
- Background index aim 10 times lower than Phase I: < 0.001 cts/(keV·kg·yr)
- Active & passive reduction of background events
 - Pulse Shape Discrimination (PSD) (T\textsubscript{109.4}, T\textsubscript{110.2})
 - Instrumented liquid argon volume (T\textsubscript{109.1/2})
 - Passive shielding by rock, copper, water & argon
 - Radio pure & low mass components e.g. holder structure, front-end electronics, cables, etc
Phase I detectors and contacting scheme

- Refurbished HdM & IGEX semi coaxial HPGe detectors with ~17 kg mass
 - HV contact copper screw (torque 60 N·cm; critical for energy resolution)
 - Signal contact by “chinese hat” pushed by silicon spring
 - Contacts require high mechanical stability of holder (80 g copper per detector)
 - Background index contribution approx. \(\leq 0.001 \text{ cts/(keV·kg·yr)} \)
Phase I detectors and contacting scheme

- Refurbished HdM & IGEX semi coaxial HPGe detectors with ~17 kg mass
 - HV contact copper screw (torque 60 N·cm; critical for energy resolution)
 - Signal contact by “chinese hat” pushed by silicon spring
 - Contacts require high mechanical stability of holder (80 g copper per detector)
 - Background index contribution approx. \(\leq 0.001 \text{ cts/(keV·kg·yr)} \)

Marginal for Phase II
Phase II detector mount
The Phase II detector mount

- Reduction of holder mass per kg detector mass necessary
 - Phase I holder: Cu 30 g/kg; PTFE 3.1 g/kg; Si 0.4 g/kg
 - Phase II holder: Cu 19 g/kg; PTFE 1.4 g/kg; Si 29 g/kg; 0.7 g/kg bronze
- Replace as much copper as possible with intrinsically pure mono crystalline silicon
- Current design achieves factor ~1.5 reduction copper & PTFE mass per kg detector mass
- New contacting scheme allows holder with reduced mass
The Phase II detector mount

- Ultrasonic wire bonding identified as a low-mass, reliable electrical contact between detector, amplifying electronics and HV supply
- Modification of germanium diodes necessary to allow bonding
Contacting solution
Wire bonding on germanium detectors

- Ultrasonic wire bonding
- Wire bonding used extensively in the chip manufacturing industry
- Current detectors need additional aluminium thin film of 600nm to allow bonding
- In GERDA bonding wires must be stable in liquid argon and survive warming/cooling cycles
- Damage to sensitive p^+ contact must be prevented
- Small background contribution ensured by small contact masses
Deposition of aluminium

- Need of metallic surface for ohmic contact and good bonding
- Evaporation of material to produce a cloud of atoms e.g. e-beam evaporator
- Process development at TUM
- Integration into production process of manufacturer, Canberra Semiconductor NV
- Coating at manufacturer's site
- Minimization of above ground time to avoid cosmic activation of detectors
Integration test
Test of integrated detector pair

- Two test detectors with Al films mounted in Phase II holder
- Bonded to make electrical contact
- Test of newly designed Phase II electronics
- Test of assembly in liquid argon cryostat (Noise, microphonics, handling in glove box, stability)
- Test in LNGS underground laboratory on going
Test of integrated detector pair

• Two test detectors with Al films mounted in Phase II holder
• Bonded to make electrical contact
• Test of newly designed Phase II electronics
• Test of assembly in liquid argon cryostat (Noise, microphonics, handling in glove box, stability)
• Test in LNGS underground laboratory on going
First spectrum with bonded germanium detector operated in LAr

Th228 Spectrum

DEP FWHM: ~1.64 keV

FEP FWHM: ~2.74 keV

Counts

Bins
Conclusion

- GERDA Phase II will use active & passive reduction of radioactive backgrounds
- Decrease mass of detector assembly components
- New contacting solution (wire bonding) allows reduction of holder mass
- Steps of bonding on germanium detectors investigated
- Successful process integration achieved
- Integration & operational tests of Phase II prototypes on going
- Evaporation on enriched Ge detectors will start in May
Thank you for your attention