A liquid Argon scintillation veto for the GERDA experiment

Anne Wegmann for the GERDA collaboration

Max-Planck Institut für Kernphysik

DPG Frühjahrstagung, 04.03.2013

1 The GERDA experiment
2 Light instrumentation of GERDA
The GERDA experiment

Double beta decay

\[^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^- + 2\bar{\nu}_e \]

\[^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^- \]

Energy spectrum

\[\tau_{1/2}^{2\nu} = (1.84^{+0.14}_{-0.08}) \times 10^{21} \text{ yr} \quad \text{arXiv:1212.3210} \]

\[\tau_{1/2}^{0\nu} = 1.19 \times 10^{25} \text{ yr} \quad \text{Phys. Lett. B586,198 (2004)} \]

Main challenge

fight background at \(Q_{\beta\beta} = 2039 \text{ keV} \)
The GERDA experiment

- Clean room + lock system
- Water tank
- LAr cryostat
- Detector array
Background rejection in GERDA

Sensitivity to the lower limit of the half life scale of $0\nu\beta\beta$ decay

$$T_{1/2} \propto \epsilon a \sqrt{\frac{Mt}{BI\Delta(E)}}$$

- ϵ: detection efficiency
- a: abundance of ^{76}Ge
- Mt: exposure [kg yr]
- BI: background index [cts/(keV kg yr)]
- $\Delta(E)$: energy resolution in ROI at $Q_{\beta\beta}$

currently running:

- **start:** November 2011
- **planned end:** summer 2013
- **detector mass:**
 - $M_{\text{coaxial}} = 17.7 \text{ kg}$
 - $M_{\text{BEGe}} = 3.6 \text{ kg}$
- **energy resolution @ 2.6 MeV:**
 - $\Delta E_{\text{coaxial}} \approx 4.5 \text{ keV}$
 - $\Delta E_{\text{BEGe}} \approx 3.0 \text{ keV}$
- **$BI \approx 2.4(3) \cdot 10^{-2} \text{ cts/(keV kg yr)}**

Phase II

- **additional 20 kg of enr Ge detectors (BEGe)**
- **cleaner and lighter detector holders, cables, ...**

aspired $BI \leq 10^{-3} \text{ cts/(keV kg yr)}

\Rightarrow **active background suppression methods are needed** [T 109.4]

- detector anticoincidence
- water cherenkov veto
- pulse shape analysis [T 110.2, HK 66.6]

- **LAr scintillation veto** will be installed
LAr scintillation veto for background suppression

How does an active LAr veto work?

1. $0\nu\beta\beta$ event deposits its energy at one point in the Ge-crystal \rightarrow not vetoed
2. Surface beta (Bi214, K42) \rightarrow often not vetoed by LAr veto (\rightarrow PSD)
3. γ background events in ROI (Bi214, Tl208) \rightarrow can be vetoed
 - energy deposition in multiple crystals \rightarrow detector anticoincidence veto
 - Multisite event \rightarrow pulse shape discrimination veto
 - energy deposition inside the crystal and in LAr \Rightarrow create scintillation light $@ \lambda = 128\,\text{nm}$ \Rightarrow can be used as anticoincidence veto
Experimental verification

energy spectrum for an internal Th228 source:

Suppression factors at $Q_{\beta\beta} \pm 35$ keV:

LAr ≈ 1200; PSD ≈ 2.4
LArGe - a test facility for GERDA
Monte Carlo validation & tuning of optical parameters

- simple geometry
- measurements available

Tuning of optical properties

- material reflectivities (Ge, Cu, VM2000, ...)
- absorption and emission spectra
- LAr attenuation length, light yield and triplet lifetime

- good MC description after tuning

<table>
<thead>
<tr>
<th>Bg</th>
<th>LArGe data internal</th>
<th>MC internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl208</td>
<td>1180 ± 250</td>
<td>909 ± 235</td>
</tr>
<tr>
<td>Bi214</td>
<td>4.6 ± 0.2</td>
<td>3.8 ± 0.1</td>
</tr>
<tr>
<td>Co60</td>
<td>27 ± 2</td>
<td>16.1 ± 1.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bg</th>
<th>LArGe data external</th>
<th>MC external</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl208</td>
<td>25 ± 1.2</td>
<td>17.2 ± 1.6</td>
</tr>
<tr>
<td>Bi214</td>
<td>3.2 ± 0.2</td>
<td>3.2 ± 0.4</td>
</tr>
</tbody>
</table>
Light instrumentation for GERDA

“Hybrid” LAr veto design

- result of MC simulation optimization campaign
- uses combination of PMTs and scintillation fibers to read-out the scintillation light [T109.2]

Requirements on light instrumentation

- big instrumented volume
- low instrumentation induced background index
 - Photomultiplier
 - Wavelength shifting fibers
 - wavelength shifting and reflective foil
- applicable without LAr drainage
“Hybrid” LAr veto design

Photomultiplier
- type: 3 " R 11065-10/-20
- 9* top, 7* bottom

Scintillating fibers [T 109.2]
- build the middle shroud
- type: BCF-91A coated with TPB
- light readout at upper end by SiPMs

Copper shroud + reflective foil
- Tetratex coated with TPB [HK 46.8]
- installed on inner side of copper shrouds
Photomultiplier - Hardware

screening results [mBq/pc]

<table>
<thead>
<tr>
<th></th>
<th>Th228</th>
<th>Ra226</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMT</td>
<td>< 1.94</td>
<td>< 1.7</td>
</tr>
<tr>
<td>VD</td>
<td>< 0.5</td>
<td>< 1.14</td>
</tr>
</tbody>
</table>

* calculated from component screening currently screening of 6 R11065-10 PMTs

R11065-20 has higher QE than R11065-10

peak-to-valley:

- test of up to 10 PMTs in LAr
- light yield measurements
- gain measurements
“Hybrid” LAr veto design - MC simulations

Tl208 in holders:

Bi214 in holders:

suppression factors

<table>
<thead>
<tr>
<th>Holders</th>
<th>Surface</th>
<th>Homogenous</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi214</td>
<td>10.3 ± 0.3</td>
<td>3.5 ± 0.1</td>
<td>54.8 ± 7.9</td>
</tr>
<tr>
<td>Tl208</td>
<td>320 ± 34</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
“Hybrid” LAr veto design - MC simulations

Systematics studies

- changed attenuation for XUV light and metal reflectivities dramatically

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Attenuation * 0.2</th>
<th>Reflectivity * 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi214 in holders</td>
<td>10.3 ± 0.3</td>
<td>8.9 ± 0.3</td>
<td>9.4 ± 0.3</td>
</tr>
</tbody>
</table>

⇒ LAr veto gives still good suppression factors but p.e. yield drops
“Hybrid” LAr veto design

Instrumentation induced BI $[\text{cts/}(\text{keV kg yr})]$
Installation of LAr scintillation veto is planned for Phase II of GERDA

Hybrid design using scintillating fibers and PMTs is the baseline option

- hardware tests are ongoing
- construction has started

Extensive MC simulation campaign performed

- used LArGe for validation and tuning
- provided optimizations to the hardware design

LAr veto suppression factors look promising:

- $> 10^2$ for Th228 (≈ 300 close by, ≈ 100 far from detectors)
- ≈ 10 for nearby Ra226 background source

Instrumentation induced BI within the budget
Thanks for your attention!
Veto efficiencies for different background sources are estimated by Monte Carlo simulations

- MaGe (Geant4) based simulation of nuclear decays
- If event passes cuts on energy deposition in the Ge crystals, optical photons created in the LAr are propagated. Otherwise event is discarded
 - photons are tracked inside the wls fiber
 - green shifted photons in the fiber can reach the PMTs
- reflectivity and surface roughness of the surrounding materials are implemented