GERDA: results and future

Dušan Budjáš
Technische Universität München
for the GERDA collaboration
http://www.mpi-hd.mpg.de/GERDA
The **GERDA** collaboration

18 institutions

~100 members

www.mpi-hd.mpg.de/gerda

Dušan Budjáš (TUM)
Outline

1. Experimental approach and design
2. Data and analysis
3. Result: $0\nu\beta\beta$ $T_{1/2}$ limit
4. Future: GERDA Phase II
GERDA: 0νββ-decay experiment

GERDA aims to search for the half-life of 0νββ decay of ^{76}Ge

Germanium detectors:
- ultra high purity material
- excellent energy resolution
- enrichment in $^{76}\text{Ge} \sim 86\%$

$Q_{\beta\beta} = 2039.01(5) \text{ keV}$

narrow peak \Rightarrow good resolution is important

Dušan Budjáš (TUM)
Germanium detectors: historically most sensitive 0νββ probe

- IGEX: $T_{1/2}^{0ν} > 1.6$ (90% C.L.)
- Heidelberg-Moscow: $T_{1/2}^{0ν} > 1.9$ (90% C.L.)
- Klapdor-Kleingrothaus claim: $1.19^{+0.37}_{-0.23}$

Past approach (IGEX, HdM):

- Ge detector
- Pb shield
- Cu cryostat
- Cooling

GERDA approach (Gerd Heusser ‘95):

- Ultra-pure cryogenic liquid (cooling and shielding)
- Minimise nearby solid materials
- GERmanium Detector Array

Dušan Budjáš (TUM)
Design of GERDA

Laboratori Nazionali del Gran Sasso

Design of GERDA

Dušan Budjáš (TUM)
Design of GERDA

Clean room, data acquisition systems

Lock for detector insertion

Water tank

64m3 LAr cryostat

Cu shield

Radon shroud

Detector array

PMT Cherenkov light read-out

228Th source

Dušan Budjáš (TUM)
Water Cherenkov PMT muon veto

Dušan Budjáš (TUM)
Low background challenge

Samples of all materials measured and selected for low radioactivity.

Variety of ultra-sensitive methods:

- Ge-detector spectrometry
- mass spectrometry
- neutron activation analysis
- radon emanation detection via proportional gas counters

proportional gas counter, GALLEX/GNO heritage

GeMPI spectrometer, evolution of Heidelberg-Moscow detector design
Low background challenge

42Ar concentration in natural argon found much higher than expected.
⇒ solved by installing protective Cu-foil “mini-shroud” around detectors
GERDA Phase I detectors

Enriched coaxial (17.67 kg):
5 from Heidelberg-Moscow
3 from IGEX

Enriched BEGe (3.63 kg):
5 new (Phase II design)
1 non-enriched coaxial

Deployment: November 2011
BEGe: July 2012
Data taking until: May 2013

Total exposure for $0\nu\beta\beta$ analysis: 21.6 kg⋅yr

3 data-sets: 17.9 kg⋅yr “golden”, 1.3 kg⋅yr “silver”, 2.4 kg⋅yr “BEGe”

ANG 1 and RG 3 stopped soon after deployment, RG 2 near the end.
GD35C excluded from analysis due to system instability
GERDA Phase I data analysis

Background data: blinded until all analysis procedures fixed

Analysis cuts:
muon-veto and Ge-array anti-coincidence: ~40% cut
signal quality: ~9% cut

Periodic calibration with 228Th sources.
Stability cross-check in final summed physics data on 42K background line:

FWHM only ~4% larger than expected
Background level improvement

GERDA

\[
T^{2\nu}_{1/2} = \left(1.84^{+0.09}_{-0.08} \text{ fit } +0.11^{+0.11}_{-0.06} \text{ syst } \right) \times 10^{21}
\]

Average background at Qββ:

HdM: 0.16 cts/(keV·kg·y)

GERDA “golden”: 0.02 cts/(keV·kg·y)

Background γ-lines typically ~10× lower than HdM (except for 42K).

Dušan Budjáš (TUM)
Before unblinding: background model

“Gold” data allow good-statistics fit
Main background sources:

- 42K
- Th and U(or Ra) contamination in materials near detectors
- Ra and Po contamination of detector surfaces (including α decays)

Background near $Q_{\beta\beta}$ flat (no lines).

Dušan Budjáš (TUM)

arXiv:1306.5084
Before unblinding: pulse-shape discrimination

Signals recorded via FADC with 50 ns to 80 ns time resolution → analyse time-structure

Signals recorded via FADC with 50 ns to 80 ns time resolution → analyse time-structure

Before unblinding: pulse-shape discrimination

- measure **50 rise time variables** (1,3,5,…) 99%
- **Neural Network** (TMVA/TMIPANN) discriminates events

Trained on 228Th calibration data:
- MSE training sample: 1621 keV γ-line (212Bi)
- SSE training sample: 1592 keV DEP of 2.6 MeV line (208Tl)

DEP (double escape peak) events have similar spatial structure like $0\nu\beta\beta$

PSD for coaxial detectors:
- measure **50 rise time variables** (1,3,5,…) 99%
- **Neural Network** (TMVA/TMIPANN) discriminates events

Trained on 228Th calibration data:
- MSE training sample: 1621 keV γ-line (212Bi)
- SSE training sample: 1592 keV DEP of 2.6 MeV line (208Tl)

DEP (double escape peak) events have similar spatial structure like $0\nu\beta\beta$
Before unblinding: pulse-shape discrimination

PSD for coaxial detectors

Neural Network response qualifier distribution:

![Graph showing neural network response qualifier distribution with terms SSE and MSE, and cutoffs for accepted and rejected.

PSD applied to 228Th calibration spectrum:

Cut is adjusted for each detector to 90% DEP survival.

arXiv:1307.2610
Before unblinding: pulse-shape discrimination

PSD for coaxial detectors

Determined Neural Network survival efficiency for $0\nu\beta\beta$: $0.90^{+0.05}_{-0.09}$

Furthermore, 2 alternative PSD methods were developed and their results support the validity of the Neural Network method.

Validity is cross-checked on $2\nu\beta\beta$ data: 0.85 ± 0.02

Dušan Budjáš (TUM)
arXiv:1307.2610
Before unblinding: pulse-shape discrimination

Separate analysis based on a single parameter used for BEGe detectors (more later).

Survival efficiency for $0\nu\beta\beta$: 0.92 ± 0.02

A/E parameter distribution:

2$\nu\beta\beta$ survival: 0.91 ± 0.05

Background at $Q_{\beta\beta}$:

$0.042^{+10}_{-8}\, \text{cts/(keV\cdot kg\cdot y)}$

$\Rightarrow 0.005^{+4}_{-3}\, \text{cts/(keV\cdot kg\cdot y)}$

Dušan Budjáš (TUM)

arXiv:1307.2610
Unblinding

14 June 2013, in Dubna, Russia

![Graph showing event count consistent with background](image)

<table>
<thead>
<tr>
<th>evt cnt in ±5 keV</th>
<th>golden</th>
<th>silver</th>
<th>BEGe</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>expt. w/o PSD</td>
<td>3.3</td>
<td>0.8</td>
<td>1.0</td>
<td>5.1</td>
</tr>
<tr>
<td>obs. w/o PSD</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>expt. w/ PSD</td>
<td>2.0</td>
<td>0.4</td>
<td>0.1</td>
<td>2.5</td>
</tr>
<tr>
<td>obs w/ PSD</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Event count consistent with background

Best fit: $N^{0\nu} = 0$

Profile likelihood upper limit: $N^{0\nu} < 3.5$ cts @ 90% C.L.

“Neutrinoless Decays Are a No Show Again”

Dušan Budjáš (TUM)
Limit on ^{76}Ge half life

past claim $T_{1/2}^{0\nu} = 1.2 \cdot 10^{25} \text{ yr}$
present upper limit $\Rightarrow T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr}$ @ 90% C.L.

Combined with HdM and IGEX:
$T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \text{ yr}$

$<m_{\text{ee}}>/<m_{\text{ee}} > < 0.2\text{-}0.4 \text{ eV}$

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{\text{enr}} \cdot N^{0\nu}} \cdot \mathcal{E} \cdot \epsilon$$

$$\epsilon = f_{76} \cdot f_{av} \cdot \epsilon_{fep} \cdot \epsilon_{psd}$$

<table>
<thead>
<tr>
<th>data set</th>
<th>$\mathcal{E}[\text{kg\cdot yr}]$</th>
<th>$\langle \epsilon \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>golden</td>
<td>17.9</td>
<td>$0.619^{+0.044}_{-0.070}$</td>
</tr>
<tr>
<td>silver</td>
<td>1.3</td>
<td>$0.619^{+0.044}_{-0.070}$</td>
</tr>
<tr>
<td>BEGe</td>
<td>2.4</td>
<td>0.663 ± 0.022</td>
</tr>
</tbody>
</table>

Past claim strongly disfavoured

H1: signal with $T_{1/2}^{0\nu} = 1.19 \times 10^{25}$ yr

H0: background only

<table>
<thead>
<tr>
<th>Isotopes</th>
<th>$P(H_1)/P(H_0)$</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERDA</td>
<td>^{76}Ge</td>
<td>0.024</td>
</tr>
<tr>
<td>GERDA+H</td>
<td>^{76}Ge</td>
<td>0.0002</td>
</tr>
<tr>
<td>dM+IGEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KamLAND-Zen*</td>
<td>^{136}Xe</td>
<td>0.40</td>
</tr>
<tr>
<td>EXO-200*</td>
<td>^{136}Xe</td>
<td>0.23</td>
</tr>
<tr>
<td>GERDA+KL</td>
<td>$^{76}\text{Ge} + ^{136}\text{Xe}$</td>
<td>0.002</td>
</tr>
</tbody>
</table>

* with conservative (smallest) NME ratio $M_{0\nu}(^{136}\text{Xe})/M_{0\nu}(^{76}\text{Ge}) \approx 0.4$ from:

$T_{1/2}^{0\nu}$ claim from Mod. Phys. Lett. A 21 (2006) 1547 **not** considered because of the inconsistencies (efficiency factors not taken into account $\Rightarrow T_{1/2}^{0\nu}$ calculation incorrect)

Dušan Budjáš (TUM)
Physics goals of GERDA

\(^{76}\text{Ge} \) 0νββ decay \(T_{1/2} \) detection limit goals:

\[2 \cdot 10^{27} \text{ y} \star \]

\[2 \cdot 10^{26} \text{ y} \star \]

\[3 \cdot 10^{25} \text{ y} \star \]

Claim (Klapdor Kleingrothaus)

neutrino mass scale:

\[< 24 - 41 \text{ meV} \] \(\dagger \)

\[< 75 - 129 \text{ meV} \] \(\dagger \)

\(\dagger |m_{ee}| \) assuming \(|M_{0\nu}| = 2.99 - 8.99 \)

[Smolnikov & Grabmayr PRC 81 (2010) 028502]

Background requirement (in ~6 keV wide ROI):

\(^{76}\text{Ge} \) exposure:

state-of-art (HdM) 0.16 counts/(kg·y·keV) 72 kg·y (HdM)

GERDA Phase 1 <0.01 counts/(kg·y·keV) 21 kg·y (HdM+IGEX+new detectors)

GERDA Phase 2 <0.001 counts/(kg·y·keV) 100 kg·y (old + new detectors)

GERDA 3 & Majorana ‡ <0.0001 counts/(kg·y·keV) 1000 kg·y ‡

‡ GERDA-Majorana LoI: intention to merge for a 1 t experiment, not yet funded

Dušan Budjáš (TUM)
GERDA Phase II

- Increase mass: additional 30 enriched BEGe detectors (~ 20 kg)
- new front end readout in close proximity (2 cm) to detectors (noise reduction)
- radiopurity improvements (new cables, detector supports)
- PSA discrimination with the BEGe's
- Liquid argon veto instrumentation
Phase II tools: Modified Broad-Energy Ge detectors

GERDA Phase I: semi-coaxial Ge detector

GERDA Phase 2: modified BEGe detectors

n$^+$ electrode

(≤ mm thick)

(HV contact

p$^+$ electrode

(< μm thick)

read-out contact

BEGe advantages:

1) smaller p$^+$ electrode \Rightarrow less capacitance \Rightarrow **less noise** \Rightarrow better energy resolution

2) favourable internal electric field distribution \Rightarrow **powerful PSD capability**

- narrow peak in current signal
- signal shape independent of interaction position (same final trajectory)
- current amplitude depends only on energy of interaction (~95% of volume)

Dušan Budjaš (TUM)
[D. Budjáš et al., JINST 4:P10007,2009]
[M. Agostini et al., JINST 6:P03005, 2011]
Phase II tools: LAr instrumentation

PMT option (Ø500 mm)
- new big lock
- low-background PMTs on top & bottom
- copper shroud
- reflector foil coated with wavelength shifter
- approach validated in LArGe*
- PMTs available
- on-going testing in LAr
- mechanical mock-up in preparation

SiPM & scintillating fiber option
- scintillating fibers form cylinder around Ge array (light detection inside & outside)
- read-out by KETEK SiPMs
- fits in present lock (Ø250 mm)
- approach tested on small scale
- fibers and SiPMs available
- test set-up in preparation

* [M. Heisel, Dissertation, University of Heidelberg (2011)]

Dušan Budjáš (TUM)
Phase II tools: Background identification

- Identification and discrimination of events by PSD and LAr veto:
 - $\beta\beta$-decay: β range in Ge ~mm
 - γ-ray backgrounds: range in Ge ~cm

- Single-site event (SSE) vs multi-site event (MSE)
 - Single-site event: constant I_{max}/E
 - Multi-site event: reduced I_{max}/E

- Rejection of background events (e.g., 210Po α, 42K β, 210Po β, LAr veto signal)

Dušan Budjáš (TUM)
Performance studies: PSD and LAr veto in LArGe

Low background test facility GERDA-LArGe at LNGS:

BEGe LAr PMTs
reflecting foil with wavelength shifter

228\text{Th near} and 228\text{Th far}:

226\text{Ra near} and 60\text{Co near}:

Dušan Budjáš (TUM)

[M. Heisel, Dissertation, University of Heidelberg (2011)]
Performance studies: $^{241}\text{Am} \ p^+ \ \text{contact} \ \alpha \ \text{events}$

Table:

<table>
<thead>
<tr>
<th>surface</th>
<th>p+ contact</th>
<th>groove inner</th>
<th>groove bottom</th>
<th>groove outer</th>
</tr>
</thead>
<tbody>
<tr>
<td>survival fraction*</td>
<td>< 1.1%</td>
<td>< 12%</td>
<td>< 1.0%</td>
<td>< 1.2%</td>
</tr>
</tbody>
</table>

* 90% confidence-level upper limits
results limited by background in test setup; improved measurement analysis under way
Performance studies: surface 42K with BEGe in LArGe

MC cut set to 0.1% survival of β-like events and 20% survival of γ-like events. LAr veto with 100 keV threshold.

Expected survival at $Q_{\beta\beta}$:
- PSD only: 1.2×10^{-3}
- PSD+LAr veto: 0.8×10^{-3}

42K measurement in LArGe

Veto + “standard” PSD cut:
- $0\nu\beta\beta$ survival: 85%
- 42K survival at $Q_{\beta\beta}$ (2 events): $< 11 \times 10^{-3}$ (90% c.l.)
 (noise limiting PSD performance)

Veto + “strong” PSD cut:
- $0\nu\beta\beta$ survival: 71%
- 42K survival at $Q_{\beta\beta}$ (0 events): $< 5 \times 10^{-3}$ (90% c.l.)
 (limited by available statistics)
Production of ^{enr}Ge Phase II detectors

Transports in shielded container, storage underground

→ 5 working HP^{enr}Ge detectors mounted in GERDA
Phase II background summary: $Q_{\beta\beta}$

Background goal: $< 10^{-3}$ cts/(keV·kg·yr)

<table>
<thead>
<tr>
<th>background</th>
<th>without cuts [cts/(keV·kg·yr)]</th>
<th>PSD survival</th>
<th>LAr veto survival</th>
<th>after cuts [cts/(keV·kg·yr)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Tl</td>
<td>≤ 0.01</td>
<td>0.4</td>
<td>$4 \cdot 10^{-3}$</td>
<td>$\leq 1.6 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>214Bi</td>
<td>≤ 0.01</td>
<td>0.25</td>
<td>0.3</td>
<td>$\leq 7.5 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>60Co</td>
<td>$\leq 4 \cdot 10^{-4}$</td>
<td>0.01</td>
<td>0.02</td>
<td>$\leq 8 \cdot 10^{-8}$</td>
</tr>
<tr>
<td>60Co (in Ge)</td>
<td>$\leq 4 \cdot 10^{-4}$</td>
<td>0.01</td>
<td>0.02</td>
<td>$\leq 8 \cdot 10^{-8}$</td>
</tr>
<tr>
<td>68Ga (in Ge)</td>
<td>≤ 0.015</td>
<td>0.05</td>
<td>0.2</td>
<td>$\leq 3 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>226Ra (α on p+)</td>
<td>$\leq 1.5 \cdot 10^{-3}$</td>
<td>< 0.03</td>
<td>–</td>
<td>$< 3 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>42K (β on n+)</td>
<td>~ 0.2</td>
<td>< 0.05</td>
<td>0.68</td>
<td>$< 0.86 \cdot 10^{-3}$</td>
</tr>
</tbody>
</table>

PSD and veto combined acceptance of $0\nu\beta\beta$-decay events is $\sim 86\%$