HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

Raphael Falkenstein
for the GERDA collaboration

05.02.2013

DPG-Frühjahrstagung, Dresden
Outline

• GERDA – The Germanium Detector Array
 - (Neutrinoless) double beta decay
 - The GERDA setup
 - GERDA Phase I → GERDA Phase II
• Broad Energy Germanium detector (BEGe)
• Production chain of the Phase II detectors
• The HEROICA project, acceptance tests of enriched BEGe detectors
 - Motivation
 - HADES
 - Infrastructure
 - Test stands
 - Test protocol/Measurements
• Conclusions
(Neutrinoless) Double Beta Decay

- **2νββ**: Two neutrons in a nucleus are converted to protons, two e\(^-\) and two \(\bar{\nu}_e\).
- **0νββ**: The same decay, without the emission of two \(\bar{\nu}_e\).
- **Problem for observing the 0νββ**: Extremely large half life, background.
- **Sensitivity**:

\[
T^{0\nu}_{1/2} \propto a \epsilon \eta \sqrt{\frac{Mt}{B \Delta E}}
\]

- \(a\) = isotopic abundance
- \(\epsilon\) = detection efficiency
- \(\eta\) = active volume fraction
- \(Mt\) = exposure
- \(B\) = background index
- \(\Delta E\) = energy resolution

\[
2\nu\beta\beta: (Z, A) \rightarrow (Z+2, A)+2e^-+2\bar{\nu}_e
\]
SM allowed

\[
0\nu\beta\beta: (Z, A) \rightarrow (Z+2, A)+2e^-
\]
\(\Delta L=2\)

![Graph showing energy distribution for 2νββ and 0νββ decays](image)
GERDA – Germanium Detector Array

- Experiment designed to investigate the $0\nu\beta\beta$ decay in Ge76
- Located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, with a natural shielding from cosmic radiation of ~ 3800 m water equivalent.
- Uses Ge diodes enriched in Ge76 as source and detector

- Liquid Argon (LAr) is used as γ-shield and cooling medium
- The Germanium detectors are operated “naked” in LAr
Phase I

- Data taking since 9. Nov. 2011 with ~ 18 kg of $^{\text{enr}}\text{Ge}$ diodes (mostly coax type)

Phase II

- ~ 20 kg of BEGe detectors enriched in Ge76 at 86 % level will be additionally deployed
- 5 BEGe's with a total mass of ~ 3 kg already deployed in GERDA since July 2012
- **Physical goal of Phase II** is to increase our sensitivity and especially the reduction of the background index in the Region Of Interest ($Q_{\beta\beta} = 2039$ keV) to a level of $10^{-3} \text{ cts/(keV} \cdot \text{kg} \cdot \text{yr)}$
Phase I

• Data taking since 9. Nov. 2011 with \(\sim 18 \text{ kg of } \text{enrGe} \) diodes (mostly coax type)

\[
T_{1/2}^{0\nu} \propto a \epsilon \eta \sqrt{\frac{M t}{B \Delta E}}
\]

First improvement: Doubling of detector mass

\[M \rightarrow 2 \cdot M\]

Phase II

• \(\sim 20 \text{ kg of } \text{BEGe} \) detectors enriched in Ge76 at 86 % level will be additionally deployed

• 5 BEGe's with a total mass of \(\sim 3 \text{ kg} \) already deployed in GERDA since July 2012

• **Physical goal of Phase II** is to increase our sensitivity and especially the reduction of the background index in the Region Of Interest (\(Q_{\beta\beta} = 2039 \text{ keV} \)) to a level of \(10^{-3} \text{ cts/(keV} \cdot \text{ kg} \cdot \text{ yr}) \)
Broad Energy Germanium detector (BEGe)

- Manufactured by Canberra, Olen, Belgium
- Smaller size compared to the Phase I coaxial detectors
- Smaller size of read-out-electrode
 - Lower capacitance
 - Lower noise
 - Better energy resolution (~ 1.75 keV @ 1.33 MeV)
- Enhanced pulse shape discrimination performance due to peculiar electric field created by the small contact
 → Allows in particular to discriminate single-site events (0νββ-decay-like) from multi-site events (gamma-ray background events)

Properties BEGe detectors

M. Agostini et al, (JINST), 6 (2011) P03005
The BEGe Production chain
A big logistical challenge

• Minimization of the cosmic ray exposure of the enriched Germanium material, due to production of radio-isotopes including Co60 and Ge68 mostly done by cosmic ray neutrons
• These nuclides can mimic $0\nu\beta\beta$ decays in our detectors

Transport in shielded containers
Find underground locations in the vicinity of the plants during the various production phases for the storage of the material

Need of exposure tracking

Activation mostly by spallation reactions of fast nucleons from cosmic rays
BEGe Production chain

- Production of enriched $^76\text{GeO}_2$ at ECP Zelenogorsk, Russia
BEGe Production chain

- **Metal reduction and zone refinement** at PPM in Langelsheim, DE (08.03.2010 – 30.04.2010)
 35.5 kg enriched 6N material
- **Underground storage** in Rammelsberg mining museum
- Production of enriched $^{76}\text{GeO}_2$ at ECP Zelenogorsk, Russia
BEGe Production chain

- Crystal pulling and further zone refinement at Canberra in Oak Ridge, USA
- Production of enriched 76GeO$_2$ at ECP Zelenogorsk, Russia
- Metal reduction and zone refinement at PPM in Langelsheim, DE, 35.5 kg enriched 6N material
- Underground storage in Rammelsberg mining museum
BEGe
Production chain

• Shipping to Belgium for diode production at Canberra, Olen

Transport in 26 t container, shielded with water and steel. Lowest possible position on deck

• Production of enriched 76GeO$_2$ at ECP Zelenogorsk, Russia
• Metal reduction and zone refinement at PPM in Langelsheim, DE, 35.5 kg enriched 6N material
• Underground storage in Rammelsberg mining museum
• Crystal pulling and further zone refinement at Canberra in Oak Ridge, USA
HEROICA

Hades Experimental Research Of Intrinsic Crystal Appliances

Motivation and Goal

- **Acceptance tests** of enriched BEGe detectors
- Do the detectors fulfill our requirements and the specifications of the manufacturer?

- To verify that the necessary requirements are met, a **complete characterization** of the detector properties is needed prior to their installation in the GERDA experiment
- Determine all the important **detector parameters**, like depletion voltage, detector active volume, dead layer uniformity over the surface, charge collection uniformity and test the performance of the diodes in terms of energy resolution and quality of pulse shape discrimination
- Ge detectors **depleted in the Ge76 content** (byproduct of the enrichment procedure) were used to define the acceptance test protocol
HADES
High Activity Disposal Experimental Site

- Location for acceptance testing and storage of the Diodes
- Located in at the Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
- Close to the diode manufacturer (~20 km) in Olen
- 223 m deep (~ 500 m w.e.) → Minimize cosmic activation of Germanium
Infrastructure

HEROICA area before 23 January 2012
Infrastructure

HEROICA area today

- Safe for radioactive sources
- 10 cm thick dampers → reduction of microphonics
- Automated scanning tables
Test stands
“Fixed setup”

- 2 test stands
- Lead + copper shielding
- Measurements done at fixed source-detector distance

“Automated Scanning setup”

- 3 test stands
- Equipped with motor controlled movable arm, for the top and lateral scanning of the detector surface
- Collimated source
- Laser system for the alignment of the detector

33 radioactive sources

MCA and FADC DAQ
Test Protocol

- **Co60, uncollimated**
 - Energy resolution
 - Automated HV scans
 - Depletion voltage
 - Energy resolution as a function of the HV
 - Peak position as a function of the HV
 - Peak rate as a function of the HV
 - Leakage current as a function of HV
 - Active Volume measurement
- **Uncollimated Am241 and Ba133**
 - Average upper surface dead layer
- **Uncollimated Th228**
 - Pulse shape discrimination (PSD) efficiency
- **Collimated Am241 scans at nominal voltage**
 - Charge collection uniformity
 - Homogeneity of dead layer / active volume edges
 - Position dependance of pulse shape properties (signal risetime, A/E, ...)

18 | R. Falkenstein

DPG-Frühjahrstagung 2013, Dresden
Test Protocol

- **Co60, uncollimated**
 - Energy resolution
 - Automated HV scans
 - Depletion voltage
 - Energy resolution as a function of the HV
 - Peak position as a function of the HV
 - Peak rate as a function of the HV
 - Leakage current as a function of HV
 - Active Volume measurement
- **Uncollimated Am241 and Ba133**
 - Average upper surface dead layer
- **Uncollimated Th228**
 - Pulse shape discrimination (PSD) efficiency
- **Collimated Am241 scans at nominal voltage**
 - Charge collection uniformity
 - Homogeneity of dead layer / active volume edges
 - Position dependence of pulse shape properties (signal risetime, A/E, ...)

\[
T_{1/2}^{0\nu} \propto a \epsilon \eta \sqrt{\frac{Mt}{B \Delta E}}
\]

FWHM between 1.64 keV and 1.86 keV at 1.3 MeV for all 30 detectors
(\(\phi 1.74\) keV)
Test Protocol

• **Co60, uncollimated**
 - Energy resolution
 - Automated HV scans
 - Depletion voltage
 - Energy resolution as a function of the HV
 - Peak position as a function of the HV
 - Peak rate as a function of the HV
 - Leakage current as a function of HV
 - Active Volume measurement
• **Uncollimated Am241 and Ba133**
 - Average upper surface dead layer
• **Uncollimated Th228**
 - Pulse shape discrimination (PSD)
• **Collimated Am241 scans at nominal voltage**
 - Charge collection uniformity
 - Homogeneity of dead layer / active volume edges
 - Position dependance of pulse shape properties (signal risetime, A/E, ...)

• Determine depletion voltage:
 Minimal voltage at which the spectroscopic characteristics are optimal

• Important for GERDA:
 How much can the HV be lowered from operational voltage without losing detector performance
Test Protocol

- **Co60, uncollimated**
 - Energy resolution
 - Automated HV scans
 - Depletion voltage
 - Energy resolution as a function of the HV
 - Peak position as a function of the HV
 - Peak rate as a function of the HV
 - Leakage current as a function of HV
 - Active Volume measurement
- **Uncollimated Am241 and Ba133**
 - Average upper surface dead layer
- **Uncollimated Th228**
 - Pulse shape discrimination (PSD) efficiency
- **Collimated Am241 scans at nominal voltage**
 - Charge collection uniformity
 - Homogeneity of dead layer / active volume edges
 - Position dependance of pulse shape properties (signal risetime, A/E, ...)

\[T_{1/2}^{0\nu} \propto a \varepsilon \eta \sqrt{\frac{M t}{B \Delta E}} \]

- Determined by comparing the measured γ-line detection efficiency with MC simulations

Dedicated Talk by B. Lehnert at 17:20 in this session
Test Protocol

- Co60, uncollimated
 - Energy resolution
 - Automated HV scans
 - Depletion voltage
 - Energy resolution as a function of the HV
 - Peak position as a function of the HV
 - Peak rate as a function of the HV
 - Leakage current as a function of HV

- Active Volume measurement
- Uncollimated Am241 and Ba133
 - Average upper surface dead layer
- Uncollimated Th228
 - Pulse shape discrimination (PSD) efficiency
- Collimated Am241 scans at nominal voltage
 - Charge collection uniformity
 - Homogeneity of dead layer / active volume edges
 - Position dependance of pulse shape properties (signal risetime, A/E, ...)

\[T_{1/2}^{0\nu} \propto a \epsilon \eta \sqrt{\frac{M_t}{B \Delta E}} \]

- Compare the measured ratio between the count rate of two \(\gamma \)-lines with the corresponding MC ratio

Dedicated Talk by B. Lehnert at 17:20 in this session
Test Protocol

- **Co60, uncollimated**
 - Energy resolution
 - Automated HV scans
 - Depletion voltage
 - Energy resolution as a function of the HV
 - Peak position as a function of the HV
 - Peak rate as a function of the HV
 - Leakage current as a function of HV
 - Active Volume measurement

- **Uncollimated Am241 and Ba133**
 - Average upper surface dead layer

- **Uncollimated Th228**
 - Pulse shape discrimination (PSD) efficiency

- **Collimated Am241 scans at nominal voltage**
 - Charge collection uniformity
 - Homogeneity of dead layer / active volume edges
 - Position dependence of pulse shape properties (signal risetime, A/E, ...)

\[
T_{1/2}^{0\nu} \propto a \epsilon \eta \sqrt{\frac{M_t}{B \Delta E}}
\]

- Ratio of current signal amplitude (A) and charge signal amplitude (E) different for **SSE** (0νββ-decay-like) and **MSE** (γ-ray background events)

Dedicated Talk by V. Wagner after this talk
Test Protocol

- **Co60, uncollimated**
 - Energy resolution
 - Automated HV scans
 - Depletion voltage
 - Energy resolution as a function of the HV
 - Peak position as a function of the HV
 - Peak rate as a function of the HV
 - Leakage current as a function of HV
 - Active Volume measurement

- **Uncollimated Am241 and Ba133**
 - Average upper surface dead layer

- **Uncollimated Th228**
 - Pulse shape discrimination (PSD) efficiency

- **Collimated Am241 scans at nominal voltage**
 - Charge collection uniformity
 - Homogeneity of dead layer / active volume edges
 - Position dependance of pulse shape properties (signal risetime, A/E, ...)

See Talk by V. Wagner after this talk
Conclusions

• We developed a test facility for the fast screening of BEGe detectors in the HADES underground lab
• Minimized exposure of the detectors to cosmic radiation as much as possible
• Test protocol, which allows for the complete characterization of the BEGe detectors spectroscopic performances, active volume, depletion voltage, PSD properties and other parameters
• All 30 new enriched BEGe detectors are tested and operating