A background veto system for GERDA based on scintillation of liquid argon

Nuno Barros for the GERDA collaboration
Institut für Kern- und Teilchenphysik
Technische Universität Dresden

DPG Frühjahrstagung, March 4, 2013
\(\beta\beta \) decay

- \(2\nu\beta\beta: (A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\nu_e \)
 - Predicted by the SM
 - Observed in more than 10 isotopes
- \(0\nu\beta\beta: (A, Z) \rightarrow (A, Z + 2) + 2e^- + 0\nu_e \)
 - \(\Delta L = 2 \)
 - One claim and many limits...
 - \(\left[T^{0\nu}_{1/2} \right]^{-1} = F^{0\nu} \cdot |M^{0\nu}|^2 \cdot m_{\beta\beta}^2 \)

\[T^{0\nu}_{1/2} \approx \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \]

Ways to improve sensitivity

- More mass
- Better energy resolution
- Longer measurement
- Lower background
Germanium Detector Array

\[T^{0\nu}_{1/2} \approx \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \]

Phase I

- Check existing claim with HPGe
 - Exposure: ~20 kg yr
 - \(B_1 : 2.43 \times 10^{-2} \text{ cts/(keV kg yr)} \)

Phase II

- Expand sensitivity with enriched BEGe (+20 kg)
 - Exposure: ~100 kg yr
 - \(B_1: \leq 1.0 \times 10^{-3} \text{ cts/(keV kg yr)} \)

Background reduction in the ROI around \(Q_{\beta\beta} \) crucial for GERDA objectives

Double beta decay in Ge:

\[2\nu\beta\beta : ^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^- + 2\nu \]

\[0\nu\beta\beta : ^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^- \]

Reducing the background in GERDA

- **Background index (BI)**
 - present (Phase I): \(2.43 \times 10^{-2}\) cts/(keV kg yr)
 - aspired (Phase II): \(\leq 1.0 \times 10^{-3}\) cts/(keV kg yr)

- Employed background suppression techniques:
 - Water Cherenkov veto (muons)
 - Detector anti-coincidence
 - Pulse shape discrimination (PSD)

LAr scintillation veto

- Tag background events by detecting light from scintillation of argon
Background suppression in GERDA

- **ββ-event**
 - Single site event (energy deposited in a single crystal)
 - **Not vetoed**

Events in ROI around 2039 keV
Background suppression in GERDA

- **ββ-event**
 - Single site event (energy deposited in a single point)
 - **Not vetoed**

- **Surface event (214Bi, 42K)**
 - Often not vetoed by LAr instrumentation
 - **High veto efficiency from PSD**

Events in ROI around 2039 keV
Background suppression in GERDA

- **ββ-event**
 - Not vetoed

- **Surface event (^{214}Bi, ^{42}K)**
 - Often not vetoed by LAr instrumentation

- **External event (^{208}Tl, ^{214}Bi)**
 - Energy deposited in multiple crystals
 - **Detector anti-coincidence veto**
Background suppression in GERDA

- **ββ-event**
 - Not vetoed

- **Surface event ({}^{214}\text{Bi}, {}^{42}\text{K})**
 - Often not vetoed by LAr instrumentation

- **External event ({}^{208}\text{TI}, {}^{214}\text{Bi})**
 - Energy deposited in multiple crystals
 - Detector anti-coincidence veto
 - Multi site events
 - PSD veto
Background suppression in GERDA

- **ββ-event**
 - Not vetoed

- **Surface event (\(^{214}\text{Bi}, \, ^{42}\text{K})**
 - Often not vetoed by LAr instrumentation

- **External event (\(^{208}\text{TI}, \, ^{214}\text{Bi})**
 - Energy deposited in multiple crystals
 - Detector anti-coincidence veto
 - Multi site events
 - PSD veto
 - Energy deposited both in the detector and in the surrounding LAr
 - **Often vetoed by LAr instrumentation**
LAr scintillation for background suppression

• Advantages:
 • Very high light yield: \(\sim 4 \times 10^4 \) \(\gamma \)/MeV
 • Single re-emission peak: \(\lambda = 128 \) nm (XUV)
 • Very distinctive short and long decay times
 - \(T_s \sim 6 \) ns
 - \(T_l \sim 1200 – 1500 \) ns

• Challenges:
 • Hard to measure optical properties
 - Very dependent on impurities
 • Light cannot be detected directly (XUV)
 - Need to use WLS
LArGe test facility

- lock system
- 9x 8” PMTs
- reflector foil & wavelength shifter
- bare Ge-detector
- cryostat with LAr
 - volume 1000 l
- Shield (unfinished)
 - Cu 15 cm,
 - Pb 10 cm,
 - Steel 23 cm,
 - PE 20 cm

Location: Germanium detector lab
LNGS @ 3800 m w.e.

[arXiv: 0701001, TAUP 2011 proc.]
LArGe test facility
LArGe: suppression of internal 228Th

- Suppression factor at $Q_{\beta\beta} \pm 35$keV
- LAr veto: ~1200
LArGe: suppression of internal 228Th

- Suppression factor at $Q_{\beta\beta} \pm 35$ keV
 - LAr veto: ~ 1200
 - PSD: ~ 2.4
 - LAr + PSD: ~ 5200
LArGe : suppression of internal 226Ra

- Suppression factor at $Q_{\beta\beta} \pm 35$ keV
 - LAr veto : ~ 4.6
 - PSD : ~ 4.1
 - LAr + PSD: ~ 45

Demonstrated by LArGe:
- Concept works
- Complementarity with PSD
- Efficient background suppression for select backgrounds
• **LArGe results used to validate MC model**
 • Simpler geometry
 • Measurements available

Tuning of optical properties:
• Material reflectivities
 • Cu, Ge, teflon,…
• LAr properties:
 • Attenuation length, light yield, triplet lifetime
• WLS properties
 • Absorption and re-emission spectra

Unknown accurate source geometry affects fraction of escaped betas.
LAr instrumentation in GERDA

- Combination of technologies for maximized veto efficiency.
 - PMTs (as verified in LArGe)
 - Scintillation fibers [T 109.2].

Requirements

- Large instrumented volume
- Low background contribution
 - After self-veto
- Low mass
 - Instrumentation deployed with Ge crystals
The hybrid design

- **top PMTs**
 - (9 x 3” Hamamatsu R11065-10/-20)

- **600 x 490 mm**
 - Cu coated with Tetratex + TPB [HK 46.8]

- **Scintillating fibers + WLS (1000 x 490 mm)**
 - BCF-91A fibers coated with TPB
 - Light readout by SiPMs at upper end

- **bottom PMTs**
 - (7 x 3” Hamamatsu R11065-10/-20)
Breakdown of the designs

PMTs
- Proven technology (LArGe)
- Low background contribution
 - Clean PMTs
 - Distance from the crystals

Scintillating fibers
- Sensitive LAr volume not confined
- High solid angle coverage
- Low background contribution
 - Can afford to place fibers closer to detectors

Photomultiplier - Hardware
- 18 low bg PMTs available
 - 9 x R11065-10
 - 9 x R11065-20

Screening results
- Th228: 1.94 mBq/PMT
- Ra226: 1.7 mBq/PMT

R11065-20 has higher QE than R11065-10

Anne Wegmann (MPIK)
LAr veto for GERDA
DPG, 04.03.2013 14 / 17
Hardware: PMTs [T 109.1]

- 18 low background PMTs
 - 9 x R11065-10
 - 9 x R11065-20

- Custom made voltage dividers
 - Encapsulation to prevent discharges/flashing

- Tight control on weight of setup
 - Share same cable chain as detectors

Screening results

- $^{228}\text{Th} : \leq 1.94 \text{ mBq/PMT}$
- $^{226}\text{Ra} : \leq 1.7 \text{ mBq/PMT}$
Hardware : PMTs [T 109.1]

- Intensive tests of all parts
 - Tight control of background

- Run in test stand with in MPIK
 - 4 PMTs with negative voltage dividers
 - So far no flashing occurred

PMT support successfully tested
Hardware: Fibers [T 109.2]

- Coupling 9 fibres per SiPM
 - Readout on one end
 - Reflective surface on other end

- “Dirtiest” parts far from detectors

- Fibers coated with TPB
 - Fibers themselves are WLS

- Large solid angle coverage maximizes detection efficiency
 - Does not penalize PMTs
- **SiPMs**
 - Work at LN temperature
 - Good QE, negligible Dark Rate
 - Candidates: Hamamatsu and Ketek SiPMs

- **TPB coated WLS fiber concept already demonstrated**

Screening results

- 228Th: 0.058 mBq/kg
- 226Ra: 0.042 mBq/kg
- 40K: 0.46 mBq/kg

Concept tested in small scale (< 20 l)
Extensive MC simulation campaign of designs:
- Implemented in MaGe
 - GERDA simulation software based on Geant4
- Tuned with LArGe data

Two-fold objective:
- Initial comparison of technologies
- Optimization of geometries (detectors and instrumentation)

Simulation details:
- Simulation of known nuclear decays in detector parts
 - LAr, detector holders, LAr instrumentation, Ge crystals
 - Most relevant simulated decays: 214Bi, 208Tl
- Photon tracking only if event deposits energy in Ge inside the ROI
 - Performance optimization
MC simulations

$2^{14}\text{Bi in detector holders}$

$2^{08}\text{Ti in detector holders}$

$$SF = \frac{\text{total events in ROI}}{\text{unvetoeed events in ROI}}$$

- ROI: $Q_{\beta\beta} \pm 100$ keV
- Same window used to determine the BI.
MC simulations: results

Simulation campaign was iterative process
- Designs evolved/improved with results from simulations

<table>
<thead>
<tr>
<th>Location</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{208}Tl holders</td>
<td>320 ± 34</td>
</tr>
<tr>
<td>external</td>
<td>112 ± 39</td>
</tr>
<tr>
<td>^{214}Bi surface</td>
<td>3.5 ± 0.1</td>
</tr>
<tr>
<td>holders</td>
<td>10.3 ± 0.3</td>
</tr>
<tr>
<td>homogeneous in LAr</td>
<td>54.8 ± 7.9</td>
</tr>
</tbody>
</table>

Sources simulated in earlier designs (approximate values)

<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{60}Co</td>
<td>detectors</td>
<td>10</td>
</tr>
<tr>
<td>^{42}K</td>
<td>homogeneous in LAr</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>crystal surface</td>
<td>1</td>
</tr>
</tbody>
</table>
Some parameters hard to measure
- Literature values used
- Systematic studies of their effect performed

Attenuation of XUV light
- Absorption highly dependent on purity of LAr
- Literature value: 60 cm [NIM A 384 (1997)]
- **Major systematic uncertainty**

Reflectivity of materials
- Measurements in visible range performed at MPIK
- Literature values used for XUV range

<table>
<thead>
<tr>
<th>Systematic</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>10.3 ± 0.3</td>
</tr>
<tr>
<td>0.2 * Attenuation</td>
<td>8.9 ± 0.3</td>
</tr>
<tr>
<td>0.1 * Reflectivity</td>
<td>9.4 ± 0.3</td>
</tr>
</tbody>
</table>
MC simulations : systematics studies (II)

- **Effect in p.e. yield more clear**
 - **Attenuation**: Reduction of p.e. yield of factor ~ 2
 - **Reflectivity**: Elimination of high p.e. tails.
 - Reflectivity has small effect in the simulations.

![Graph showing effects of different parameters on p.e. yield](image)
MC simulations: systematics studies

- Effect of increased attenuation highly dependent on p.e. threshold
 - Other systematics not so critical
- Purity of argon and threshold of instrumentation critical for its efficiency
A LAr scintillation veto is planned for phase II of GERDA
 • Principle demonstrated in LArGe
 • Favored design of combination of PMTs and scintillating fibers
 • Hardware tests ongoing
 • Both technologies demonstrated on smaller scale
 • Construction has started
 • Extensive MC simulation campaign performed
 • Used LArGe results for validation and tuning
 • Provided optimizations to the hardware designs.
 • LAr veto suppression factors look promising:
 • > 10^2 for ^{228}\text{Th} (~300 close by, ~100 far from detectors)
 • ~ 10 for nearby ^{226}\text{Rn} backgrounds
 • Instrumentation induced BI within allowed budget
 • Counting self-veto