Computational studies of BEGe detectors

Presented by Marco Salathe, marco.salathe@mpi-hd.mpg.de

Max Planck Institute for Nuclear Physics, Heidelberg

DPG-Frühjahrstagung, March 4, 2013
• **BEGe**: Broad Energy Germanium detector
 - Produced by Canberra Industries, Olen, Belgium
• **GERDA**: GERmanium Detector Array
 - Tues, 17:15, HSZ-401, GERDA status report, Mark Heisel
 - Thu, 16:45, WIL-A317, Gerda status report, Matteo Agostini
• **HEROICA**: Hades Experimental Research Of Intrinsic Crystal Appliances
 - Tues, 16:45, HSZ-101, HEROICA: a test facility for the characterization of BEGe detectors for the Gerda experiment, Raphael Falkenstein
Pulse Shape Simulation

1) Calculate electric potential ϕ_E and weighting potential ϕ_W:
 - Initial condition: potential on electrodes, detector dimensions, impurity gradient

![Electric potential for BEGe](image1)

![Weighting potential for BEGe](image2)
Pulse Shape Simulation

1) Calculate electric potential ϕ_E and weighting potential ϕ_W:
 - Initial condition: potential on electrodes, detector dimensions, impurity gradient

2) Calculate the trajectory of the charge x_{e^-}/h, which depends on:
 - the point of charge deposition
 - the electric field \vec{E} defining the drift velocity
 - specific mobility parameters for crystal axes
Pulse Shape Simulation

1) Calculate electric potential ϕ_E and weighting potential ϕ_W:
 - Initial condition: potential on electrodes, detector dimensions, impurity gradient

2) Calculate the trajectory of the charge x_e/\hbar, which depends on:
 - the point of charge deposition
 - the electric field \vec{E} defining the drift velocity
 - specific mobility parameters for crystal axes

3) Calculate the induced charge at the electrode:
 - Shockley–Ramo theorem: $Q(t) = -Q_0 \cdot [\phi_W(x_h(t)) - \phi_W(x_e(t))]$
A few details and references:

- Simulation is based on the ADL 3.0 (AGATA Detector simulation Library)
 - http://www.ikp.uni-koeln.de/research/agata/download.php
 - B. Birkenbach - DPG 2011 / HK 54.2 : Characterisation of AGATA detectors
- Calculation of potential:
 - Usually poisson equation: \(\nabla^2 \phi = \rho_f / \epsilon \)
 - Not precise due to variable permittivity: \(\nabla^2 \phi(\vec{x}) \cdot \epsilon(\vec{x}) + \nabla \phi(\vec{x}) \cdot \nabla \epsilon(\vec{x}) = \rho_f(\vec{x}) \)
 - Solve in cylindrical (2D) or cartesian coordinates (3D) on a rectangular grid by successive over relaxation
 - D. Radford, http://radware.phy.ornl.gov/MJ/m3dcr
- Evaluation of charge trajectory:
- Shockley-Ramo theorem:
- Pulse shape simulation with BEGe detectors:
A few applications

241Am scans in Heroica:

- Measurements of 30 detectors with collimated 241Am source on up to three Padova Scanning Tables on up to 600 different points
- Analysis of data for each point: position of 60keV peak, FWHM, A/E peak, different pulse rise time
A few applications

Am scans in Heroica, 2 – 70% rise time:
- Increasing risetime for large radius
- Fast oscillations for large radius
- Slow oscillations for small radius

![Graph showing measured and simulated risetime](image-url)
A few applications

Am scans in Heroica, 2 – 70% rise time:

- Increasing risetime for large radius due to longer drift path
- Fast oscillations for large radius due to different mobilities along crystal axes
- Slow oscillations for small radius due to a misalignment of detector of up to 1mm
A few applications

Double peak structure in A/E in 228Th measurement in Heroica:
- A/E is used for pulse shape discrimination:
 - E: energy (moving window average filter)
 - A: amplitude of weakly smoothed current pulse
- A double peak structure was observed in double escape peak of 228Th for many detectors
 - *Tues, 17:05, HSZ-101, Pulse Shape Analysis of Enriched BEGe Detectors in Vacuum Cryostat and Liquid Argon, Victoria Wagner*
- Idea: Inhomogeneous charge within the groove
A few applications

High voltage scans in Heroica:

- Measuring peak count rate and resolution of ^{60}Co peaks for different applied high voltage
- Evaluation of depletion voltage
- Sensitive to detector parameters (especially impurity gradient)
A few applications

Detector optimization:

• For a crystal slice many fixed parameters: Impurity gradient, height, radius
• There are a few free parameters: size of point contact, groove width
• Depletion voltage as a function of the free parameters
• A compromise between values of free parameter and depletion voltage can be found
Thanks for your interest
Extended ADL 3.0:

- Many detectors implemented: coaxial, BEGe, planar
- Field calculation in cylindrical and cartesian coordinates
 - Fields of 0.1mm resolution can be calculated in roughly 1min on a single core (1.5GB/field for 3D structure)
- Crystal effects (axes, trapping) are included
- Electronic response can be implemented
- Implemented in C: Library can be used with ROOT, etc.

Validation of electric field simulation:

- Field solving with successive over-relaxation (SOR), a widely used method
- Comparison between cylindrical and cartesian method: Excellent agreement
- Comparison between different programs: In agreement

Validation of pulse simulation:

- Previous validation by AGATA collaboration
- Continues use by AGATA for position reconstruction within their germanium array
- Ongoing investigation together with HEROICA 241Am surface scans
Capacitance of detectors:

- The definition of the capacitance is given by:

\[C = \frac{Q_f}{V} \]

(1)

with \(Q_f \) the amount of free charge in the electrodes and \(V \) the potential difference between the electrodes.

- Maxwell's equations can be used to calculate the amount of charge in the electrodes:

\[\int_{\partial \Omega} \mathbf{D} \cdot d\mathbf{S} = Q_f \]

(2)

- The potential difference is simply the applied voltage.

- Hence the capacitance can be calculated from the calculated fields.