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Introduction

The GERDA experiment is searching for Neutrinoless Double Beta Decay (0νββ) of 76Ge.
0νββ is a process beyond the Standard Model of particle physics, and its observation im-
plies that neutrinos are Majorana particles, which means that neutrino and antineutrino
are the same thing.
The first goal of GERDA is a check of the Klapdor’s claim: part of the Heidelberg-Moscow
collaboration, led by Klapdor-Kleingrothaus, claimed observation of 0νββ decay of 76Ge
with an half-life of (2.23+0.44

−0.31)× 1025 yr.
In this work I will describe what I have done in the GERDA collaboration during my
PhD. This work is divided into four parts.
The Part I is a general introduction about 0νββ. It contains two chapters. Chapter
1 describes the basics of Double Beta Decays, and the motivations to search for 0νββ.
Chapter 2 is a detailed analysis of the kinematics of Double Beta Decays, with a focus on
phase space calculations.
The Part II is an introduction about the experiments designed to search for 0νββ of 76Ge
isotope. In Chapter 3, common features are presented. The most important is that they
rely on Germanium detectors, enriched in the isotope of interest. For Double Beta De-
cays, the measured quantity is the sum of the kinetic energies of the emitted electrons.
Thus, for 0νββ, the expected signature is a peak at the Q-value of the decay (Qββ = 2039

keV), because all the released energy is carried away by the two electrons. A review of
the recent experiments is presented, with a focus on Heidelberg-Moscow. In Chapter 4, I
will introduce the GERDA experiment. The key feature of GERDA is that Germanium
detectors operate immersed in a Liquid Argon bath which is in a direct contact with them.
The Part III is about the Digital Signal Processing in GERDA. In Chapter 5 I will in-
troduce our Digital Signal Processing software (GELATIO). I will describe our approach
to the estimation of the signal parameters, with a special focus on the energy reconstruc-
tion. Chapter 6 is about an original approach which I have developed to reconstruct the
impulse response function of the electronic chain from calibration data. Modelization of
signal current, impulse response and FADC sampling is required. In Chapter 7, I have
applied this analysis to the energy reconstruction and to the current reconstruction of the
acquired signals. The obtained energy resolution and pulse shape discrimination perfor-
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mances have been analyzed.
The Part IV is an analysis of the first scientific data acquired. Chapter 8 describes the
database system, and its importance in the offline monitoring of the data. Chapter 9 is
a description of the present status of the experiment. At the moment, a small energy
window around Qββ is blinded: data are stored but not analyzed by the collaboration.
The idea is to provide a background model before the opening of this window. One of
the most controversial point in the Klapdor’s work is the background model. So, I cannot
provide in this work a check of the Klapdor’s claim. Probably, GERDA will unblind all
the data in the next months, and will present the results at the next TAUP conference, in
2013. Chapter 10 is about muons. GERDA is equipped by a muon veto system, to iden-
tify muon events which could induce a signal in the Germanium detectors. I have studied
its efficiency, and estimated the background due to unidentified muon events which cause
a signal in a single detector (so they are not cut by a multiplicity analysis) around Qββ.
In Chapter 11 I will focus on gamma rays. I have developed an algorithm to search for
peaks in the energy spectrum, without any information in input: a fully blind approach.
The GERDA concept seems good: only few photopeaks are clearly “visible”. A compara-
tion with the Heidelberg-Moscow gamma background is presented. The most intense line
which appears in our energy spectrum arises from the β decay chain 42Ar→42K→42Ca at
1524.7 keV. The observed intensity is higher than the prediction from the upper limits of
the 42Ar concentration in natural Argon in the previous literature. In Chapter 12 I will
describe the most important result obtained by GERDA up to now: a new estimate of
2νββ half life of 76Ge, which is compatible with the one from Heidelberg-Moscow. Both
are a bit higher compared to the analysis of the data of the previous experiments. To
obtain this result, a decomposition of the energy spectrum is needed.
Then, in the conclusions, I will summarize my results.
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Part I

Neutrinoless Double Beta Decay
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Chapter 1

Double Beta Decay

Introduction

The GERDA (GERmanium Detector Array) experiment is searching for the Neutrinoless
Double Beta Decay (0νββ) of Germanium 76 at LNGS. In this chapter I will introduce the
motivations, the physical problem and the possible consequences of the GERDA results.

1.1 Neutrino masses

One of the most important recent discoveries in particle physics is the observation of
neutrino oscillations in solar, atmospheric, reactor and accelerator neutrino experiments.
Neutrino oscillations prove that neutrinos have a non-zero rest mass. The Standard Model
(SM) describes neutrinos as zero-mass particles, then it is fundamental to study how it is
possible to extend the SM Lagrangian to implement neutrino masses in a natural way.

1.1.1 Dirac mass

Neutrino fields are described by the Dirac equation, because neutrinos are spin-1/2 par-
ticles. Considering, for simplicity, a single neutrino type, it is possible to write the Dirac
Lagrangian [1]

L = ψ(iγµ∂µ −mD)ψ

where ψ is a neutrino field, ψ = ψ†γ0 its adjoint, mD is the Dirac mass of the particle.
Thus the Dirac mass term is given by

LM = −mDψψ.

By using chirality projection operators

PL =
1

2

(
1− γ5

)
PR =

1

2

(
1 + γ5

)
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and defining
ψL = PLψ ψR = PRψ

it is possible to write
LM = −mD(ψLψR + ψRψL).

Then, the Dirac mass originates from a coupling of a neutrino left-handed spinor and a
neutrino right-handed spinor. According to the Standard Model, neutrinos are only left-
handed. It means that either the Dirac mass is zero or there is a right-handed neutrino
state, which is not covered within the SM that gives mass to the neutrino.

1.1.2 Majorana mass

It is possible to rewrite the Dirac Lagrangian using the two chiral components

L = (ψL + ψR)(i/∂ −mD)(ψL + ψR)

= ψL(i/∂ψL −mDψR) + ψR(i/∂ψR −mDψL).

Using Eulero-Lagrange equations it is possible to obtain two equations

i/∂ψL = mDψR

i/∂ψR = mDψL

which are coupled by the mass constant. If neutrinos were massless, the equations decou-
ple, and the second equation becomes less important, because a right-handed neutrino
has not been observed.
Majorana tried to describe massive neutrinos by using only a left-handed field. The idea
is that the right-handed field should be a function of the left-handed field. From the
second equation it is possible to obtain

i/∂CψR
T

= mDCψ
T

L.

This equation is identical to the starting one if we require (Majorana condition)

ψR = CψL
T

= ψCL .

Then, the Majorana field becomes

ψ = ψL + ψR = ψL + CψL
T

= ψL + ψCL .

The charge conjugate is

ψC = (ψL + ψCL )C = ψCL + ψL = ψ.
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Then a Majorana field is real! There is no difference between a Majorana neutrino and a
Majorana anti-neutrino.
Now that we are able to describe the field as a function of only the left-handed (or right-
handed) component, it is possible to add to the Lagrangian mass terms for left and right
neutrino chiral states, and write the most general Lagrangian mass term as

LM = −1

2
( ψC

L ψR )M
(
ψL

ψC
R

)
+ h.c.

where the mass matrix M is
M = ( mL mD

mD mR ) .

1.1.3 Seesaw mechanism

Now I will introduce a model which is able to explain why the left-handed neutrino is a
so light particle. From the mass matrix, it is possible to obtain the mass eigenvalues

det[M −mI] = 0 =⇒ m =
1

2

(
(mL +mR)±

√
(mL −mR)2 + 4m2

D

)
.

Choosing mL = 0 and mR >> mD (type 1 Seesaw) it is possible to obtain

m1 '
m2
D

mR

m2 ' mR

(
1 +

m2
D

m2
R

)
' mR.

It is possible to find the mass eigenstates

ψ1 ∼ (ψL + ψCL )− mD

m2
R

(ψR + ψCR) ψ2 ∼ (ψR + ψCR)− mD

m2
R

(ψL + ψCL ).

That is, ψ1 is mostly out familiar left-handed light Majorana neutrino, and ψ2 is mostly
the heavy sterile right-handed partner.
This is the famous Seesaw mechanism, and it provides an explanation for the question
of why the neutrino has a mass so much smaller than the other charged leptons. The
assumption mL = 0 is natural, since a Majorana mass term for the left-handed chiral
field νL brokes the symmetries and the renormalizability of the SM (it can, however, be
generated by new physics beyond the SM) [1].

1.1.4 The mass scale

It is important to emphatize that neutrino oscillations do not provide information about
the absolute mass scale. The Cosmic Microwave Background data of the WMAP ex-
periment, combined with supernovae data and data on galaxy clustering, can be used to
obtain an upper limit on the sum of neutrino masses. Depending on the model complexity
and on the input data one obtains∑

i

mi ≤ (0.3− 1.3) eV, 95% C.L.
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If the Dirac mass of the neutrino is 1 MeV and the mass of the heavy partner is 1015 eV,
it is possible to obtain from the Seesaw model a mass of the light neutrino in the meV
range, which is compatible with the cosmological upper limit.

1.2 Neutrino oscillations

Neutrino oscillations is a quantum-mechanical consequence of the neutrino mixing relation

νl[x] =
∑
j

Uijνi[x].

Here νi[x] is a neutrino field with definite mass mi, U is the unitary mixing matrix, νl[x] is
a neutrino field with definite flavour. Note that I am using the notation of Mathematica
[2]: round brackets only for algebra, squared bracket for functional dependences.
In the case of n neutrino flavours and n massive neutrinos, the n × n unitary neutrino
mixing matrix U can be parametrized by n(n− 1)/2 Euler angles and n(n+ 1)/2 phases.
If massive neutrinos are Dirac particles, only (n−1)(n−2)/2 phases are physical and can
be responsible for CP violation in the lepton sector. If massive neutrinos are Majorana
fermions, the neutrino mixing matrix contains n(n− 1)/2 CP violation phases.

1.2.1 The PMNS Mixing Matrix

All existing data on neutrino oscillations can be described by assuming 3-flavour neutrino
mixing. Thus, the 3× 3 unitary neutrino mixing matrix can be parametrized by 3 angles,
and, depending on the neutrino nature, by 1 or 3 CP violation phases. It is named
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
In the parametrization suggested by the Particle Data Group [3]

U =

 1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


 1 0 0

0 eiα21/2 0

0 0 eiα31/2



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 1 0 0

0 eiα21/2 0

0 0 eiα31/2


where cij = cos[θij], sij = sin[θij], the angle θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases.

1.2.2 The mass hierarchy

Neutrino oscillations depend on the differences of the squared masses of neutrino mass
eigenstates. In the case of 3-neutrino mixing there are only two independent mass squared
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differences. According to the Particle Data Group conventions, |∆m2
21| is the smallest one.

It is related to the solar neutrino oscillations. By fixing m1 < m2, so that ∆m2
� ≡ ∆m2

21

is positive, there are two possible mass spectra: the so called normal spectrum (NS)

m1 < m2 < m3

and the inverted spectrum (IS)
m3 < m1 < m2.

The largest mass square difference (∆m2
A ≡ m2

3 − m2
1 > 0 in the normal spectrum and

∆m2
A ≡ m2

3 −m2
2 < 0 in the inverted one) is related to atmospheric neutrino oscillations.

The effect of ∆m2
� on the atmospheric neutrino oscillations and of ∆m2

A on the solar
neutrino oscillations is subdominant. Recent values are [3]

∆m2
� = (7.58+0.22

−0.26)× 10−5 eV2

|∆m2
A| = (2.35+0.12

−0.09)× 10−3 eV2.

1.3 Double Beta Decay

The neutrino mass nature (Dirac or Majorana), the type of neutrino hierarchy and the
absolute scale of neutrino masses are open problems.
New information can be obtained by searching for the Neutrinoless Double Beta Decay.
In a nuclear Double Beta Decay, two neutrons decay into two protons and two electrons
as a single process. It is a second-order weak process.
According to the SM, this process is only possible with the emission of two anti-neutrinos,
to preserve the lepton number

2n→ 2p+ 2e− + 2νe.

In this work, I have considered only the emission of β− particles (electrons). A similar
process is the double β+ decay: two protons are converted into neutrons with the emission
of two positrons. β−β− candidates are different than β+β+ candidates. The GERDA
experiment is studying β−β− decay of 76Ge, then, from now, I will focus only on this
double beta mode.

1.3.1 Mass configuration of Double Beta Decay candidates

Whether a nucleus is stable or undergoes weak decay has to do with the dependence
of the atomic mass MA of the isotope (Z,A) on the nuclear charge Z (A is the mass
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Figure 1.1: Ground state mass parabola for isobaric nuclei, showing the necessary con-
figuration for double beta decay. Only the one (a) on the even-even (E-E) shell, whose
β-decay is blocked (b) is allowed to do double beta decay (c). The shift of the parabola
of the odd-odd (O-O) nuclei is due to the nuclear pairing energy.

number). The mass of an atomic nucleus is approximatively given by the semi-empirical
mass-formula (Bethe-Weizsacker)

m = Zmp +Nmn −
EB
c2

where mp is the proton mass, mn the neutron mass and EB is the binding energy

EB = aVA− aSA2/3 − aC
Z2

A1/3
− aA

(A− 2Z)2

A
+ aP

1

A1/2
.

The five terms are respectively the volume term, the surface term, the Coulomb term,
the asymmetry term and the pairing term. According to Rohlf [4], good values for these
parameters are aV = 15.75 MeV, aS = 17.8 MeV, aC = 0.711 MeV, aA = 23.7 MeV,
aP = ±11.18 MeV for odd N , odd Z or even N , even Z, respectively, while aP = 0 for
odd A. Thus, for odd A nuclei, typically only one isotope is stable; nuclei with charge
Z smaller than the stable nucleus decay by electron emission, while those with larger Z
decay by electron capture or positron emission or by both these modes simultaneously.
For even A the situation is different. Due to the pairing term, the even-even nuclei form a
parabola while the odd-odd nuclei form another one, at larger mass, as show in Fig. (1.1).
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Consequently, in a typical case there exist two even-even nuclei for a given A which are
stable against both electron and positron (or EC) decays. As these two nuclei usually do
not have the same mass, the heavier may decay into the lighter through a second-order
weak process in which the nuclear charge changes by two units: this is a Double Beta
Decay.
Thus, it is convenient (but not necessary! [5]) to investigate Double Beta Decay between
two even-even nuclei, in the cases when the single Beta Decay of the parent is forbidden.
In nature, this configuration have been found 35 times. All ground states of even-even
nuclei have spin and parity 0+ and thus transitions 0+ → 0+ are expected in all cases.
Occasionally, population of the low-lying excited states of the daughter nucleus is ener-
getically possible, giving rise to 0+ → 2+ transitions.
The mass difference between the initial and the final nucleus minus two times the electron
mass is the available kinetic energy for the particles (neglecting neutrino masses and the
nuclear recoil), which is called Qββ

Qββ = EI − EF − 2mec
2.

1.3.2 Double Beta Decay modes

The Standard Model predicts the two-neutrinos Double Beta Decay (2νββ)

(Z,A)→ (Z + 2, A) + 2e− + 2νe

which has been observed in a few isotopes. In Fig. 1.2, on the left, the Feynman diagram
for the process is drawn.

Isotope | Qbb | T_{1/2}^{2vbb}
| keV | y

48Ca | 4272.26 | (4.4+-0.6)*10^(19)
76Ge | 2039.06 | (1.5+-0.1)*10^(21)
82Se | 2995.12 | (9.2+-0.7)*10^(19)
96Zr | 3350.37 | (2.3+-0.2)*10^(19)

100Mo | 3034.40 | (7.1+-0.4)*10^(18)
116Cd | 2813.50 | (2.8+-0.2)*10^(19)
128Te | 865.87 | (1.9+-0.4)*10^(24)
130Te | 2526.97 | (6.8+-1.2)*10^(20)
136Xe | 2457.83 | (2.1+-0.2)*10^(21)
150Nd | 3371.38 | (8.2+-0.9)*10^(18)
238U | 1144.98 | (2.0+-0.6)*10^(21)

Table 1.1: 2νββ: observed decays, Qββ and half life [6].

Another kind of Double Beta Decay is the Neutrinoless Double Beta Decay

(Z,A)→ (Z + 2, A) + 2e−.
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2νββ 0νββ

Figure 1.2: Double Beta Decays. On the left, Double Beta Decay with the emission of
two antineutrinos. Lepton number is preserved. On the right, the Neutrinoless Double
Beta Decay. Lepton number is not preserved.

This decay is not predicted by the Standard Model. In this decay there is a violation of
the leptonic number by two units. There is only a claim for the observation of this decay,
and it comes from part of the Heidelberg-Moscow collaboration [7]. The first goal of the
GERDA experiment is to check this claim.
Other Double Beta Decay models have been proposed, e.g. with the emission of one or
more Majorons (light bosons with coupling to neutrinos)

(Z,A)→ (Z + 2, A) + 2e− + J 0νββJ

(Z,A)→ (Z + 2, A) + 2e− + 2J 0νββJJ .

The important point is that, independently on the mechanism, according to the Schechter-
Valle theorem [8], a Double Beta Decay without emission of neutrinos implies that the
neutrino is a Majorana particle. An intuitive way to focus this idea is to think 0νββ as
a two-steps process (Racah sequence)

(Z,A)→(Z + 1, A) + e− + νe

=(Z + 1, A) + e− + νe

(Z + 1, A) + e− + νe → (Z + 2, A) + 2e−.

The first and the last lines are standard weak processes (lepton numbers are conserved),
the central line is meaningful only if neutrino and the antineutrino are the same particle.
In the full sequence, the family lepton number is violated by two units. In Fig. 1.2, on
the right, the Feynman diagram for the simplest Neutrinoless Double Beta Decay model:
the process is mediated by an exchange of a virtual Majorana neutrino.
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1.3.3 Decay rates

As I will describe in the next chapter, approximations are possible to decouple the kine-
matic part (function of the output particle moments) from the nuclear part in the expres-
sions for the 2νββ and 0νββ decay rates, and write

1

T 2νββ
1/2

= G2ν |M2ν |2

1

T 0νββ
1/2

= G0ν |M0ν |2
(mββ

me

)2

.

T1/2 are the half lives of the processes, G the phase space volumes and M the nuclear
matrix elements. In the expression of T 0νββ

1/2 a fundamental quantity appears, divided by
the electron mass: the effective Majorana mass. It is a complex quantity defined by

mββ =
3∑

k=1

U2
ekmk

where U is the PMNS mixing matrix and mk are the mass eigenvalues. Searching for the
neutrinoless double beta decay is important to understand the neutrino nature, and to
estimate the effective Majorana mass. The measured quantity is the half life of the decay.
Phase spaces are computable (and I will compute them in the next chapter), nuclear
matrix elements are a bit dependent on the nuclear model. Then it is possible to estimate
the module of the effective Majorana mass.

1.4 Effective mass and neutrino hierarchy

To conclude, I will relate the effective Majorana mass to the parameters in the PMNS
matrix. From the definition

|mββ| = |m1U
2
e1 +m2U

2
e2 +m3U

2
e3| = |(m1c

2
12 +m2s

2
12 + eiα21)c2

13 +m3s
2
13e

i(α31−2δ)|.

The three neutrino masses can be expressed in terms of the two measured ∆m2
jk and, e.g.,

min[mj]. Thus, |mββ| is a function of the lightest neutrino mass, the Majorana and Dirac
CP violation phases and of the type of the neutrino mass spectrum.
In the case of normal spectrum we have [3]

|mββ| ' |
√

∆m2
21s

2
12c

2
13 +

√
∆m2

31s
2
13e

i(α31−α21−2δ)|.

In the case of inverted spectrum

|mββ| '
√

∆m2
23 +m2

3

(
1− sin2[2θ12] sin2

[α21

2

])1/2

.
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Figure 1.3: Value of the effective Majorana mass |mββ| as a function of the lightest
neutrino mass in the normal (NS, with mmin = m1) and inverted (IS, with mmin = m3)
neutrino mass spectra after the Daya Bay [9] measurement of θ13 [10] [11].

The predicted 0νββ effective Majorana mass as a function of the lightest neutrino mass
is presented in Fig. 1.3 From the figure, it is clear that an “overlap” of both situations is
possible: it is the “quasi degenerate” spectrum

m1 ' m2 ' m3.

1.5 Summary

To summarize, the significance of studying 0νββ decay lies in the fact that it directly
addresses the following questions related to physics beyond the Standard Model, namely

1. origin of neutrino mass (Dirac vs. Majorana)

2. absolute scale of neutrino mass

3. type of hierarchy

4. CP violation in the lepton sector.
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The possibility of the existence of heavy neutrinos also gave rise to another intriguing
idea called leptogenesis. The idea is that these very heavy neutrinos, which are Majorana
particles, decayed as the universe cooled into lighter left-handed neutrinos or right-handed
antineutrinos, along with Higgs bosons, which themselves decayed to quarks. If the prob-
ability of one of these heavy neutrinos to decay to a left-handed neutrino was slightly
different than the probability to decay to a right-handed anti-neutrino, then there would
be a greater probability to create quarks than anti-quarks. This could hense explain the
fact that the Universe has an excess of matter with respect to anti-matter.
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Chapter 2

Phase space calculations

Introduction

I am going to discuss 2νββ and 0νββ from a kinematics point of view. A discussion of the
nuclear physics part (the matrix elements) is by far outside the scope of this work, and it
is important especially in a second step of the analysis: after the possible measurement of
0νββ half life. Understanding the kinematics is very important in the context of Monte
Carlo simulations. To simulate a decay, the event generator has to sample energy and
momentum of the particles according to the appropriate distribution. Then, to understand
the response of the detector, the decaying nucleus is placed in a GEANT4 [1] model of
the experiment so that it is possible to simulate the interactions of the decay products
with matter.

2.1 2νββ

I will start discussing the 2νββ decay. Fermi-type transition contributes only through
mixing of high-lying 0+ isobaric analogue states, so that it is generally very small; it is
sufficient to retain Gamow-Teller matrix elements. The intermediate states are, therefore,
limited to 1+. The final state can be 0+, 1+, 2+. The decay rate formula for 1+ and 2+

final states includes a factor (KN − LN)2

KN =
1
2
(EI − EF ) + EN − EI
ε1 + εν1 + EN − EI

+
1
2
(EI − EF ) + EN − EI
ε2 + εν2 + EN − EI

(2.1)

LN =
1
2
(EI − EF ) + EN − EI
ε1 + εν2 + EN − EI

+
1
2
(EI − EF ) + EN − EI
ε2 + εν1 + EN − EI

(2.2)

(where EI , EF are the nuclear initial and final energy, EN is the nuclear energy in a
possible virtual intermediate state, ε1, ε2 are the electron energies, εν1, εν2 the neutrino
energies) which strongly suppresses the process (typically << 1/100), because in a first
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approximation, as we will see later, KN ' LN [12].
Then we can focus only to 0+ → 0+ transitions between ground states. Note that a
transition to a 0+ excited final states is possible, but, according to [2], its phase space
is really small compared to a transition between ground states. Then, for the case that
concerns us, the differential rate for 0+

gs → 0+
gs 2νββ decay is given by [2]

dΓ2ν =
∑
N

(a0 + a1 cos[θ12])g4
A

(GW cos[θW ])4

64π7~
ε2ν1ε

2
ν2(p1c)(p2c)ε1ε2dεν1dε1dε2d(cos[θ12])

εν2 = Qββ + 2mec
2 − ε1 − ε2 − εν1

GW ≡
GF

(~c)3
= 1.166364× 10−5 GeV−2

where p1, p2 are the electron momenta and θ12 the angle between the two emitted electrons.
GW is the Fermi coupling constant, θW is weak mixing angle, gA is the axial-vector weak
coupling constant.
The quantities a0 and a1 describe the intermediate state in the nuclear model. Clearly, one
needs to sum over all the possible intermediate states. Integrating over θ12, a1 disappears
and the result is

Γ2ν =
∑
N

∫
2a0g

4
A

(GW cos[θW ])4

64π7~
ε2ν1ε

2
ν2(p1c)(p2c)ε1ε2dεν1dε1dε2

a0 =
1

4
F [ε1, ε2]|M0

2ν,N |2
(

(KN + LN)2 +
1

3
(KN − LN)2

)
=

1

3
F [ε1, ε2]|M0

2ν,N |2(K2
N + L2

N +KNLN).

F [ε1, ε2] describes the Coulomb interaction of the escaping electrons with the nucleus,
which I will discuss in the next section. |M0

2ν,N | is the matrix element

|M0
2ν,N | =< 0+

F ||τ
+~σ||1+

N >< 1+
N ||τ

+~σ||0+
I >

where τ+ is the isospin raising operator which changes a neutron to a proton and ~σ are
the spin matrices to alter the total angular momentum. Putting all together

Γ2ν =
∑
N

∫
F [ε1, ε2]g4

A|M0
2ν,N |2(mec

2)2K
2
N + L2

N +KNLN
12

×

× 4

15

(GW cos[θW ])4(mec
2)9

64π7~
30
ε2ν1ε

2
ν2dε1(p1c)(p2c)ε1ε2dεν1dε2

(mec2)11

where I have rearranged the numerical coefficients in a convenient way. Thus the expres-
sion for the half life of the process is(

T 2νββ
1/2

)−1

=
∑
N

F [ε1, ε2]g4
A|M0

2ν,N |2(mec
2)2K

2
N + L2

N +KNLN
12

×

× 4

15

(GW cos[θW ])4(mec
2)9

64π7~ ln[2]
30
ε2ν1ε

2
ν2dεν1(p1c)(p2c)ε1ε2dε1dε2

(mec2)11
. (2.3)
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It is important to note that in the last equation the nuclear part is not decoupled by the
kinematic part. Additional approximations are needed to do that, and I will describe the
solutions proposed by Suhonen [3] and by Iachello [2].

2.1.1 The Coulomb correction

The phase space is affected by the Coulomb attraction which the positive nucleus puts
on the electrons. The net effect is to alter the energy distribution of the electrons. The
standard way to approach the problem is to include into the phase factor integrals the
Fermi correction function [4]. For a single electron which is escaping the nucleus

F [ε] =
2(1 + S)

(Γ[2S + 1])2

(
2
pρ

~

)2S−2

exp[πη]|Γ[S + iη]|2 (2.4)

where the coefficients S and η are defined as

S =
√

1− α2Z2
f η =

ε

pc
αZf =

c

v
αZf ρ = 1.2 · A1/3 · 10−15 m

ρ is the nuclear radius, (Zi, Zf ) are the atomic number of the (initial, final) nucleus
Zf = Zi + 2, ε and p are the total energy and the momentum of the electron.
The Fermi correction function is a function of energy only, then the global correction is a
product of the contributions of each electron. The number of free electrons is two then

F [ε1, ε2] = F [ε1]F [ε2].

For small nuclei αZf << 1 then S ' 1 and (2.4) can be approximated as

F [ε] ' 4

(Γ[2S + 1])2

(
2
pρ

~

)2S−2

exp[πη]|Γ[S + iη]|2. (2.5)

Note that the energy dependence is not changed. This expression is quoted in [3].
There is a wide set of approximations for the Fermi correction function, because to com-
pute the complex Γ is not a really trivial task. Now, dedicated algorithms exist, e.g. the
complex Lanczos method described in [5] and implemented in [6].
For S ' 1 it is possible to going further. According to Mott and Massey [7] [8]:

F [ε] ' 2πη

1− exp[−2πη]
.

With this multiplying factor the electron distribution is found to be proportional to p
rather than to p2 for energies in the range 2πη � 1 [8].
From the previous expression it is easy to obtain a non-relativistic approximation for
S ' 1: when η →∞, which means p→ 0, it is possible to write

F [ε] ' 2πη ∝ ε

p
. (2.6)
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This expression (Primakoff-Rosen approximation) allows to solve a few integrals in an
analytical way. Despite these approximations could be useful, there is not a deep reason
to use them in a numerical computation. In the event generator of choice in the GERDA
collaboration (Decay0 [9]), the expression for the Fermi function is the most accurate
(2.4).

2.1.2 Nuclear and kinematics decoupling

Now I will discuss how it is possible to decouple the nuclear physics part (nuclear matrix
element) from the kinematic part (phase factor) in the expression (2.3). I will discuss two
approaches, the approach of Suhonen [3] and the approach of Iachello [2].
In the first approach, the coefficients KN and LN are constant. It is clear that ε1 + εν1 +

ε2 + εν2 = EI − EF , then, in an average sense

ε1 + εν1 ' ε2 + εν2 '
1

2
(EI − EF ) =⇒ KN ' 2

ε1 + εν2 ' ε2 + εν1 '
1

2
(EI − EF ) =⇒ LN ' 2

Now it is possible to integrate over the free neutrino energy to obtain(
T 2νββ
1/2

)−1

=

∫ ∑
N

F [ε1, ε2]g
4
A|M0

2ν,N |2
(GW cos[θW ])4(mec

2)9

240π7~ ln[2]
(Qββ + 2mec

2 − ε1 − ε2)5(p1c)(p2c)ε1ε2dε1dε2
(mec2)11

Defining

G0
2ν ≡

∫
F [ε1, ε2]

(Qββ + 2mec
2 − e1 − e2)5(p1c)(p2c)ε1ε2dε1dε2

(mec2)11
(2.7)

GS
2ν ≡

(GW cos[θW ])4(mec
2)9

240π7~ ln[2]
G0

2ν =
3.8× 10−24

yr
G0

2ν (2.8)

|M2ν |2 ≡
∑
N

g4
A|(mec

2)M0
2ν,N |2 (2.9)

it is possible to write (
T 2νββ

1/2

)−1

= GS
2ν |M2ν |2

where nuclear physics and kinematics are decoupled.
The second approach relies on a “closure approximation”. The idea is to average the
energy of the intermediate state

EN →< EN >

in the expressions of KN (2.1) and LN (2.2). In this approximation these coefficients are
not dependent on a specific nuclear intermediate state KN ' K,LN ' L, but preserve
the dependence on the energy of the particles. Thus
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GI2ν =

∫
F [ε1, ε2]

K2
N + L2

N +KNLN
12

4

15

(GW cos[θW ])4(mec
2)9

64π7~ ln[2]
30
ε2ν1ε

2
ν2dεν1(p1c)(p2c)ε1ε2dε1dε2

(mec2)11

=
2

3 ln[2]

∫
F [ε1, ε2](K

2
N + L2

N +KNLN )
(GW cos[θW ])4(mec

2)9

64π7~
ε2ν1ε

2
ν2dεν1(p1c)(p2c)ε1ε2dε1dε2

(mec2)11

=
(GW cos[θW ])4(mec

2)9

240π7~ ln[2]

∫
F [ε1, ε2]

K2
N + L2

N +KNLN
12

30
ε2ν1ε

2
ν2dεν1(p1c)(p2c)ε1ε2dε1dε2

(mec2)11
.

The second important difference between the two approaches stays in the Coulomb cor-
rection. In the first approach, F [ε1, ε2] = F [ε1]F [ε2] with the expression (2.5) for the
Fermi correction function. In the second approach a more refined analysis has been done,
which keeps into account of the interaction between the two electrons, then the global
correction cannot be factorized.

2.1.3 Events generation

For an event generator, it is important only the energy-momentum dependence in the
phase space density. A multiplicative factor dependent only on (Z,A) is not important.
Then, from the point of view of the event generator, in the case of 2νββ decay

p[ε1, ε2] ∝ F [ε1]p1ε1F [ε2]p2ε2(Qββ + 2mec
2 − ε1 − ε2)5 (2.10)

F [ε] ∝ p2S−2 exp[πη]|Γ[S + iη]|2

is enough. A non obvious point is: what is the best way to sample ε1, ε2 from the above
probability distribution? In the Decay0 approach, it is a two steps process. In the first
one, ε1 is sampled from

p[ε1] =

∫
p[ε1, ε2]dε2 ∝

∫
F [ε1]p1ε1F [ε2]p2ε2(Qββ + 2mec

2 − ε1 − ε2)5dε2.

In the second one, ε2 is sampled from

p[ε2|ε1] =
p[ε1, ε2]

p[ε1]
∝ F [ε2]p2ε2(Qββ + 2mec

2 − ε1 − ε2)5.

The point is that there is not an analytical expression for p[ε1], then it is necessary to
construct a binned version of it, to avoid an evaluation of the integral at each sampling.
On the contrary, p[ε2] is given. If binning is not very fine, it is possible to note a very
small difference in the generated distribution of ε1 compared to the generated distribution
of ε2.
Despite an higher memory usage, I prefer to compute a two-dimensional fine binned
version of p[ε1, ε2] (2.10) in the first step, and then extract simultaneously ε1 and ε2 by
choosing a bin according to the two-dimensional probability density.
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2.1.4 Phase space calculation results

To understand if the expressions in the event generator are correct, I have implemented
them in a new software that is not only able to sample p[ε1, ε2] in the way that I have
suggested, but also realizes a full phase space calculation, to compare a single numerical
value with the present literature.
To do that, it is clear that a multiplicative factor dependent only on (Z,A) is also impor-
tant (and it is important to pay attention to the different definitions of the phase space
integral).
I was able to reproduce the result in [3] and [10] in a perfect way. In my work, I used
updated values for Qββ of many nuclei, taken from the Nuclear Data Center in the
Brookhaven laboratories http://www.nndc.bnl.gov/. Major differences compared to
previous calculation are visible in 136Xe (my Qββ value is 2458 keV while in [3] is 2478
keV) and 128Te, 130Te. Note that a difference of few keV is clearly visible, because there is
a contribution of Q11

ββ in the 2νββ phase factor. When the Qββ estimate was nearly stable
in time (e.g. 76Ge, 150Nd just to quote two examples with a very different mass number)
there is a perfect compatibility of the results (Tab. 2.1). According to Iachello [2], the
standard way to manage the Coulomb correction overestimates the phase space volumes.

Isotope | G_{2vbb}
| My-best | Iachello | My-appr | Suhonen | Boehm

48Ca | 1.59e-17 | 1.55e-17 | 1.61e-17 | 1.62e-17 | 1.60e-17
76Ge | 5.11e-20 | 4.82e-20 | 5.28e-20 | 5.26e-20 | 5.28e-20
82Se | 1.70e-18 | 1.60e-18 | 1.76e-18 | 1.74e-18 | 1.76e-18
96Zr | 7.41e-18 | 6.82e-18 | 7.78e-18 | 7.28e-18 | 7.79e-18

100Mo | 3.62e-18 | 3.31e-18 | 3.82e-18 | 3.60e-18 | 3.82e-18
116Cd | 3.09e-18 | 2.76e-18 | 3.31e-18 | 2.99e-18 | 3.24e-18
128Te | 3.05e-22 | 2.69e-22 | 3.31e-22 | 3.44e-22 | 3.43e-22
130Te | 1.74e-18 | 1.53e-18 | 1.89e-18 | 1.94e-18 | 1.94e-18
136Xe | 1.64e-18 | 1.43e-18 | 1.79e-18 | 1.98e-18 | 1.95e-18
150Nd | 4.31e-17 | 3.64e-17 | 4.82e-17 | 4.85e-17 | 4.81e-17
238U | 2.16e-19 | 1.46e-20 | 2.90e-19 | |

Table 2.1: 2νββ results of my phase space calculation compared to the published results
in [2], [3], [10]. In “My-best” I have used the expression (2.4) for the Fermi correction
function, while in “My-appr” I have used the expression (2.5). To obtain the values in the
paper of Suhonen, multiply by g4

A. To obtain the values in the book of Boehm, multiply
by g4

A, then take the inverse.

2.1.5 Effective nuclear matrix element

From the phase space volume and the experimental half life, it is interesting to estimate
the “effective” nuclear matrix element (i.e. experimental |M2ν | value extracted from the
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Figure 2.1: 2νββ: on the left: the phase space volume; on the right: effective nuclear
matrix element.

measured T 2νββ
1/2 and calculated phase space factor). In principle, all the nuclear models

/ algorithms to estimate the nuclear matrix elements, should provide these results in the
2νββ case. You can see my results in Tab. 2.2, and a visual plot in Fig. 2.1. Note that
despite the different approximations in the phase space volume, concerning the nuclear
matrix elements the results are very similar.

Isotope | |M_{2vbb}|
| My-best | Iachello

48Ca | 0.038+-0.003 | 0.038+-0.003
76Ge | 0.114+-0.004 | 0.118+-0.004
82Se | 0.080+-0.003 | 0.083+-0.003
96Zr | 0.077+-0.003 | 0.080+-0.003

100Mo | 0.197+-0.006 | 0.206+-0.006
116Cd | 0.108+-0.004 | 0.114+-0.004
128Te | 0.042+-0.004 | 0.044+-0.005
130Te | 0.029+-0.003 | 0.031+-0.003
136Xe | 0.017+-0.001 | 0.018+-0.001
150Nd | 0.053+-0.003 | 0.058+-0.003
238U | 0.048+-0.007 | 0.185+-0.028

Table 2.2: 2νββ: results of my effective nuclear matrix element estimates compared to
the published results in [2].

2.1.6 Kinetic energy distributions of the electrons

In many experiments, including GERDA, the measured quantity in a double beta decay
is the sum of the kinetic energy of the electrons. Then, it is important to study this
distribution. In the Primakoff-Rosen approximation of the Fermi correction function, it
is possible to arrange the phase space integral to obtain an analytical expression.
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Starting from (2.8), we can write

G =

∫
F [ε1]p1ε1F [ε2]p2ε2(Qββ + 2mec

2 − ε1 − ε2)5dε1dε2
(mec2)11

.

In the Primakoff-Rosen approximation (2.6)

G ∝
∫
ε21ε

2
2(Qββ + 2mec

2 − ε1 − ε2)5dε1dε2
(mec2)11

.

We can work in units of mec
2 and write

G ∝
∫
ε21ε

2
2(Qββ + 2− ε1 − ε2)5dε1dε2.

Moving to the kinetic energies

ek1 = ε1 − 1 ek2 = ε2 − 1

we can write
G ∝

∫
(ek1 + 1)2(ek2 + 1)2(Qββ − ek1 − ek2)5dek1dek2. (2.11)

Single electron spectrum

By integrating the previous expression (2.11) in 0 < ek2 < Qββ − ek1 it is possible to
obtain the single electron spectrum

dG

dek1

∝ (ek1 + 1)2(Qββ − ek1)6
(

(Qββ − ek1)2 + 8(Qββ − ek1) + 28
)

in perfect agreement with Boehm [10].

Sum electron spectrum

Changing the variables in the expression (2.11)

eksum = ek1 + ek2 ekdiff = ek1 − ek2

so that
ek1 =

1

2
(eksum + ekdiff ) ek2 =

1

2
(eksum − ekdiff )

to obtain

G ∝
∫ (1

2
(eksum + ekdiff ) + 1

)2(1

2
(eksum − ekdiff ) + 1

)2

(Qββ − eksum)5deksumdekdiff .

By integrating the previous expresion in 0 < ekdiff < eksum it is possible to obtain the
sum electrum spectrum

G ∝
∫
eksum(Qββ − eksum)5

(
e4
ksum + 10e3

ksum + 40e2
ksum + 60eksum + 30

)
deksum. (2.12)
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Note that, doing the integral

G ∝
(
Q11
ββ + 22Q10

ββ + 220Q9
ββ + 990Q8

ββ + 1980Q7
ββ

)
the final distribution is

dG

deksum
∝ eksum(Qββ − eksum)5

(
e4
ksum + 10e3

ksum + 40e2
ksum + 60eksum + 30

)
(2.13)

again, in perfect agreement with Boehm [10]. Note that, in this approximation, the shape
of the distribution is independent by A and Z!

Sum electron spectrum results

I have fitted the precise sum of electron kinetic energies distribution for 76Ge 2νββ decay
using a parametrization of a form similar to the non relativistic version (2.13)

dG′

deksum
∝ eksum(Qββ − eksum)5(e4

ksum + c3e
3
ksum + c2e

2
ksum + c1eksum + c0).

It is a 4-parameter formula. I have done a maximum likelihood binned fit, using 16384
bins for axis (total memory usage: 2 Gb) and simulating 109 events. In Tab. 2.3, my
coefficients compared to the non-relativistic approximation. In Fig. 2.2, on the left, it
is possible to find the plot of the original distribution (in blue) and of my fit (in green).
Both the non-relativistic (NR) approximation and my fit locate the maximum at 672.3

keV.

NR | This work
c3 = 10 | 7.731 +- 2.090
c2 = 40 | 38.305 +- 5.602
c1 = 60 | 47.511 +- 8.417
c0 = 30 | 21.145 +- 3.302

Table 2.3: 76Ge 2νββ: sum electron spectrum. Best fit using a 4-parameters model. Qββ

and eksum are adimensional, in units of mec
2. Errors from the fit algorithm.
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Figure 2.2: 76Ge 2νββ: on the left, sum of the kinetic energies of the electrons (in blue:
Monte Carlo simulations, the marker has been enlarged; in green: best fit); on the right:
kinetic energy distribution for a single electron.

2.2 0νββ

The most important point to discuss is the relation between the 0νββ and the neutrino
nature. It is possible to show [11] that the virtual neutrino propagator is proportional to
the effective mass of the electron neutrino, which is a complex scalar quantity defined by

mββ ≡
3∑

k=1

U2
ekmk

where U is the PMNS mixing matrix and mk are the mass eigenvalues. The propagator
enters in the amplitude, then the decay rate is proportional to |m2

ββ|. The key idea is
that, by studing this process, it is possible to measure its half life, which is related to the
matrix element, and then it is possible to estimate |mββ|.
Concerning kinematics, it is clearly more simple compared to the 2νββ case. That is
because there are only two decay products: the two electrons. Moreover, a closure ap-
proximation is commonly used to evaluate the matrix element. For 0νββ decay this is
supposed to be a good approximation because the neutrino energy in the virtual state
is much greater than the typical energy of the relevant nuclear levels [12]. Thus, the
differential rate for the 0+

gs → 0+
gs 0νββ decay is given by [2]

dΓ0ν = (a0 + a1 cos[θ12])g4
A

(GW cos[θW ])4(mec
2)9

16π5~
(p1c)(p2c)ε1ε2dε1

(mec2)5
d(cos[θ12])

where
ε2 = Qββ + 2mec

2 − ε1.

Then the integral rate is

Γ0ν =

∫
2a0g

4
A2

(GW cos[θW ])4(mec
2)9

32π5~
(p1c)(p2c)ε1ε2dε1

(mec2)5
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a0 = F [e1, e2]

∣∣∣∣mββ

me

∣∣∣∣2 |M0
0ν |2

(mec2)2
.

An expression of the nuclear matrix element is given in [12].
Merging everything

Γ0ν =

∫
2F [e1, e2]

∣∣∣∣mββ

me

∣∣∣∣2 g4
A

|M0
0ν |2

(mec2)2

(mecR

~

)2( ~
mecR

)2

×

× 2
(GW cos[θW ])4(mec

2)9

32π5~
(p1c)(p2c)ε1ε2dε1

(mec2)5
.

Defining

G0
0ν =

∫
F [e1, e2]

(p1c)(p2c)ε1ε2dε1
(mec2)5

G0ν =
( ~
mecR

)2 (GW cos[θW ])4(mec
2)9

32π5~ ln[2]
G0

0ν =
( ~
mecR

)2 2.8× 10−22

yr
G0

0ν

|M0ν |2 = 4g4
A

|M0
0ν |2

(mec2)2

(mecR

~

)2

it is possible to write for the half life(
T 0νββ

1/2

)−1

= G0ν

∣∣∣∣mββ

me

∣∣∣∣2 |M0ν |2.

2.2.1 Phase space calculation results

As I have done for the 2νββ decay, I use my software for the estimation of the phase
space volume (Fig. 2.3), and I have compared my results with [2], [3], [10] (Tab. 2.4).
Results agree in a perfect way. Note that the differences due to a different value of Qββ

are minor, due to the fact that 2νββ is sensitive to Q11
ββ, while 0νββ only to Q5

ββ. The
effect of the improved correction in the Iachello approach is more visible for 0νββ than
for 2νββ, e.g.

G2νββ,my

G2νββ,I

[150Nd] = 1.184
G0νββ,my

G0νββ,I

[150Nd] = 1.254.
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Figure 2.3: 0νββ: the phase space volume.

| My-best | Iachello | Suhonen | My-appr | Boehm
48Ca | 2.61e-14 | 2.48e-14 | 2.60e-14 | 2.64e-14 | 2.58e-14
76Ge | 2.53e-15 | 2.36e-15 | 2.55e-15 | 2.62e-15 | 2.58e-15
82Se | 1.11e-14 | 1.02e-14 | 1.10e-14 | 1.15e-14 | 1.14e-14
96Zr | 2.31e-14 | 2.06e-14 | 2.31e-14 | 2.42e-14 | 2.37e-14

100Mo | 1.79e-14 | 1.59e-14 | 1.85e-14 | 1.89e-14 | 1.85e-14
116Cd | 1.93e-14 | 1.67e-14 | 1.89e-14 | 2.07e-14 | 2.00e-14
128Te | 6.69e-16 | 5.88e-16 | 6.71e-16 | 7.27e-16 | 7.38e-16
130Te | 1.66e-14 | 1.42e-14 | 1.67e-14 | 1.81e-14 | 1.79e-14
136Xe | 1.72e-14 | 1.46e-14 | 1.77e-14 | 1.88e-14 | 1.91e-14
150Nd | 7.90e-14 | 6.30e-14 | 7.85e-14 | 8.83e-14 | 8.45e-14
238U | 5.21e-14 | 3.36e-14 | | 6.98e-14 |

Table 2.4: 0νββ: results of my phase space calculation compared to the published results
in [2], [3], [10]. In “My-best” I have used the expression (2.4) for the Fermi correction
function, while in “My-appr” I have used the expression (2.5). To obtain the values in the
paper of Suhonen, multiply by g4

A. To obtain the values in the book of Boehm, multiply
by g4

A, then take the inverse. It seems that Suhonen used the expression (2.5) for the
Fermi Correction function to evaluate 2νββ phase spaces and the expression (2.4) in the
0νββ case.

2.2.2 Single electron spectrum

In the same way as I did for 2νββ, it is possible to obtain the energy spectrum for a single
electron

G0ν ∝
∫
F [ε1]p1ε1F [ε2]p2ε2dε1.
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Figure 2.4: 76Ge 0νββ: on the left, sum of the kinetic energies of the electrons, which is
equal to Qββ; on the right: kinetic energy distribution for a single electron.

In the Primakoff-Rosen approximation

G0ν ∝
∫
ε21ε

2
2dε1.

Moving to normalized units and kinetic energies

G0ν ∝
∫

(e1k + 1)2(e2k + 1)2de1k

∝
∫

(e1k + 1)2(Qββ − e1k + 1)2de1k.

Note that, doing the integral [12]

G0ν ∝
(
Q5
ββ + 10Q4

ββ + 40Q3
ββ + 60Q2

ββ + 30Qββ

)
.

For the single electron spectrum I have obtained [10]

dG0ν

de1k

= (e1k + 1)2(Qββ − e1k + 1)2.

A plot of this distribution is presented in Fig. 2.4.

2.2.3 Sum electron spectrum

In the 0νββ only two electrons are emitted. Then, because of the energy conservation

ek1 + ek2 = Qββ.

This is the key signature of the 0νββ. If the detector is able to measure the energy of the
electrons, the signature of 0νββ is very peculiar: a peak at the expected Qββ energy.
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2.3 Summary

A study of the nuclear phase factors involved in 2νββ and 0νββ decays have been done.
My results are in agreement with [2] [3] [10].
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Chapter 3

Features of 76Ge experiments

Introduction

In this chapter I will discuss the experiments to the search for the Neutrinoless Dou-
ble Beta Decay of 76Ge. They present common features. The most important is that
they rely on the technology of Germanium semiconductor detectors, thus an introduction
about the physics of these objects is needed. Then a quick summary of the recent pre-
vious experiments, with a special focus to the claim for the observation by a part of the
Heidelberg-Moscow collaboration.

3.1 Physics of Germanium detectors

Germanium detectors are semiconductor diodes having a p-i-n structure. A p-i-n diode is
a diode with a wide, lightly doped “near” intrinsic semiconductor region between heavily
doped p-type and n-type semiconductor regions. Under the action of an appropriate
reverse bias voltage, free (mobile) charges in the conduction band are drifted to the
electrodes. A part of the detector is said to be "depleted" when all mobile charges are
swept out from it, thus leaving a net electric charge from the valence band.
When a particle interacts with the material within the depleted volume of a detector,
charge carriers (holes and electrons) are produced and are swept by the electric field to
the p+ and n+ electrodes. During the motion of the carriers, a charge is induced at the
contacts. This charge, which is proportional to the energy deposited in the detector by the
interacting particle, is converted into a voltage signal by a charge sensitive preamplifier.
The size of the depleted region is proportional to the high voltage applied, then it is
important to be sure that the detector is fully depleted to have optimal charge collection
performances.
Because germanium has relatively low band gap (2.96 eV at 77 K, Tab. 3.1), these
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detectors must be cooled in order to reduce the thermal generation of charge carriers
(thus reverse leakage current) to an acceptable level. Otherwise, the leakage current
could worse the energy resolution of the detectors.

Electron mobility 3.6× 104 cm2

V·s

Hole mobility 4.2× 104 cm2

V·s

Energy per electron-hole pair 2.96 eV
Fano factor 0.12

Table 3.1: Germanium properties at 77 K.

3.1.1 Particles interactions

Interaction of electrons and positrons

Electrons can lose kinetic energy by collisional effects (ionization and excitation) and
bremsstrahlung. Collisional effects are described by the Bethe formula

−dE
dx

=
4π

mec2

nz2

β2

( e2

4πε0

)2

ln
[ 2mec

2β2

I(1− β2)
− β2

]
(3.1)

where v is the velocity of the particle, β = v/c, z is the charge of the particle, x is the
distance travelled by the particle, n is the electron density of the material, I is the mean
excitation potential. Collisional losses are the dominant mechanism for energies below 10

MeV, as shown in Fig. 3.1.

Figure 3.1: Electrons in germanium: on the left the contribution of different mechanism
to the energy loss, as a function of the electron kinetic energy; on the right: the range as
a function of the kinetic energy. Data from [1].

Interaction of gamma rays

When a gamma ray enters the detector, there are three interaction mechanisms which are
dominant: photoelectric absorption, Compton scattering and pair production.
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The photoelectric absorbtion is an interaction in which the incident gamma-ray disap-
pears. In its place, a photoelectron is produced from one of the electron shells of the
absorber atom with a kinetic energy given by the incident photon energy hν minus the
binding energy of the electron in its original shell Eb. Then the electron energy is

Ee− = hν − Eb.

The result of a Compton scattering interaction is the creation of a recoil electron and
scattered gamma-ray photon, with the splitting of energy between the two. In the ap-
proximation that electrons are initially unbound and at rest, the energy of the scattered
gamma ray is

hν ′ =
hν

1 + (hν/mec2)(1− cos[θ])

and then the kinetic energy of the electron is

Ee− = hν − hν ′ = hν
( (hν/(mec

2))(1− cos[θ])

(1 + ((hν/(mec2))(1− cos[θ]))

)
.

It is interesting to study the two limiting cases

θ ' 0→ Ee− ' 0

θ ' π → Ee− ' hν
( 2hν/(mec

2)

(1 + 2hν/(mec2))

)
.

Thus, the electron energy has a maximum below hν.
The last mechanism is the pair production. The process occurs in the intense electric field
near the nuclei and corresponds to the creation of an electron-positron pair at the point
of complete disappearance of the incident gamma-ray. Because an energy of 2mec

2 is
required to create the electron-positron pair, a minimum gamma-ray energy of 1.02 MeV
is required to make the process energetically possible. If the incident gamma-ray energy
exceeds this value, the excess energy appears in the form of kinetic energy shared by the
electron-positron pair.
After a few millimeters, the positron annihilates with an electron of the medium, and the
process releases two 511 keV photons, which may escape the detector. Thus, for a given
photon energy, the energy response of the detector could present the so-called single and
double escape peaks, as it is possible to see in Fig. 3.2.
The contribution to the total cross section of the different mechanisms for different gamma
energies is shown in Fig. 3.3.
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Figure 3.2: On the left: example of gamma ray interactions in the detector. On the right:
detector response spectrum for a gamma ray of fixed energy [2].

Figure 3.3: Gamma in Germanium: on the left the contribution of different mechanism
to the total cross section, as a function of the gamma energy; on the right: the mean free
path as a function of the energy. The mean free path is given by l= 1

σn
where σ is the

effective cross sectional area for a nucleus and n is the number density per unit volume.
Data from [3].

Interaction of alpha particles

An α particle is a nucleus of Helium 4He2+ which consists of two neutrons and two protons.
Heavy charged particles lose energy in an adsorber according to the Bethe formula (3.1).
The range of α particles in Germanium is very short, of the order of millimeters, as shown
in Fig. 3.4.
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Figure 3.4: On the left: specific energy loss of an α particle with an incident energy of
5 and 10 MeV versus the penetration depth in Ge. This special shape of energy loss in
an adsorber is called Bragg curve. On the right: range of an α particle versus incident
energy in Ge. It is clear that α penetrations are surface events. Data from [1].

3.1.2 Pulse shape discrimination

A fundamental topic in this kind of experiments, is to understand if a signal in the Qββ

window is produced by a neutrinoless double beta decay or if it is a background.
The basic filter is to check if there is a simultaneous signal coming from another detector
or from the muon veto. In this case, the event is likely not a neutrinoless double beta
decay. This is called anticoincidence cut.
For energies of the order of 1 MeV, both the electron and positron travel a few millimeters
at most before losing all their kinetic energy to the absorbing medium. A double beta
decay is then a single site event, because the two electrons lose the kinetic energy in a
very small region compared to the dimensions of the detectors. A gamma ray instead may
travel centimeters without interacting, and in an interaction it could release only part of
its energy, then it could interact many times in distant points of the detector. Thus, a
gamma ray could generate a multi-site event. According to Monte Carlo simulation, when
a gamma ray between 1 and 3 MeV is fully absorbed, the event is probably multi-site, as
it is possible to see in Fig. 3.5.
The signal shapes of single and multi-site events are quite different, and it is important,
but quite complex, to find methods to distinguish between the two cases.

3.1.3 Dead layer

To a first approximation, the active volume of a germanium detector is simply the region
between the n+ and p+ contacts. However, these contacts may have appreciable thickness
and can represent a dead layer on the surface of the crystal. The surface dead layer on
germanium detectors may vary slowly over periods of time because of the formation of
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Figure 3.5: Fractions of the full-energy peak contributed by different energy loss mecha-
nisms in a 6 cm x 6 cm coaxial HPGe detector, as predicted by Monte Carlo simulations
[4]. The simulated detector has a size comparable to ANG1 (which is 5.85 cm x 6.8 cm).
The other coaxial detectors which operate in GERDA are bigger, then it is reasonable to
expect an higher fraction of multi-site events.

so-called surface channel in which the electric field and charge collection efficiency are
reduced. The dead layer could reach a depth of many millimeters. Then it is important
to have a precise estimate of the dead volume: the measured energy for a neutrinoless
double beta decay in that volume is expected to be lower than Qββ because of incomplete
charge collection.

3.2 76Ge experiments

The idea of 76Ge experiments is quite simple: to build Germanium detectors of material
enriched in the isotope of interest. Then, place the detectors in a ultralow-background
environment and... wait!
The enrichment is needed. 76Ge abundance in natural germanium is only 7.8%. It is more
convenient to create enriched detectors instead of having many natural detectors, because
most backgrounds scale proportionally to the total mass.
Semiconductor detectors work well especially as calorimeters, in the sense that they offer
a superior energy resolution. Moreover, in this kind of experiments, the source is equal
to the detector, then there is a coverage of the full solid angle, and a very good detection



3.3 45

efficiency.
The main drawback is that, compared to other kind of Neutrinoless Double Beta Decay
experiment, a study of the event topology, which can be done only by a pulse shape
analysis, is on the contrary quite complex. Moreover, the Qββ value is lower compared
to other isotopes, and is lower than the energy of many gamma lines typical of natural
radioactivity. Then, there is a contribution of the Compton background for all these lines
in the region of interest.

3.2.1 Statistics

The number of signal and background counts are Poisson distributed.
The expected number of signal counts is given by

N signal,obs = M
NA

A
· a · e ln[2]

T1/2

t (3.2)

where M is the total mass, t is the time of measurements, a is the mass fraction of the
0νββ isotope, e is the efficiency, T1/2 is the 0νββ half file, NA is the Avogadro constant
and A is the molar weight of the isotope of interest. The expected number of background
counts is given by

N bkg,obs = MtB∆E

where ∆E is the resolution at Qββ and B is the background index in the signal energy
window around Qββ.
It is possible to obtain analytical expressions for the experimental sensitivity in the two
limiting case: zero background and very high background counts.
In the first case, from the first equation, the sensitivity is defined as the needed time to
obtain one count

1 = M
NA

A
· a · e ln[2]

T1/2

t =⇒ T1/2 = M
NA

A
· a · e ln[2]t.

If the number of background counts is high, it is possible to approximate the Poisson
statistics with a Gaussian statistics. The sensitivity limit is set by the following equation

nσ
√
MtB∆E = M

NA

A
· a · e ln[2]

T1/2

t

where nσ is the deviation from the mean in units of σ.
Then to fix the ideas

T1/2[nσC.L] =
ln[2]

nσ

NA

A
a · e

√
Mt

B ·∆E
e.g., to have a 90% confidence level nσ = 1.64.
To summarize, in the zero background count limit, the sensitivity is proportional to the
exposure Mt. In the high background count limit, the sensitivity is proportional to
(Mt)1/2. For an improved analysis, a numerical approach is needed.



46 3.3

3.3 Recent previous 76Ge experiments

3.3.1 The Heidelberg-Moscow experiment

The only claim of observation of 0νββ comes from a part of the Heidelberg-Moscow (HdM)
collaboration. H.V. Klapdor-Kleingrothaus, after an advanced pulse shape analysis, esti-
mated the 76Ge half life as [5]

T 0νββ
1/2 = (2.23+0.44

−0.31)× 1025 yr.

The HdM experiment runs since 1990 to 2003 at Laboratori Nazionali del Gran Sasso,
LNGS, Italy. Five HPGe detector were used, namely ANG1, ANG2, ANG3, ANG4,
ANG5, in total 10.96 kg enriched in 76Ge at ∼ 86 %. The total exposure collected is 71.7
kg·yr, but only the period between November 1995 and March 2003 has been considered
in the final analysis, which corresponds to an exposure of 56.66 kg·yr. The background
index was (Fig. 3.6)

BHM = (0.113± 0.007)
counts

keV · kg · yr
.

Klapdor’s results depend strongly on pulse shape discrimination. Two approaches have
been used.
The first one is a neuronal-network, which means that pulse shape cuts have been tuned
learning from the data, especially trying to preserve the 208Tl double escape peak at 1592

keV, which, according to Monte Carlo simulations, is an enriched sample of single-site
events. Note that ANG1 (the smallest detector) has been dropped from this analysis,
thus the total exposure has been reduced to 51.39 kg·yr. The pulse-shape selected spec-
trum and the full one are in Fig. 3.7.
The second approach is a comparison of the physical pulses against a library of simulated
signals which have been produced by modeling the electric field inside the detectors, and
testing different 0νββ decay positions.
A zoom of selected events in the range 2000-2050 keV by the two pulse shape discrimina-
tion approaches is shown in Fig. 3.8. In Fig 3.9 the final fit, which consider both pulse
shape discrimination approaches, has been shown.
After the pulse shape discrimination, the background index has been reduced, the quoted
value is ∼ 0.005 counts/(keV·kg·yr).
The Klapdor’s analysis is not universally accepted. Most important criticism are about
the pulse shape discrimination approach, the background model and the detectors effi-
ciency [6] [7].
The first goal of GERDA is to check the Klapdor’s claim.
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Figure 3.6: HdM: The total sum spectrum of all five detectors in the range 2000-2060
keV from November 1995 to May 2003. The collected exposure is 56.66 kg·yr, and the
background index is 0.113± 0.007 counts/(keV·kg·yr) [8].

Figure 3.7: HdM - Top: the pulse shape selected spectrum (selected by neuronal network)
with detectors ANG2, ANG3, ANG4, ANG5 from November 1995 to May 2003 in the
energy interval 1800-2250 keV. Bottom: the full spectrum in the same energy range [8].
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Figure 3.8: On the left: the pulse shape selected spectrum (selected by neuronal network)
with detectors ANG2, ANG3, ANG4, ANG5 in the energy range 2000-2060 keV. The
signal near Qββ is found on a 6.6σ confidence level: 7.39 ± 1.12 events. On the right: the
pulse shape selected spectrum (selected by the zero range library after a low χ2 cut) for
the same detectors and in the same energy range. The signal near Qββ is found on a 4.0σ
confidence level: 5.03 ± 1.25 events [5].

Figure 3.9: HdM - The sum of the neuronally network selected (NN) pulses and of the
spectrum selected by the zero range library (cut on low-χ2 fits), measured with detectors
ANG2, ANG3, ANG4, ANG5 from 1995 to 2003 in the energy range of (2000-2060) keV.
Shown are events observed in the full detector. The signal near Qββ is found on a 5.2σ
confidence level: 10.64 ± 2.06 events [5].
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3.3.2 IGEX

IGEX (International Germanium EXperiment) [9] run with 3 detectors, namely RG1,
RG2, RG3, for a total mass of 6.3 kg. After a total exposure of 8.87 kg·yr of 76Ge, they
provided the lower limit

T 0νββ
1/2 ≥ 1.57 · 1025 yr.
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Chapter 4

Design of the GERDA experiment

Introduction

In this chapter I will describe the main features of the GERDA experimental setup and
the GERDA scientific plan.

4.1 GERDA concepts

The GERDA experiment is located in the hall A at the Laboratori Nazionali del Gran
Sasso of INFN. After a commissioning period, the data acquisition for scientific analysis
started on November 2011, and is currenly ongoing. The characteristic feature of GERDA
is that detectors do not operate in a vacuum cryostat, like the previous experiments, but
in a stainless-steel cryostat filled of liquid argon. There are few benefits from this:

• Liquid argon acts as cooling medium

• Liquid argon acts as passive shielding. The gamma cross section in LAr is shown in
Fig. 4.1

• Liquid argon will act as an active shield, when it will instrumented by photon
detectors for the Phase II of the experiment.

The first idea was a copper cryostat filled by liquid nitrogen, but for security concerns
about a big copper cryostat, the stainless-steel cryostat was chosen. Then, to limit the
background due to γ-emitting contamination in the cryostat, the cooling medium of the
project changed from liquid nitrogen to liquid argon, because liquid argon is more dense.
The cryostat is surrounded by a big tank filled by ultrapure water and equipped by
photomultipliers, which acts as a muon veto. When muons traverse the tank, Cherenkov
radiation is emitted and detected. Another complementary part of the muon veto is made



52 4.1

Figure 4.1: Gamma in LAr. On the left: the contribution of different mechanisms to
the total cross section, as a function of the gamma energy. Compton scattering and pair
production are the main mechanisms for gamma above 2 MeV. On the right: the mean
free path as a function of the energy. Data from [1].

of plastic scintillators at the top of the clean room, to detect nearly vertical muons.
Basic sketches of the GERDA construction are shown in Figs 4.2 and 4.3.
Another key idea implemented in GERDA is to limit the material, and then possible
sources of radioactivity, around the detectors as much as possible. Then, in the cryostat
the detectors are arranged in a string structure.
The current lock-system is able to manage two chains of string. The first one is able to
manage one string, the second one is able to manage three strings of detectors.
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Figure 4.2: Artists view (Ge array not to scale) of the Gerda experiment as described
in detail in the following sections: the germanium detector array (1), the LAr cryostat
(2) with its internal copper shield (3) and the surrounding water tank (4) housing the
Cherenkov muon veto, the Gerda building with the superstructure supporting the clean
room (5) and the lock (6, design modified). Various laboratories behind the staircase
include the water plant and a radon monitor, control rooms, cryogenic infrastructure and
the electronics for the muon veto.
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Figure 4.3: Cross section of the LAr cryostat inside the water tank (right part cut away).
The following components are indicated: skirt (1), access hole (2), Torlon support pads
(3), radon shroud (4), internal copper shield (5), lower and upper heat exchanger (6),
bellow in neck of inner vessel (7), balcony (8), DN200 ports (9), manifold (10), bellow
between cryostat and lock (11) and DN630 shutter (12). The skirt provides 6 mounts for
PMTs (13).

4.2 GERDA detectors

GERDA uses the Germanium Detector which previously operate in HdM and IGEX exper-
iments. Then, it is possible to check the Klapdor’s claim [2] by using the same detectors!
Specifications for these coaxial detectors are presented in Tab. 4.1. The active masses of
these detectors were assessed at typically ∼ 87 % by comparing γ ray detection efficiency
to Monte Carlo simulations of the diodes with dead layer thickness varied.
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Detector Diameter Length Mass 76Ge abundance
mm mm g Mass fraction

ANG1 58.5 68 958 0.859(13)

ANG2 80.0 107 2833 0.866(25)

ANG3 78.0 93 2391 0.883(26)

ANG4 75.0 100 2372 0.863(13)

ANG5 78.5 105 2746 0.856(13)

RG1 77.5 84 2110 0.8551(10)

RG2 77.5 84 2166 0.8551(10)

RG3 79.0 81 2087 0.8551(10)

Table 4.1: Characteristics of enriched coaxial detectors coming from HdM and IGEX.
These detectors are presently in the cryostat. The number in the last column give the
1σ−uncertainties. The total mass is about 17.7 kg.

Moreover, natural detectors coming from the GENIUS-TF experiment are used to test
the setup and to improve anticoincidence cuts. They are described in Tab. 4.2.
A string of coaxial detectors is shown in Fig. 4.4.

Detector Diameter Length Mass 76Ge abundance
mm mm g Mass fraction

GTF32 89 71 2321 0.078

GTF42 85 82.5 2467 0.078

GTF44 84 84 2465 0.078

GTF45 87 75 2312 0.078

GTF110 84 105 3046 0.078

GTF112 85 100 2965 0.078

Table 4.2: Characteristics of natural detectors coming from the GENIUS-TF experiment
which have been used in the commissiong phase of GERDA.

The collaboration is producing and testing a new set of enriched detectors: BEGe (Broad
Energy GErmanium) detectors from Canberra Semiconductors [3]. They will constitute
a small fraction of the total mass in the Phase I, but their production is ongoing, and the
BEGe contribution to the total mass will be very relevant in the Phase II. BEGe have
been chosen because of superior pulse shape discrimination features, as I will show in the
next chapters. They are quite small compared to the coaxial detectors, as it is possible
to understand from Fig. 4.5. Specifications of BEGe detectors presently in the GERDA
cryostat are shown in Tab. 4.3.
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Figure 4.4: Left: a string of three enrGe detectors is inserted into the mini-shroud. This
work is performed in the glove box of the clean room. Right: closed detector string and
3-channel preamplier inside a copper box about 30 cm above the string. The connections
between the preamplifier and detectors are made with Teflon insulated copper strips that
are tightly fixed to prevent microphonics. In the background, part of the 3-string lock is
visible.
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Figure 4.5: Left: a coaxial detector. Right: a BEGe detector. Figures are not in scale.

Detector Mass
g

GD32B 717

GD32C 743

GD32D 723

GD35B 812

GD35C 635

Table 4.3: Characteristics of the enriched BEGe detectors presently in the cryostat.

4.2.1 Calibrations

In order to calibrate the detectors within the LAr cryostat, three 228Th calibration sources
are brought into the vicinity of the crystals. The energy calibration of the diodes is
performed by using 7 prominent lines in the spectrum: 510.8 keV, 583.2 keV, 727.3 keV,
860.6 keV, 1620.5 keV, 2103.5 keV, 2614.5 keV. To preserve disk space, energy thresholds
in calibrations are higher than a normal run, and lower energy lines are not acquired.
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4.3 GERDA present and future

To conclude the chapter, a quick look on the GERDA Roadmap.
Currently GERDA is in first Phase of the experiment. Phase I is characterized by the 4-
strings lock. The goal of the Phase I is to check the Klapdor’s claim. To reach the required
sensitivity, an exposure of 20 kg·yr with a background index of 0.02 counts/(keV·kg·yr) is
planned. By considering an energy window of 5 keV, the expected number of background
events equal to

Nb[Phase I] = MtB∆E = 2.

A second Phase is in advanced state of preparation. In the Phase II, a significant lock
improvement is planned, because it should be able to handle more strings of detectors.
Moreover, the liquid Argon will be instrumented to detect the scintillation light and drop
events in coincidence with it, in the same way that it is doing with the signals from the
muon veto.
The goal is to reach an exposure of 100 kg·yr at a BI of 0.001 counts/(keV·kg·yr), so the
expected number of background events is

Nb[Phase II] = 0.5.

For pure Majorana exchange and the case that no signal is seen, this will constrain the
module of the effective neutrino mass to less than about 100 meV.
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Chapter 5

GERDA Digital Signal Processing

Introduction

In this section I will introduce the GERDA electronic chain and the present approach to
the energy reconstruction of the acquired signals.

5.1 Linear systems

If the GERDA electronic chain is linear, and I will assume that, it is possible to describe
the output signal as a convolution of the input current signal with a response function,
which is independent from the input

Q[t] =

∫ ∞
−∞

I[t′]Rfull[t− t′]dt′.

This could be seen as the first-order term of a Volterra series. If the system is linear, the
first-order term fully describes the system [1].
I[t] is the current signal induced into the electronic chain, Q[t] is the output charge signal,
Rfull[t] is the impulse response of the system. For a Dirac-Delta current I[t] = q0δ[t], the
output is q0R[t].
To preserve causality (the past is not dependent by the future), we expect a response
function equal to 0 for t − t′ < 0, and we can define the positive response function R[t]

by the relation
Rfull[t] = R[t]H[t]

(where H is the Heaviside step function) and write

Q[t] =

∫ t

−∞
I[t′]R[t− t′]dt′. (5.1)



62 5.1

We can include in the response function the response of the FADC, so that we can write
for the digitized signal

q[n] = Q[t[n]] (5.2)

where n is the sample number, and t[n] describes the sampling pattern in time. I will
preserve this notation: capital letters for continuos quantities, lowercase letters for discrete
sampled quantities.

5.1.1 Fast sampling approximation

From (5.2) we can write

q[n] =

∫ t[n]

−∞
I[t′]R[t[n]− t′]dt′ =

n∑
j=−∞

∫ t[j]

t[j−1]

I[t′]R[t[n]− t′]dt′.

If the sampling period is very short we can approximate the integral by the product of
the mean values∫ t[j]

t[j−1]

I[t′]R[t[n]− t′]dt′ ∼
( 1

∆t[j]

∫ t[j]

t[j−1]

I[t′]dt′
)( 1

∆t[j]

∫ t[j]

t[j−1]

R[t[n]− t′]dt′
)

∆t[j]

and the mean values with the values at an interval limit

1

∆t[j]

∫ t[j]

t[j−1]

I[t′]dt′ ∼ I[t[j]] ≡ i[j]

1

∆t[j]

∫ t[j]

t[j−1]

R[t[n]− t′]dt′ ∼ R[t[n]− t[j]]

so that we can write

q[n] ∼
n∑

j=−∞

i[j]R[t[n]− t[j]]∆t[j]. (5.3)

This expression is a bit dangereous. The full expression is

q[n] =
n∑

j=−∞

i[j]R[t[n]− t[j]]∆t[j] + e[n]

where e[n] is the unknown “error”, which measures the quality of the approximation. Its
standard deviation is related to the sampling period. It is a common practice to recover
the vector i[j] by inverting the system (5.3) ignoring the error, but it is always important
to understand that this could be a limit.
Concerning the deconvolved signal, it is clear that we can write

qdec[n] =
n∑

j=−∞

i[j]∆t[j]. (5.4)



5.2 63

5.1.2 Homogeneous sampling

Note that in the case of homogeneous sampling of the signal (stored values equally spaced
in time) it is possible to write

t[n] = n∆t ∆t[n] = ∆t.

Then the previous expressions (5.3) and (5.4) reduce to

q[n] =
n∑

j=−∞

i[j]R[(n− j)∆t]∆t ≡
n∑

j=−∞

i[j]r[n− j]∆t

qdec[n] =
n∑

j=−∞

i[j]∆t.

5.2 The GERDA electronic chain

A sketch of the GERDA electronic chain is presented in Fig. 5.1.

Figure 5.1: The electronic chain: detectors are feeded by High Voltage. The current from
the detector is integrated in a charge sensitive preamplifier. Note that the preamplifier
is located into the Argon volume (pink area). In principle, the signal could be sent to
two different Flash ADC systems (FADC). Presently, we are using a single FADC system,
whose sampling frequency is 100 MHz. Test pulses are sent to the preamplifier every 20
seconds.

The key component to understand the signal shape is the charge-sensitive preamplifier,
sketched in Fig. 5.2. It is located in a copper box into the LAr volume, close to the
detectors. The charge-sensitive preamplifier basically integrates the charge of the incoming
pulse. The charge Q is stored on the capacitor Cf and then removed through the feedback
resistor Rf . The output voltage is independent of the detector capacitance:

Vout ' −
Q

Cf
.
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In this standard configuration, a good model for the response function is an exponential
decay, characterized by the time constant of the preamplifier τ = CfRf

R1[t] = exp
[
− t

τ

]
.

The time constant is designed to be very long compared to the pulse duration, to have a
full charge collection in the capaccitor, then it is evident from (5.1) that the current signal
is integrated in a charge signal. Then, the most important quantity of interest, energy, is
proportional to the amplitude of the signal.

Figure 5.2: The charge sensitive preamplifier. Cf and Rf are the feedback capacitor and
resistor.

5.3 The GERDA digitized signal

Fig. 5.3 gives an example of the acquired signals. Presently data are digitized by a 14 bit,
100 MHz (thus the sampling period is 10 ns) Flash ADC. During the normal acquisition,
when the signal exceeds the trigger threshold in any of the channels, all channels are
readout. The waveforms consist of 16384 samples, which corresponds to a length of
163.84 µs. For the channel which triggered the acquisition, the trigger position is located
near the center of the digitized waveform.
During a calibration, things are a bit different. To preserve disk space, in the external
parts of the waveforms samples are summed in groups of four. Then, the digitized signal is
sampled at 40 ns in the baseline region, at 10 ns in the central region (400 high-frequency
samples) and at 40 ns in the tail region. Then the number of samples in a calibration run
is given by

ns = 400 + (16384− 400)/4 = 4396

and the sampling rate of the stored waveforms is variable. Moreover, only the triggered
channels are stored.
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Presently, a calibration run consists in ∼ 1-2 millions of events, and it takes ∼ 1 hour.
During a normal run, most of the events are the test pulse signals which are sent every
20s. Then we have ∼ 4320 test pulses/day. Physical events in the full energy spectrum
are about the half. Then, it is easy to understand that calibrations largely dominate the
disk space needed for the data.

Figure 5.3: A raw GERDA signal from a coaxial detector: the signal is inverted (zero
current = maximum). It is possible to divide the waveform into three parts: the baseline
(before the start of the current), the rising part (the central part of the waveform) and
the decaying part.

5.3.1 Energy reconstruction resampling

To keep everything simple and consistent between a normal run and a calibration run,
the first step of the energy reconstruction chain is to resample the waveforms with a
homogeneous sampling of 40 ns. This could seem a limit in our approach, instead, as I
will show in the next chapters, it does not seem so relevant. Clearly, our approach to the
pulse shape discrimination is different, and for pulse shape discrimination it is important
to keep the full resolution provided by the FADC.

5.4 Deconvolution of the signal

A common approach, for a charge sensitive preamplifier response with a homogeneous
sampling rate, is to start the digital signal processing with the Moving Window Decon-
volution filter (MWD):

qmwd,m[n] = q[n]− q[n−m] +
(

1− exp
[
− ∆t

τ

]) n−1∑
j=n−m

q[j]
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where m is the size of the window in samples. Usually m∆t is equal to the shaping time
used in the next steps of the signal processing chain.
Note that for τ →∞ (long time constant approximation) this expression reduces to

qmwd,m[n] ∼ q[n]− q[n−m]

which is the difference operator. Instead of constructing it, I will show how the filter
works. For a charge injection

i[n]∆t = q0δn,0

the output is

q[n] =

{
0 n < 0

q0 exp
[
− n∆t

τ

]
n ≥ 0

and the deconvolved signal is

qdec[n] =

{
0 n < 0

q0 n ≥ 0
.

We can study the filter response to the charge injection in the range n = [0,m− 1]. It is
clear than qdec,m[0] = q0. Then we can write for n > 0

qmwd,m[n] = q0 exp
[
− n∆t

τ

]
+
(

1− exp
[
− ∆t

τ

]) n−1∑
j=0

q0 exp
[
− j∆t

τ

]

= q0 exp
[
− n∆t

τ

]
+
(

1− exp
[
− ∆t

τ

])exp
[
− (n−1)∆t

τ

](
exp

[
n∆t
τ

]
− 1
)
q0

exp
[

∆t
τ

]
− 1


= q0 exp

[
− n∆t

τ

]
+ q0 − q0 exp

[
− n∆t

τ

]
= q0 = qdec[n].

Ok, this filter acts as a deconvolution for an exponential response. After the pulse, one
has a flat region, as you can expect from a deconvolution algorithm.
We can also study the long time constant approximation. Again qdec,m[0] = q0. Then we
have

qmwd,m[n] = q0 exp
[
− n∆t

τ

]
.

At the end of the window we have

qmwd,m[m− 1] = q0 exp
[
− (m− 1)∆t

τ

]
then

qmwd,m[m− 1]

qdec,m[0]
= exp

[
− (m− 1)∆t

τ

]
.

The region is not flat any longer.
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5.5 The energy reconstruction

The default energy reconstruction is characterized by a sequence of linear transforms of
the acquired signal, which are sketched in Fig. 5.4. After an inversion and a baseline
restoration (before the pulse the charge is 0 if there is not a tail from a previous event),
the Moving Window Deconvolution filter is applied. In GERDA, presently the long time
constant approximation of the MWD is used, then the filter reduces to the difference
operator. According to Jordanov [2] this is good because the time constants are way
longer compared to the current length. A ”squared” pulse is obtained (Fig. 5.4, the
second waveform). The energy is proportional to the signal amplitude. To improve the
signal to noise ratio, a standard approach is to apply a set of moving window averages to
the signal. The moving window average can be described as

qmwa,m[n] =
1

m

n∑
j=n−m+1

q[j]

The shaping time m∆t, where ∆t is the sampling period, is chosen to be the same of the
first step, 5 µs for all channels. The final result, after many averages (∼ 25 in the present
energy reconstruction approach) is a signal shaped in a nearly-gaussian way. Because we
did averages, the maximum amplitude is still our quantity of interest. Clearly, to obtain
the physical energy value, a calibration is required.
Other approaches to the energy reconstruction have been studied, e.g. the trapezoidal
filter described in Knoll (Fig. 5.5). In the mean case, the obtained results are worse: then
it seems that “averaging” (noise reduction) is more important than, e.g., the correction
for different risetimes.

5.6 GELATIO

The energy reconstruction algorithms are implemented in our digital signal processing
software, which is named “GELATIO” [3] [4]. The key feature of GELATIO is that it
is able to manage different signal sources in a common way. The GELATIO pipeline is
sketched in Fig 5.6. Data coming from Germanium detectors, photomultipliers, Monte
Carlo simulations are converted in a common ROOT-Based format [5]. GELATIO consists
of many analysis modules for different tasks: baseline restoration, energy reconstruction,
risetime estimation... An advanced Graphical User Interface (GUI) has been developed,
by me, to permit a simple access to all the GELATIO features, e.g. the configuration of
the parameters for each module. A few screenshots of the GUI in Fig. 5.7. The GUI is
able to handle many channels, e.g. in Fig. 5.8 it is possible to see 96 waveforms at the
same time, which describe a muon event in the muon veto data stream.
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Figure 5.4: GERDA default energy reconstruction chain: after an inversion and the
baseline subtraction, the obtained typical signal shape is at the top. Then, after a MVD
and many moving window averages, it acquires a nearly-gaussian shape.

Figure 5.5: GERDA energy reconstruction alternative approach: after a Moving Win-
dow Deconvolution using a physical time constants, the signal is shaped in a trapezoidal
way. According to Knoll [6], this signal shaping permits a correction of “the ballistic de-
fects”: pulses with different rise times have the same amplitude. The maximum height is
proportional to the energy.
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Figure 5.6: The hierarchical organization of the data in GELATIO. The framework or-
ganizes the output of each step of the analysis in a different level (Tier) starting from
the raw data (Tier0) up to the condensed parameter of the final analysis. The Tier1
contains the same information of the raw data but encoded with a different format based
on ROOT.
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Figure 5.7: Screenshots of the GELATIO GUI. The input Tier1 file comes from a GERDA
background run and contains three traces per event. The screenshots show the tools and
utilities available in the GUI: (a) Event displayer. The signals from the three channels
(three detectors) are displayed together. (b) INI (Initialization file) file editor. It can
be used to select and customize the analysis tasks to be performed. The “Module list”
contains all the analysis modules available in GELATIO. (c) INI output summary. It
shows the human-readable INI file produced according to the user choice in the INI file
editor. (d) Event analyzer. To apply the full analysis chain to a given trace. The
screenshot shows the intermediate shaped traces calculated by the analysis modules which
implements the Gast algorithm (the trapezoidal filter) for amplitude reconstruction.
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Figure 5.8: Signals from the muon veto: 12 FADC, 8 channels each one for a total of
96 channels. In the blue rectangles, signals from the plastic veto. In the red rectangles,
signals from photomultipliers.
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Chapter 6

Analysis of the response function

Introduction

In this section I will start to describe my approach to the signal processing, which is
different compared to the official one in a few aspects. The first step of my analysis is a
refined reconstruction of the response of the GERDA electronic chain.

6.1 The importance of the time constant

According to Jordanov [1], as I have explained in the previous chapter, if the input signal
has a long decay constant it can be approximated as a step function. But there is an
important point to discuss. Long compared to what? There are three time scales in the
game:

• The sampling period (which appears in the moving window filter expression)

• The risetime (which is the physical time scale for a pulse)

• The shaping time (which is the time scale for the energy reconstruction algorithms).

The typical time scale of the pulses is like 0.5 µs. In this time, a typical exponential
decaying response driven by a time constant of 150 µs, changes from 1 to

exp
[
− 0.5 µs

150 µs

]
∼ 0.997.

The shaping time that we are using in GERDA is like 5 µs. In this time, a typical response
changes from 1 to

exp
[
− 5 µs

150 µs

]
∼ 0.967.

In the current default GERDA signal processing, we are working in the long time constant
approximation: a step of the Digital Signal Processing (DSP) chain is a Moving Window
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Deconvolution with an infinite time constant, which reduces to a difference operator.
The first goal of my analysis is to understand if, by providing a “proper” time constant,
it is possible to improve the energy resolution. If the shaping time is the relevant time
constant for the energy construction, I expect to obtain better results compared to the
default analysis.

6.2 Analysis of the GERDA response function

The first step of my analysis chain is a study of the GERDA response function. This
translates to an estimate of the time constant if the simple exponential decay model is
good enough. To estimate the time constant, a fit of the tail of the pulses is probably a
good solution. But in my analysis I would like to check different models for the GERDA
response function. Then, something more refined is required.
My idea is to rely on calibrations data. Calibrations events are physical, and the signal
path is the same of the normal runs. That is not true for test pulses, because they
come from the Pulser and not from the detectors. Moreover, calibrations are part of the
GERDA routine procedures, then an analysis of the response function which relies on
these data could be a no-cost check for electronic non-standard behaviours.
I will proceed in the following way:

1. Create a parametric model for the current signals

2. Create a parametric model for the response function

3. Convolve the current with the response function

4. Simulate the FADC sampling (averages during the sampling period)

5. Fit the resulting function with the data for a large number of waveforms at the same
time, to obtain the parameters which describe the response function.

The sampling simulation is quite important. I would like to use all the available informa-
tion, then I should be able to handle the variable sampling rate in the stored calibration
data. The sampling is implemented as

q[t] =
1

∆t

∫ t

t−∆t

Q[t′]dt′ (6.1)

where q[t] is the sampled signal, Q[t] the continuous signal and ∆t the sampling period.
Thus, I will work in the time domain.
Another important point is that the resulting function should be analytical, then the
integrals in items 3 and 4 should be tractable.
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If nc is the number of parameters for the current signals, nr the number of parameters for
the response function, nw the number of waveforms fitted at the same time, the number
of parameters in the fit is

nf = nc · nw + nr.

As I said, the number of waveforms fitted at the same time should be large enough to
constrain the parameters which describe the response function in a solid way.

6.3 Simple current models

It is clear that to minimize the complexity of the optimization problem, a very simple
model for the current signals is required. 3 parameters seem the minimum to me: position
in time, length in time and total charge. A 2-parameters Dirac Delta current is not
convincing. I found three simple possibilities which are symmetrical with respect to the
central value (symmetrical shapes are simply a “maximum entropy” choice):

• Gaussian signals, truncated in time

• Flat signals

• Triangular signals.

In Fig. 6.1, the current for a start time=0, length=1 and total charge=1 (arbitrary units)
for the three models. In the gaussian model one needs to fix the constant between sigma
and the length. In the plot I chose sigma=1/6· length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Gaussian model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Flat model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Triangular model

Figure 6.1: 3-Parameters models for the current.

I will test both flat and triangular models. I do not like the gaussian model because a
tuning of the sigma/length relationship is required.
Note that for our purposes, which are not pulse shape analysis at the moment but the
reconstruction of the response function, it is not important that the model describes the
current in a perfect way. It is important to have one model especially to constrain the end
point of the signal from both sides. It is clear that the information which we are looking
for are contained in the tail, and that a wrong model current could alter the response in a
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< 1µs (risetime) scale. Moreover, by providing a basic model for the signal, it is possible
to handle all points of all waveforms in the analysis in the same way.

6.3.1 Flat model

The current in the flat model is given by

I[t] =

{
i1 (ts < t)&&(t < tl)

0 (t < ts)||(ts + tl < t)

i1 is the intensity, ts is the start time, tl is the length. && is the logical AND, || is
the logical OR. The convolution of the flat model current with the simple exponential
response is

Q[t] =


0 (t < ts)

i1

(
1− exp

[
− t−ts

τ

])
τ (ts < t)&&(t < ts + tl)

i1 exp
[
− t−ts

τ

](
− 1 + exp

[
tl
τ

])
τ (ts + tl < t)

and to obtain the sampled version (6.1) is needed.

6.3.2 Triangular model

The current in the triangular model is given by

I[t] =


4i1(t−ts)

tl
(ts < t)&&(t < ts + tl

2
)

4i1(ts+tl−t)
tl

(ts + tl
2
< t)&&(t < ts + tl)

0 (t < ts)||(ts + tl < t)

.

Note that ∫ ∞
−∞

I[t′]dt′ = i1tl

thus i1 is the mean current, ts is the start time, tl is the length. The convolution of the
triangular model current with the simple exponential response is

Q[t] =



0 (t < ts)

4i1τ

((
−1+exp

[
−−t+ts

τ

)
τ+t−ts

)
tl

(ts < t)&&(t < ts +
tl
2 )

1
tl
4i1τ

(
τ + exp

[
−t+ts
τ

]
τ − 2 exp

[
tl−2t+2ts

2τ

]
τ + tl − t+ ts

)
(ts +

tl
2 < t)&&(t < ts + tl)

4 exp

[
−−t+ts

τ

](
−1+exp

[
tl
2τ

)2

i1τ
2

tl
(ts + tl < t)

and to obtain the sampled version (6.1) is needed.
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6.4 Preliminary cut

It is clear that, before spending hours in the GERDA response function fits, it is important
to make a quality selection of the waveforms. Very bad waveforms which are not well
described by the current models, could alter the fit results.
The first cut is to reject pulser events. It is not obvious that the response from a detector
current is the same that the response from a pulser signal.
Moreover, I will ignore waveforms with overflows/underflows, because the information is
not complete.

6.5 Preliminary baseline scan

After that, I will filter the events according to the baseline quality. For example, two
events in the same window are clearly not compatible with my big-fit model, which is
made of three waveform-specific parameters (start time, end time, mean current).
A tail from a previous event is also not compatible. The correction of the baseline for a
tail from a previous event is, in my opinion, one of the more difficult tasks in the DSP.
Looking at the baselines there is the most evident indication that the event tail is not a
pure exponential.
I would like to avoid completely the baseline problem, then my baseline cut should be
strong enough. My idea is to find the maximum of the distribution of the baseline sample
variance. In the hypothesis that the maximum is not altered by bad events (which I
expect to have an higher baseline variance), I modeled the distribution as a χ2, and found
the effective degrees of freedom k from the relation mode=k-2. Then, I saved the 68% of
the waveforms according to this distribution.

6.6 Model testing

After the waveforms selection, I decided to fit both current models to the survived wave-
forms. The idea is simply to choose the best model, because it is a quite long operation
to fit two different models for all the selected waveforms for all the calibrations.

6.7 Preliminary quality scan

Chosen the model, I will consider only its results, and I have applied a strong quality cut
on the mean squared residuals of the fit, in the same way I have done for baselines. In
this case, I decided to save only 50% of the waveforms.
At the end of the cut, if the number of survived waveforms is greater than 8192, they are
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sorted according to the fit quality, and only the best 8192 are selected for the big response
fit. I fixed this limit to save computational time.

6.8 Global response function analysis

I would like to test the single parameter standard model

R1[t] = exp
[
− t

τ

]
and a “perturbation” of it. I would like to describe the perturbation by using only another
parameter. My idea is to write

R2[t] = exp
[
− t

τ1

]1 + exp
[
− t

τ2

]
2

 .

Note that this response has the same normalization for a Dirac Delta current (R2[0] = 1),
and that for τ1 = τ and a very large τ2 it is possible to recover the basic model. It is
possible to rewrite the expression as

R2[t] =
1

2

(
exp

[
−
( 1

τ1

+
1

τ2

)
t
]

+ exp
[
− t

τ1

])
.

It is a linear combination of the exponentials, with the same weight. By defining

τs =
1

1
τ1

+ 1
τ2

< τ1 τl ≡ τ1

we can write
R2[t] =

1

2

(
exp

[
− t

τs

]
+ exp

[
− t

τl

])
which shows the contributions of the short and the long time constants. For τl = τs = τ

it is possible to recover the basic response model.
Note that this complex model is not “physical”, in the sense that τl and τs are not directly
connected to physical quantities. It is simply a 2-parameters “extension” of the basic
1-parameter model.
To obtain the output signal, I did the convolution of the current models with the complex
response function, and the the sampling integral. I chose to work in the variables τl, k
where τs = kτl and 0 < k < 1 to prevent degeneration between τs and τl.

6.9 Global minimization

In my analysis nc = 3, nw ≤ 8192, then the number of parameters is at maximum

nf = 8192× 3 + nr = 24576 + nr.
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My minimizer of choice, Minuit2 in the ROOT package, is not able to handle such a large
number of parameters. The reason is that it stores in memory a lot of information for
each iteration, and the memory used is proportional to the number of parameters. I am
discussing with the ROOT team about a better memory use in the package.
I switched to the GNU Scientific Library minimizers [2], in particular to the BFGS2
algorithm (Broyden-Fletcher-Goldfarb-Shanno), which requires an analytical expression of
the gradient in input. The gradient has been computed with Mathematica and translated
in C++. Note that GSL minimization algorithms are wrapped in ROOT classes.
It is clear that the response function could be different for each detector. I will fit a single
detector at time (which means one detector for CPU thread).

6.10 The dataset

I have applied my procedure to 4 calibrations taken on Sept 27th, Oct 11th, Oct 25th and
Nov 11th 2012. The configuration of the detectors was the same, except for the change
of the High Voltage of one of the detectors in the last calibration (Tab. 6.1).
During a calibration, each source is placed in three different positions. In these calibra-
tions, the configuration of the positions of the calibration sources is the same (Tab. 6.2),
but not the time dedicated to each configuration.

Detector | HV | Position
ANG2 | 3500V | D2 - Middle
ANG3 | 3500V | D4 - Top
ANG4 | 3500V | D3 - Middle
ANG5 | 2500V | D4 - Middle
RG1 | 4500V | D3 - Top
RG2 | 4000V * | D3 - Bottom

GTF112 | 3000V | D2 - Top
GD32B | 3500V | D1 - First
GD32C | 3500V | D2 - Second
GD32D | 3500V | D3 - Third
GD35B | 3500V | D4 - Fourth
GD35C | 3500V | D5 - Fifth

Table 6.1: Detectors, high voltages, positions. * = 3500 V starting from Nov, 8th 2012.

Position 1 : S1= 5500 mm S2= 5500 mm S3= 5500 mm
Position 2 : S1= 5190 mm S2= 5340 mm S3= 5340 mm
Position 3 : S1= 5070 mm S2= 5150 mm S3= 5150 mm

Table 6.2: Calibrations: positions of the sources S1, S2, S3 (Fig. 6.2). The numbers are
the distances from their parking positions in the clean room.
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Figure 6.2: Drawing of position of detectors strings and calibration sources. Distances
between S1 and D1, S1 and D2, S2 and D3, S3 and D4 are, respectively, 130mm, 308mm,
135mm, 138mm.

6.11 Preliminary baseline scan results

In the tables 6.3 and 6.4, there are the results of my baseline cuts. If the good baselines
are more than 68% of the total, then I am probably saving weak pile-up events. It happens
sometimes, then I suspect that my baseline cut could be improved.
It is clear that the fraction of saved events for each detector is a function of the calibration
source positions. If a source stays very near to a detector more time in a calibration than
in another one, the number of pile up events could be very different between calibrations
for this detector.
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20120927 |
Detector | Waveforms | No P/UO | Good baseline | Limit

ANG2 | 148344 | 148175 | 80154 54.09% | 1792.2
ANG3 | 113164 | 113032 | 54996 48.66% | 2017.2
ANG4 | 98551 | 98419 | 58076 59.01% | 1327.8
ANG5 | 135124 | 134992 | 83564 61.90% | 1849.7
RG1 | 55796 | 55664 | 35483 63.74% | 1275.0
RG2 | 100141 | 100009 | 62961 62.96% | 1487.4

GTF112 | 109102 | 108970 | 63064 57.87% | 1177.0
GD32B | 44341 | 44209 | 33287 75.29% | 452.1
GD32C | 52402 | 52270 | 42094 80.53% | 496.0
GD32D | 34493 | 34361 | 25173 73.26% | 611.3
GD35B | 26147 | 25985 | 17159 66.03% | 635.7
GD35C | 37291 | 37158 | 27357 73.62% | 687.3

20121011 |
Detector | Waveforms | No P/UO | Good baseline | Limit

ANG2 | 242628 | 242423 | 122341 50.47% | 1786.8
ANG3 | 187544 | 187352 | 107156 57.20% | 2036.7
ANG4 | 161307 | 161115 | 99872 61.99% | 1338.9
ANG5 | 221109 | 220917 | 138863 62.86% | 1849.2
RG1 | 91441 | 91249 | 61315 67.20% | 1284.4
RG2 | 150236 | 150044 | 98089 65.37% | 1482.9

GTF112 | 179639 | 179446 | 110650 61.66% | 1190.6
GD32B | 73226 | 73034 | 58505 80.11% | 460.0
GD32C | 87709 | 87517 | 70352 80.39% | 495.7
GD32D | 57743 | 57551 | 41369 71.88% | 602.6
GD35B | 38860 | 38635 | 25755 66.66% | 639.6
GD35C | 51048 | 50856 | 40614 79.86% | 700.6

Table 6.3: Baseline analysis for different calibrations. The columns are: detector, total
number of waveforms, waveforms without pulser events and overflows/underflows, good
waveforms after the baseline cut, fraction of good waveforms, limit on the baseline sample
variance.
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20121025 |
Detector | Waveforms | No P/UO | Good baseline | Limit

ANG2 | 237629 | 237418 | 142188 59.89% | 1921.5
ANG3 | 184160 | 183955 | 112693 61.26% | 2106.5
ANG4 | 158906 | 158701 | 100573 63.37% | 1357.0
ANG5 | 213737 | 213532 | 135019 63.23% | 1884.8
RG1 | 89903 | 89698 | 56009 62.44% | 1297.6
RG2 | 153613 | 153408 | 98791 64.40% | 1486.7

GTF112 | 175795 | 175590 | 106389 60.59% | 1355.6
GD32B | 72820 | 72615 | 58528 80.60% | 474.6
GD32C | 85372 | 85167 | 66417 77.98% | 512.2
GD32D | 54710 | 54505 | 44708 82.03% | 680.8
GD35B | 40565 | 40336 | 23419 58.06% | 666.7
GD35C | 56642 | 56437 | 45930 81.38% | 774.9

20121114 |
Detector | Waveforms | No P/UO | Good baseline | Limit

ANG2 | 173169 | 172994 | 101039 58.41% | 1911.8
ANG3 | 128871 | 128698 | 72136 56.05% | 2012.9
ANG4 | 124342 | 124169 | 79591 64.10% | 1357.0
ANG5 | 187235 | 187062 | 116745 62.41% | 1840.3
RG1 | 62301 | 62128 | 41022 66.03% | 1297.6
RG2 | 154337 | 154164 | 105507 68.44% | 1519.6

GTF112 | 63640 | 63467 | 44244 69.71% | 1377.8
GD32B | 53444 | 53271 | 42597 79.96% | 463.4
GD32C | 70914 | 70741 | 54299 76.76% | 505.0
GD32D | 56010 | 55837 | 41460 74.25% | 677.0
GD35B | 36275 | 36078 | 23584 65.37% | 676.0
GD35C | 45643 | 45470 | 32721 71.96% | 781.4

Table 6.4: Baseline analysis for different calibrations. The columns are: detector, total
number of waveforms, waveforms without pulser events and overflows/underflows, good
waveforms after the baseline cut, fraction of good waveforms, limit on the baseline sample
variance.
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6.12 Model testing results

In the tables 6.6 and 6.7, there are the results of my model testing. Results are very
interesting! The ratio of waveforms which are better described by a triangular current
model compared to a flat current model is quite constant between calibrations, and very
different between the detectors. It is of special interest to compare RG1 and RG2 which
have a very similar geometry, but a very different “triangle ratio”. The events which
are better described by the simple triangular model seems not to have a specific energy,
as it is possible to see from Fig. 6.3. In table 6.5, a summary of the results, and the
mean “triangle ratio” between calibrations. The triangular model wins against the flat
model. These current models are characterized by the same number of parameters, and
the triangular model performs better.

Detector | Triangle % | Mean
ANG2 | 49.38% 49.10% 49.65% 50.11% | 49.56% +- 0.43%
ANG3 | 95.02% 95.24% 95.29% 95.39% | 95.23% +- 0.16%
ANG4 | 82.41% 82.32% 82.29% 82.43% | 82.36% +- 0.07%
ANG5 | 88.93% 88.92% 89.13% 89.04% | 89.00% +- 0.10%
RG1 | 83.98% 85.71% 83.74% 83.85% | 84.32% +- 0.93%
RG2 | 59.10% 59.12% 59.21% 58.36% | 58.95% +- 0.39%

GTF112 | 57.05% 56.96% 57.76% 57.59% | 57.34% +- 0.40%
GD32B | 75.99% 78.34% 77.35% 78.79% | 77.62% +- 1.24%
GD32C | 75.93% 75.89% 76.62% 79.26% | 76.92% +- 1.59%
GD32D | 66.56% 66.73% 66.91% 67.38% | 66.90% +- 0.35%
GD35B | 87.99% 87.83% 87.55% 87.91% | 87.82% +- 0.19%
GD35C | 74.06% 72.97% 73.32% 75.83% | 74.04% +- 1.27%

Table 6.5: Triangular model summary. The columns are: detector, percentage of triangu-
lar current fits with a best χ2 compared to the flat current fits for each calibration, mean
between the values.
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20120927 | | Best model |
Detector | Waveforms | Flat Triangle | Triangle %

ANG2 | 80154 | 40571 39583 | 49.38%
ANG3 | 54996 | 2741 52255 | 95.02%
ANG4 | 58076 | 10216 47860 | 82.41%
ANG5 | 83564 | 9249 74315 | 88.93%
RG1 | 35483 | 5684 29799 | 83.98%
RG2 | 62961 | 25751 37210 | 59.10%

GTF112 | 63064 | 27089 35975 | 57.05%
GD32B | 33287 | 7992 25295 | 75.99%
GD32C | 42094 | 10133 31961 | 75.93%
GD32D | 25173 | 8417 16756 | 66.56%
GD35B | 17159 | 2060 15099 | 87.99%
GD35C | 27357 | 7096 20261 | 74.06%

20121011 | | Best model |
Detector | Waveforms | Flat Triangle | Triangle %

ANG2 | 122341 | 62269 60072 | 49.10%
ANG3 | 107156 | 5098 102058 | 95.24%
ANG4 | 99872 | 17657 82215 | 82.32%
ANG5 | 138863 | 15391 123472 | 88.92%
RG1 | 61315 | 8761 52554 | 85.71%
RG2 | 98089 | 40096 57993 | 59.12%

GTF112 | 110650 | 47624 63026 | 56.96%
GD32B | 58505 | 12673 45832 | 78.34%
GD32C | 70352 | 16964 53388 | 75.89%
GD32D | 41369 | 13763 27606 | 66.73%
GD35B | 25755 | 3135 22620 | 87.83%
GD35C | 40614 | 10979 29635 | 72.97%

Table 6.6: Model comparison for different calibrations. The columns are: good baseline
waveforms, waveforms best fitted by the flat current model, waveforms best fitted by the
triangular current model, percentage of triangular best fits.
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20121025 | | Best model |
Detector | Waveforms | Flat Triangle | Triangle %

ANG2 | 142188 | 71591 70597 | 49.65%
ANG3 | 112693 | 5313 107380 | 95.29%
ANG4 | 100573 | 17810 82763 | 82.29%
ANG5 | 135019 | 14673 120346 | 89.13%
RG1 | 56009 | 9107 46902 | 83.74%
RG2 | 98791 | 40301 58490 | 59.21%

GTF112 | 106389 | 44939 61450 | 57.76%
GD32B | 58528 | 13258 45270 | 77.35%
GD32C | 66417 | 15526 50891 | 76.62%
GD32D | 44708 | 14793 29915 | 66.91%
GD35B | 23419 | 2916 20503 | 87.55%
GD35C | 45930 | 12255 33675 | 73.32%

20121114 | | Best model |
Detector | Waveforms | Flat Triangle | Triangle %

ANG2 | 101039 | 50411 50628 | 50.11%
ANG3 | 72136 | 3326 68810 | 95.39%
ANG4 | 79591 | 13987 65604 | 82.43%
ANG5 | 116745 | 12799 103946 | 89.04%
RG1 | 41022 | 6625 34397 | 83.85%
RG2 | 105507 | 43931 61576 | 58.36%

GTF112 | 44244 | 18764 25480 | 57.59%
GD32B | 42597 | 9033 33564 | 78.79%
GD32C | 54299 | 11262 43037 | 79.26%
GD32D | 41460 | 13525 27935 | 67.38%
GD35B | 23584 | 2851 20733 | 87.91%
GD35C | 32721 | 7910 24811 | 75.83%

Table 6.7: Model comparison for different calibrations. The columns are: good baseline
waveforms, waveforms best fitted by the flat current model, waveforms best fitted by the
triangular current model, percentage of triangular best fits.
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Figure 6.3: On the left: in blue: energy of selected events after the baseline cut, in green:
energy of selected events best described by the triangle model after the baseline cut. On
the right: ratio triangle/total. On the top: ANG2, on the bottom: ANG4. Calibration
of 20120927. The behaviour of these plots is very different between the two detectors.
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6.13 Preliminary quality scan results

Now I will consider the data from the triangular model fits.
In the tables 6.8 and 6.9, there are the results of my quality cuts. In this case, good
waveforms are sometimes less than 50% of the total, then probably my cut is too strict.
In Fig. 6.4, a few distributions are given, which result from the quality scan.
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Figure 6.4: ANG4 - 20121025 - Plots from the basic quality scan: energy distribution,
time constant, fit quality (sample mean of the squared residuals), baseline quality (sample
variance, note the cut), risetime and mean current.
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20120927
Detector | Waveforms | Valid Fraction | Valid SV

ANG2 | 80154 | 17571 21.92% | 8192 1496.9
ANG3 | 54996 | 13355 24.28% | 8192 1917.4
ANG4 | 58076 | 9818 16.91% | 8192 1184.7
ANG5 | 83564 | 9870 11.81% | 8192 1717.6
RG1 | 35483 | 7663 21.60% | 7663 1183.5
RG2 | 62961 | 12631 20.06% | 8192 1224.6

GTF112 | 63064 | 11225 17.80% | 8192 1097.5
GD32B | 33287 | 4650 13.97% | 4650 572.4
GD32C | 42094 | 5999 14.25% | 5999 720.0
GD32D | 25173 | 5973 23.73% | 5973 655.0
GD35B | 17159 | 3013 17.56% | 3013 807.8
GD35C | 27357 | 3824 13.98% | 3824 790.6

20121011
Detector | Waveforms | Valid Fraction | Valid SV

ANG2 | 122341 | 24306 19.87% | 8192 1486.9
ANG3 | 107156 | 21072 19.66% | 8192 1865.1
ANG4 | 99872 | 20405 20.43% | 8192 1166.2
ANG5 | 138863 | 21117 15.21% | 8192 1691.0
RG1 | 61315 | 11701 19.08% | 8192 1152.6
RG2 | 98089 | 18093 18.45% | 8192 1213.6

GTF112 | 110650 | 19538 17.66% | 8192 1071.6
GD32B | 58505 | 7492 12.81% | 7492 569.9
GD32C | 70352 | 11111 15.79% | 8192 698.7
GD32D | 41369 | 8285 20.03% | 8192 643.2
GD35B | 25755 | 2918 11.33% | 2918 773.2
GD35C | 40614 | 6041 14.87% | 6041 798.2

Table 6.8: Quality scan for different calibrations. The columns are: detector, good base-
line waveforms, waveforms which survive the quality cut, fraction of the total, waveforms
considered in the final fits, sample mean of the squared fit residuals.
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20121025
Detector | Waveforms | Valid Fraction | Valid SV

ANG2 | 142188 | 28771 20.23% | 8192 1560.0
ANG3 | 112693 | 18216 16.16% | 8192 1912.7
ANG4 | 100573 | 24574 24.43% | 8192 1180.4
ANG5 | 135019 | 21668 16.05% | 8192 1724.1
RG1 | 56009 | 10060 17.96% | 8192 1176.4
RG2 | 98791 | 20212 20.46% | 8192 1229.7

GTF112 | 106389 | 18168 17.08% | 8192 1191.4
GD32B | 58528 | 8385 14.33% | 8192 588.0
GD32C | 66417 | 8295 12.49% | 8192 725.5
GD32D | 44708 | 7404 16.56% | 7404 689.1
GD35B | 23419 | 2605 11.12% | 2605 803.0
GD35C | 45930 | 8477 18.46% | 8192 867.0

20121114
Detector | Waveforms | Valid Fraction | Valid SV

ANG2 | 101039 | 20849 20.63% | 8192 1734.1
ANG3 | 72136 | 8419 11.67% | 8192 1905.3
ANG4 | 79591 | 15694 19.72% | 8192 1224.5
ANG5 | 116745 | 18977 16.26% | 8192 1700.2
RG1 | 41022 | 8253 20.12% | 8192 1210.9
RG2 | 105507 | 19933 18.89% | 8192 1348.4

GTF112 | 44244 | 7321 16.55% | 7321 1268.2
GD32B | 42597 | 4345 10.20% | 4345 428.3
GD32C | 54299 | 8739 16.09% | 8192 468.6
GD32D | 41460 | 8970 21.64% | 8192 619.7
GD35B | 23584 | 4252 18.03% | 4252 623.6
GD35C | 32721 | 6461 19.75% | 6461 728.6

Table 6.9: Quality scan for different calibrations. The columns are: detector, good base-
line waveforms, waveforms which survive the quality cut, fraction of the total, waveforms
considered in the final fits, sample mean of the squared fit residuals.
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6.14 GERDA response reconstruction results

In the tables 6.11 and 6.12, there are the results of my big fits to estimate the parameters
for the response functions for each channel.
Note that the mean of the squared samples residuals of the fit of the complex response
model fit is always lower compared to the simple response model fit, and that the pa-
rameters in the complex fit are very similar between the calibrations. A summary of the
results in the next table

| Simple resp | Complex resp
Detector | tau | taushort taulong

ANG2 | 153.749 +- 0.019 | 114.020 +- 0.256 ; 219.150 +- 0.457
ANG3 | 142.685 +- 0.047 | 104.192 +- 1.433 ; 206.408 +- 3.690
ANG4 | 167.390 +- 0.062 | 106.854 +- 0.851 ; 303.735 +- 4.330
ANG5 | 137.382 +- 0.051 | 80.150 +- 0.811 ; 280.948 +- 5.176
RG1 | 149.244 +- 0.035 | 98.041 +- 0.360 ; 253.688 +- 1.727
RG2 | 167.186 +- 0.085 | 124.391 +- 0.205 ; 238.135 +- 0.308

GTF112 | 153.881 +- 0.012 | 94.076 +- 1.210 ; 297.241 +- 6.361
GD32B | 155.938 +- 0.028 | 96.665 +- 4.367 ; 295.098 +- 24.512
GD32C | 131.830 +- 0.055 | 75.891 +- 0.794 ; 271.776 +- 4.809
GD32D | 154.740 +- 0.359 | 96.771 +- 1.478 ; 287.289 +- 9.552
GD35B | 145.586 +- 0.208 | 81.116 +- 2.857 ; 328.670 +- 21.409
GD35C | 147.486 +- 0.015 | 86.767 +- 1.798 ; 302.137 +- 11.015

Table 6.10: Response reconstruction fit results - Summary table. The columns are: de-
tector, tau for the simple response model, taushort and taulong for the complex response
model.

What is the best model? It is possible to evaluate the AIC index [3] [4]

AIC = − ln[L] + 2k

where L is the likelihood, and k is the number of the parameters in the fit. The likelihood
is a function of the noise variance, which is not known (but it is ≤ than the baseline
sample variance). The best model minimizes the AIC index, then the complex response
is the best one if ∑

n

SV2

σ2
+ 2 <

∑
n

SV1

σ2
=⇒ σ2 <

n(SV1 − SV2)

2

where σ2 is the noise variance, n is the number of fitted samples, SV1 is the sample mean of
the squared residuals in the basic response fit and SV2 is the sample mean of the squared
residuals in the complex response fit.
For example, considering the ANG2 response models obtained from the calibration of
20120927, the complex response is a better description from a statistical point of view if

σ2 <
20283398(1556.8− 1542.8)

2
∼ 1.41× 108.



6.15 91

Note that σ2 is expected to be lower than the baseline sample variance, which is cut at
1792.2.

6.15 Conclusions

It is important to note that I have obtained very solid results, in the sense that they are
really similar between the calibrations.
The shape of the tail of GERDA waveforms is not fully described with the simple single-
tau response functions. I can say this because the results from the two-parameters fit is
always better, and it is compatible between different calibrations.
It is important to note that, if the complex model of the response is right, to obtain a τ
for the simple response model by looking only at the final part of the tails will probably
over-estimate the optimal value. I will apply my result to the energy reconstruction and
to the current reconstruction for pulse shape discrimination in the next chapter.
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20120927 | Simple resp | Complex resp
Detector | tau SV | taushort taulong SV | Samples NV limit

ANG2 | 153.750 1556.8 | 114.092 219.128 1542.8 | 20283392 1.414e+08
ANG3 | 142.738 1949.9 | 105.847 202.147 1936.2 | 20283392 1.385e+08
ANG4 | 167.429 1217.5 | 106.538 305.450 1178.4 | 20283392 3.964e+08
ANG5 | 137.441 1750.1 | 79.261 286.729 1627.8 | 20283392 1.240e+09
RG1 | 149.269 1207.6 | 97.727 254.967 1169.5 | 18973588 3.616e+08
RG2 | 167.122 1257.3 | 124.202 238.249 1248.2 | 20283392 9.199e+07

GTF112 | 153.892 1128.6 | 94.167 297.241 1061.2 | 20283392 6.829e+08
GD32B | 155.952 583.6 | 93.669 312.550 514.8 | 11513400 3.960e+08
GD32C | 131.792 730.6 | 75.583 272.515 592.4 | 14853524 1.026e+09
GD32D | 155.151 669.7 | 95.083 298.204 630.4 | 14789148 2.908e+08
GD35B | 145.824 854.5 | 82.358 319.417 721.0 | 7460188 4.980e+08
GD35C | 147.482 803.9 | 84.979 312.861 725.7 | 9468224 3.702e+08

20121011 | Simple resp | Complex resp
Detector | tau SV | taushort taulong SV | Samples NV limit

ANG2 | 153.730 1552.3 | 114.232 218.704 1539.5 | 20283392 1.300e+08
ANG3 | 142.648 1897.8 | 103.336 208.583 1886.1 | 20283392 1.186e+08
ANG4 | 167.318 1198.4 | 107.818 298.811 1164.2 | 20283392 3.470e+08
ANG5 | 137.354 1724.9 | 80.849 276.742 1611.0 | 20283392 1.156e+09
RG1 | 149.204 1177.0 | 98.434 251.723 1146.1 | 20283392 3.140e+08
RG2 | 167.154 1246.0 | 124.609 237.786 1238.3 | 20283392 7.800e+07

GTF112 | 153.882 1101.7 | 92.823 303.602 1043.7 | 20283392 5.874e+08
GD32B | 155.906 582.5 | 101.675 267.075 529.0 | 18550192 4.960e+08
GD32C | 131.893 709.9 | 76.793 266.640 581.4 | 20283392 1.303e+09
GD32D | 154.491 657.1 | 97.835 280.460 614.3 | 20283392 4.337e+08
GD35B | 145.492 822.1 | 83.143 313.444 702.6 | 7224968 4.318e+08
GD35C | 147.502 813.1 | 88.574 290.853 736.2 | 14957516 5.754e+08

Table 6.11: Response reconstruction fit results for different calibrations. The columns are:
detector; tau and sample mean of the squared fit residuals for the simple model response;
taushort, taulong and sample mean of the squared fit residuals for the complex model
response; noise variance limit. The complex model is a best fit if the “real” noise variance
is lower than the noise variance limit.
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20121025 | Simple resp | Complex resp
Detector | tau SV | taushort taulong SV | Samples NV limit

ANG2 | 153.768 1620.2 | 113.736 219.617 1606.0 | 20283392 1.438e+08
ANG3 | 142.669 1943.1 | 103.393 208.493 1931.8 | 20283392 1.141e+08
ANG4 | 167.422 1210.2 | 106.205 306.945 1175.1 | 20283392 3.560e+08
ANG5 | 137.351 1755.4 | 80.341 279.373 1639.2 | 20283392 1.179e+09
RG1 | 149.258 1198.3 | 97.963 254.373 1165.9 | 20283392 3.279e+08
RG2 | 167.282 1259.1 | 124.363 238.370 1250.1 | 20283392 9.207e+07

GTF112 | 153.869 1219.4 | 95.237 290.881 1153.5 | 20283392 6.683e+08
GD32B | 155.956 599.8 | 94.651 305.670 532.1 | 20283392 6.874e+08
GD32C | 131.806 734.7 | 75.296 276.172 600.8 | 20283392 1.358e+09
GD32D | 154.578 702.1 | 97.395 283.203 660.4 | 18332304 3.816e+08
GD35B | 145.442 850.5 | 77.849 353.150 729.4 | 6449980 3.904e+08
GD35C | 147.473 880.4 | 86.747 302.696 797.0 | 20283392 8.459e+08

20121114 | Simple resp | Complex resp
Detector | tau SV | taushort taulong SV | Samples NV limit

ANG2 | 153.781 1630.9 | 114.018 219.261 1616.5 | 20283392 1.459e+08
ANG3 | 142.704 1910.0 | 103.180 209.333 1896.7 | 20283392 1.349e+08
ANG4 | 167.368 1209.7 | 106.898 302.530 1172.6 | 20283392 3.763e+08
ANG5 | 137.378 1722.8 | 79.876 282.384 1606.7 | 20283392 1.178e+09
RG1 | 149.251 1206.2 | 96.492 260.408 1169.4 | 20283392 3.732e+08
RG2 | 167.608 1262.0 | 124.979 237.860 1254.5 | 20283392 7.575e+07

GTF112 | 153.959 1273.8 | 91.924 310.035 1194.8 | 18126796 7.160e+08
GD32B | 155.867 578.2 | 96.735 292.850 514.4 | 10758220 3.431e+08
GD32C | 131.851 747.3 | 76.153 271.692 610.7 | 20283392 1.385e+09
GD32D | 154.649 709.0 | 98.182 279.496 665.9 | 20283392 4.372e+08
GD35B | 145.607 884.8 | 81.029 329.688 750.1 | 10527952 7.092e+08
GD35C | 147.512 832.3 | 93.069 267.173 794.8 | 15997436 2.998e+08

Table 6.12: Response reconstruction fit results for different calibrations. The columns are:
detector; tau and sample mean of the squared fit residuals for the simple model response;
taushort, taulong and sample mean of the squared fit residuals for the complex model
response; noise variance limit. The complex model is a best fit if the “real” noise variance
is lower than the noise variance limit.
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Chapter 7

Response function application

Introduction

In this section I will apply the results obtained in the modelization of the response function
for each detector to the energy reconstruction, to evaluate resolution improvements, and
to the current reconstruction, to evaluate pulse shape discrimination improvements. I will
focus on the first three calibrations of the previous chapter: Sept 27th, Oct 11th and Oct
25th.

7.1 Energy reconstruction with a single τ

For the simple model of the response function I have reconstructed the energies in the
default GERDA way. I have simply used my τ estimates in the analysis. So, the steps
are: baseline restoration, moving window deconvolution, moving window averages.
I have considered two different approaches:

• 1: The τ estimated from the simple-response fit, which is the best one to describe
the response in the range 0-80 µs (half signal window).

• 2: An effective tau estimated from the complex-response fit. In the limit for t→ 0,
the complex response reduces to

R2 =
1

2

(
exp

[
− t

τs

]
+ exp

[
− t

τl

]
)
t→0∼ 1 +

(
− 1

2τs
− 1

2τl

)
t.

Instead the simple response becomes

R1 = exp
[
− t

τ

]
t→0∼ 1 +

(
− 1

τ

)
t.

Then, the best τ in the limit for t→ 0 is

τ = 2
τsτl
τs + τl

.
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According to a fast analysis, there is not a big difference between the two approaches,
and then I will report only the results for the first one.

7.2 Sloped current model with a complex response

Now it is time to move to a complex model for the current. The idea is to model the
current as a piecewise polynomial of order 1. The model parameters are the current
values at the connection points between the pieces. So the model is a continuos function,
differentiable everywhere except at the connection points.
To focus, we can start by considering a single piece, between the times tl and tr (left and
right). It is a sloped current

I[t] =

{
0 (t < tl)||(t > tr)
(−tril+tlir+(il−ir)t)

tl−tr
(tl < t)&&(t < tr)

(7.1)

tl is the start time, tr is the end time, il is the intensity at the start time, ir is the intensity
at the end time.
Note that ∫ ∞

−∞
I[t′]dt′ =

1

2
(il + ir)(tr − tl).

The convolution of the sloped model current with the complex exponential response is
given by

Q[t] =

∫ t

−∞
I[t′]R[t− t′]dt′

and to obtain the sampled version you need to use (6.1).

7.3 Current reconstruction

Now we want to reconstruct the current related to a sampled signal. We can sample the
current in our favourite way. Usually, in a given time region, the current sampling rate
has to be proportional to the signal sampling rate. As explained, my current model is a
piecewise polynomial, and each piece is described in way like (7.1). It is possible to relate
signal samples and current samples by a matrix equation

q = Mi.

To obtain the current by using a least square approach, which permits to manage a
dishomogeneous sampling of the signal, as we have in calibration mode, we need to mini-
mize

f =
1

2
(q −Mi)TN−1(q −Mi). (7.2)
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N−1 is a diagonal matrix ns × ns, which describes the samples weight. For a sample
index a, one can set N−1[a, a] = 4 if the sample q[a] relates to a period of 40 ns, and
N−1[a, a] = 1 if the sample Q[a] relates to a period of 10 ns.
The solution which minimizes (7.2) is given by the linear system

(MTN−1M)i = (MTN−1)q

(MTN−1M) is a positive definite matrix (if the density of current samples is always lower
than the density of signal samples). Then, in principle it is possible to invert the system

i = (MTN−1M)−1MTN−1q

but there are fast algorithms which take advantage of a Cholesky decomposition of the
matrix. I used the Cholesky solver from the GNU Scientific Library [4]. It it possible to
obtain the Cholesky decomposition of MTN−1M one time at all at the beginning of the
analysis, then solve the linear system for each waveform. This way is fast and it provides
a better numerical accuracy.

7.4 Energy reconstruction by resampling

In the second energy reconstruction test, I have obtained an high sampling density current
for each waveform, and then I have resampled the signal with a homogeneous sampling of
10 ns, so that it is possible to use the standard GELATIO pipeline to evaluate the energy.

7.5 GERDA energy reconstruction results

Obtained the energy, I have applied the standard GERDA routine to evaluate the reso-
lution (Full Width Half Maximum) at the peaks. In Tab. 7.1, the resolution at 2614 keV
is presented.
According to the ROOT minimizers, the errors are about 0.02 keV on the resolutions,
then all the numbers seem compatible. On the other side, the resolution obtained with a
physical time constant (M1 in the table) is better or equal than the resolution obtained
with the GELATIO default approach (M0 in the table) in 27/36 cases. In the hypothesis
of random fluctuations ofM0 andM1 around the same value, the expected ratio is 18/36.
The probability to have a more extreme result (>=28/36 or <=8/36) is only 0.1%.
The resolution obtained with the resampling approach (M2 in the table) is better or equal
than the M0 resolution in 23/36 cases, but improvements are usually larger than M1. The
probability to have a more extreme result (>=24/36 or <=12/36) is 6%.
Moreover, bad performances of my approaches for GD35B are probably due to the low
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statistics.
So, results are promising, especially because I think that there is a wide margin for im-
provements (for example: to change the sampling pattern of the current in the current
reconstruction). For sure, the improvements are not so big, and this validates the approx-
imations in the current default energy reconstruction.
It seems interesting that our worse-resolution detectors are ANG2 and RG2, where the
simple triangular model for the current performs in a similar way of the flat model. The
resolution of RG1, which is geometrically very similar to RG2, is significantly better.
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Detector M0 M1 M2

ANG2 4.847 4.847 4.878
ANG3 4.826 4.816 4.766
ANG4 4.488 4.488 4.512
ANG5 4.449 4.442 4.379
RG1 4.708 4.707 4.660
RG2 5.038 5.037 5.014

GTF112 4.472 4.468 4.474
GD32B (Agamennone) 2.884 2.869 2.872
GD32C (Andromeda) 2.937 2.936 2.922

GD32D (Anubis) 3.010 3.014 3.031
GD35B (Achilles) 3.420 3.432 3.710

GD35C (Aristoteles) 2.974 2.973 2.961

Detector M0 M1 M2

ANG2 5.004 5.006 5.054
ANG3 4.786 4.782 4.709
ANG4 4.586 4.582 4.565
ANG5 4.444 4.441 4.425
RG1 4.690 4.679 4.643
RG2 5.181 5.183 5.141

GTF112 4.568 4.569 4.573
GD32B (Agamennone) 2.916 2.914 2.870
GD32C (Andromeda) 2.963 2.957 2.938

GD32D (Anubis) 3.045 3.031 3.074
GD35B (Achilles) 3.734 3.736 3.991

GD35C (Aristoteles) 3.124 3.103 3.096

Detector M0 M1 M2

ANG2 4.901 4.904 4.926
ANG3 4.822 4.818 4.740
ANG4 4.527 4.523 4.502
ANG5 4.433 4.431 4.375
RG1 4.716 4.709 4.643
RG2 5.130 5.128 5.125

GTF112 4.533 4.537 4.515
GD32B (Agamennone) 3.034 3.025 3.028
GD32C (Andromeda) 2.966 2.963 2.996

GD32D (Anubis) 3.088 3.084 3.054
GD35B (Achilles) 2.823 2.925 3.051

GD35C (Aristoteles) 3.066 3.060 3.083

Table 7.1: Resolution results (FWHM at 2614 keV) for the three calibrations (20120927,
20121011, 20121025). M0 = Gelatio defaults. M1 = Single tau response. M2 = Resam-
pling approach.
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Figure 7.1: Energy resolution - 20120927 calibration. Blue line: M0; Pink line: M1; Green
line: M2.
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Figure 7.2: Energy resolution - 20121011 calibration. Blue line: M0; Pink line: M1; Green
line: M2.
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Figure 7.3: Energy resolution - 20121025 calibration. Blue line: M0; Pink line: M1; Green
line: M2.
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7.6 Current reconstruction for Pulse Shape Analysis

In my current reconstruction for pulse shape analysis, I tried an original approach which
allows for simultaneous baseline subtraction. I have sampled the current with high rate
in the high rate region of the signal, and forced the current to be zero outside this region.
Then I have added the baseline to my linear system, so that I have obtained

q =
(
M 1

)(
I
b

)
= Kx

q is a vector of ns = 4396 components, I a vector of nc components, then x is a vector of
nx = nc + 1 components and K is a matrix (ns × nx).
As before, I use a least square approach to solve the system, and the algorithms of the
GNU Scientific Library [4].

7.7 Pulse shape discrimination

It has been proved that the ratio maximum amplitude (A) over energy (E) A/E is a good
parameter for pulse shape discrimination in BEGe detectors [3].
In the double escape peak of the 2614 keV line, which is located at 1592 keV, most of the
events are single site, then it is possible to obtain a distribution of A/E for single site
events by looking at this peak. The neuronal network in the HdM analysis is a somewhat
similar approach.
In the high density 10 ns signal region, I have reconstructed the current with a sampling
period of 20 ns (to avoid overfitting). In my tests, I found more convenient the ratio Q40

(maximum charge collected in 40 ns: the maximum charge collected in a period of two
samples) over Q (total charge) for a set of reasons. It is a dimensionless value; Q40 is
somewhat the integrated version of A, and this reduced the fluctuations, using Q instead
of E avoid a possible non-linearity introduced by the energy reconstruction algorithm.
In my tests I have obtained a very good resolution for Q40/Q, as you can see in Tab. 7.2
and in the summary Tab. 7.3. It is comparable with the resolution on A/E.
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Figure 7.4: Distribution of Q40/Q at the Double Escape Peak (on the left) and at the Full
energy peak (on the right) for 2614 keV gammas from 208Tl for GD32B (BEGe detector,
first line) and ANG1 (coaxial detector, second line) in the 20120927 calibration. For
BEGe detectors, the single site events in the double escape peak have a well-defined A/E
or Q40/Q parameter. That is not true for coaxial detectors.
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20120927 | | 3-sigma
Detector | Mean Devst | low limit

GD32B | 0.232977 0.003127 ( 1.342065%) | 0.223596
GD32C | 0.238548 0.003405 ( 1.427228%) | 0.228333
GD32D | 0.267428 0.003868 ( 1.446253%) | 0.255824
GD35B | 0.243049 0.004331 ( 1.781840%) | 0.230056
GD35C | 0.247545 0.003316 ( 1.339551%) | 0.237597

20121011 |
Detector | Mean Devst

GD32B | 0.233196 0.003119 ( 1.337568%) | 0.223839
GD32C | 0.239087 0.003241 ( 1.355737%) | 0.229364
GD32D | 0.267411 0.003530 ( 1.319924%) | 0.256821
GD35B | 0.244394 0.003998 ( 1.635730%) | 0.232400
GD35C | 0.249345 0.003120 ( 1.251426%) | 0.239985

20121025 |
Detector | Mean Devst

GD32B | 0.233211 0.003275 ( 1.404456%) | 0.223386
GD32C | 0.239407 0.003413 ( 1.425434%) | 0.229168
GD32D | 0.267488 0.003478 ( 1.300387%) | 0.257054
GD35B | 0.235861 0.006804 ( 2.884743%) | 0.215449
GD35C | 0.248242 0.003434 ( 1.383295%) | 0.237940

Table 7.2: Q40/Q results in the double escape peak. The columns are: detector, distribu-
tion mean, distribution devst, devst/mean.

Detector | 20120927 20121011 20121025
GD32B | 0.232977 0.233196 0.233211 | 0.233128 +- 0.000131
GD32C | 0.238548 0.239087 0.239407 | 0.239014 +- 0.000434
GD32D | 0.267428 0.267411 0.267488 | 0.267442 +- 0.000040
GD35B | 0.243049 0.244394 0.235861 | 0.241101 +- 0.004588
GD35C | 0.247545 0.249345 0.248242 | 0.248377 +- 0.000907

Table 7.3: Q40/Q summary, mean of the results of the three calibrations, to check for
variabilities.

7.8 Applications

I have reconstructed the current of the signals related to events with an energy between
1839-2239 keV in the period between Sept 27th and Oct 25th. Three events from a total
of 12 are located in BEGe detectors. According to my pulse shape analysis, they are
multi-site with a confidence level > 3σ, as shown in Tab. 7.4.
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Figure 7.5: Examples of my current reconstruction for the events in the energy window
Qββ ± 200 keV between Sept 27th and Oct 25th, 1/2.
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Figure 7.6: Examples of my current reconstruction for the events in the energy window
Qββ ± 200 keV between Sept 27th and Oct 25th, 2/2.
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Detector | Date | Energy | Q40/Q | Pulse shape discrimination
RG1 | 20120929 | 1898 | 0.131809 |

ANG5 | 20121002 | 2118 | 0.138365 |
GD32C | 20121005 | 1917 | 0.218310 | < 0.228333 ---> MULTISITE

RG2 | 20121006 | 1862 | 0.163800 |
RG1 | 20121010 | 2147 | 0.370803 |

ANG4 | 20121012 | 1843 | 0.147881 |
ANG3 | 20121015 | 1846 | 0.215751 |
ANG3 | 20121017 | 1923 | 0.179345 |
ANG5 | 20121019 | 2158 | 0.147964 |

GD32D | 20121019 | 2121 | 0.241949 | < 0.256821 ---> MULTISITE
RG2 | 20121020 | 1889 | 0.374724 |

GD35C | 20121023 | 1958 | 0.214606 | < 0.239985 ---> MULTISITE

Table 7.4: Events in the region 1839-2239 keV between the first and the last processed
calibration. The columns are: detector, date, energy (keV), Q40/Q, PSD.

7.9 Conclusions

Results are interesting. About the energy reconstruction, there are indications of small
improvements, but for sure my results are not so different compared to the official analysis.
Thus, the GERDA official reconstruction is validated. About the pulse shape discrimi-
nation, in the hypothesis that the A/E approach is valid, all the background events in
BEGe detectors which I have analyzed (three events) result multi-site. For sure, there is
a lot of space for the optimization/tuning (e.g. Q40 could be Q30 with a current sampled
at 15ns) of my procedure. Another planned improvement is to switch from degree-one
piecewise polynomial for the current model to a more general spline. It could be interest-
ing, because, at the moment, the current maximum is clearly constrained on a connection
point.
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Part IV

A look at the data
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Chapter 8

Data management and off-line
monitoring

Introduction

In this chapter, I will describe the database application which I have projected and de-
veloped for the GERDA experiment. It provides a powerful (support of the Structured
Query Language (SQL) [1]) and easy (web interface, preconfigured reports) access to the
data. Reports are daily checked to ensure that everything is running in the proper way:
the application allows an easy off-line monitoring of the data quality.

8.1 Data blinding

Before the start of the Phase I, the rawfiles produced by the Data Acquisition System
(DAQ) of Ge detectors were available to the entire collaboration. In the Phase I, a
blinding procedure is applied to the data: in the GELATIO [2] processing of the DAQ
raw data files, events with an energy in the window Qββ ± 20 keV, according to the DAQ
reconstruction (the algorithm stored in the DAQ board is the same of the GELATIO one)
are not included in the output Tier1 files (Fig. 5.6). Only these files are available to the
collaboration. So, at the moment, the collaboration is blinding itself. Rawfiles are stored,
but no one can access them. No one can look at the events in the blinding window. The
idea is to be able to provide a background model before the opening of the window, to
avoid to be biased in the future. Unblinding of the data is planned for the next months.
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Figure 8.1: Sketch of the input pipeline: data processing flow. After the standard GELA-
TIO pipeline, a few scripts import the data from Tier2 and Tier3 into the database. The
black line represents the blinding: before the blinding, the application launched the full
GELATIO pipeline, starting from the rawfiles; after the blinding, the application starts
from the public Tier1 data.

8.2 The database application

The public signal data files are processed according to the standard GELATIO pipeline
(Fig. 5.6). A set of scripts imports the results of the GELATIO pipeline in a MySQL
database [3], as presented in 8.1. So there are multiple possibilities to look at the data:

• for people skilled in the ROOT framework, it is possible to look directly at the
GELATIO output files

• for people having a good SQL knowledge, it is possible to send queries to the
database by using the web interface

• for a fast check of the data, it is possible to ask for the pre-defined reports of the
application.

Of special importance are the data quality reports, which are daily checked by a human
shifter to ensure that everything is running in the proper way. It is an off-line monitoring of
the data [4]. While the slow-control system of GERDA is able to provide on-line alarms for
an abnormal behaviour of the main sub-components of the experiment (Cryostat, Clean
Room, Water Tank, electronic crates and temperatures, High Voltage Systems, Radon
Monitor and Source Insertion System), the off-line monitoring is related to e.g. noise
levels in the data, event rates, analysis of test pulses. The database is updated once a
day, in the night. The structure of the database application is sketched in Fig. 8.2.
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Figure 8.2: Sketch of the project: data request flow. In blue parts written in C++, in
violet parts written in PHP. The central part of the system is the request manager. It
is able to manage simultaneous requests from the web interface or from the Application
Programming Interface (API), and manage them in a multithread way, with an advanced
queue system for load balancing. Communications from/to the request manager are based
on TCP/IP protocol.

8.3 Rate monitoring

Important parameters to be monitored are the counting rates for different classes of events.
The total event rate in the HPGe detectors is expected to be approximately constant in
time. It is important to monitor the rate of muon-induced events, which are flagged by
the muon veto (in Fig. 8.3, the upper plot shows the normal behaviour). An abnormal
rate could relate to problems in the muon veto system. The possible occurrence of noise
bursts which trigger the DAQ system can cause a substantial increase of the event rate
with respect to the normal value (in Fig. 8.3, central plot, a few noise bursts are clearly
visible). A change in the rate of single detector events could indicate problems with
the thresholds or with the high voltage (in Fig. 8.3 the bottom plot shows the normal
behaviour).

8.4 Data quality monitoring

To monitor the read-out electronic chain and the DAQ system stability, the database
application provides special reports like

• Amplitude of the baseline vs. time. Fluctuations or drifts in the position of the
baseline may indicate changes in the leakage current of the HPGe detectors or in
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Rate of muon-induced events

Rate of noise events

Rate of single detector events

Figure 8.3: Examples of rate monitoring: at the top, the rate of muon-induced events
(bin size=24h). In the middle, the rate of noise events (the acquisition has been triggered
but the signal is not physical) (bin size=1h). At the bottom, the rate of single-detector
events (bin size=24h).
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the gain of the electronic chain. An example is given in Fig. 8.4, top plot. RG2
detector is working bad.

• Root-mean-square (rms) of the baseline vs. time. The fluctuations of the baseline
position with respect to the average value are a direct measurement of the noise of
the electronic chain. Variations or sudden shift of the baseline rms are symptoms
of changes in the operation of the electronic chain.

• Test pulse amplitude vs. time. Since the signal injected in the electronic chain is
constant, a time variation of its amplitude indicates a change in the global response
of the electronic chain, e.g. gain drift, change in the system capacitance, etc. An
example is given in Fig. 8.4, bottom plot. In this particular case, there were
oscillations with a period of 1 day, which were also present in the input test pulse
signal. These oscillations could be explained by temperature fluctuations in the
electronics room.

8.5 Conclusions

A database application has been developed by me to import the output of the GELATIO
processing into a MySQL database, so that it is possibile to use the power of SQL to
extract information from the data. Moreover, the database application features a web-
interface and a set of pre-defined reports, so that it is possible to follow the experiment by
simply looking at the web, bypassing a knowledge of ROOT and of the filesystem structure
of the GERDA data server. The reports are daily checked to ensure that everything is
running in the proper way: it is an off-line monitoring of the data which is complementary
to the slow-control system.
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RG2 channel - Baseline versus time

RG2 channel - Test pulses versus time

Figure 8.4: Monitoring plots: baseline and test pulses equivalent energy reconstruction
as a function of time.
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Chapter 9

GERDA Status

Introduction

In this chapter I will provide a quick summary of the Phase I status. I will focus on the
duty cycle, on the acquired exposure, on the energy spectrum and on the background
index around Qββ.

9.1 Duty cycle and exposure

A key parameter for any experiment is the average duty cycle. Given a time period, it
is the fraction of the livetime (when at least one detector is running in the proper way)
over the total time.
Data acquisition is divided into many runs. During a run, the configurations of the
geometry and of the electronics are kept unchanged. If everything is working properly,
data acquisition during a run is interrupted only when a calibration of the system has
to be performed. It is typically performed once per week and the procedure requires less
than two hours in total. In Tab. 9.1 the list of the first Phase I runs is summarized.
From the beginning of Run 25 to the end of Run 38, the time interval is 336.676 days.
Without considering Run 31 and Run 33, which were quite unstable from the point of
view of electronics, a very conservative estimate of the total livetime is 259.819 days,
which corresponds to a duty cycle

duty cycle =
259.819

336.676
' 77%

which is not optimal. It is probably possible to recover some data from Run 31 and Run
33, and in this case the duty cycle will improve in a substantial way.
The exposure of the enriched detectors in the same period is about 11.2 kg·yr. Plots of
the acquired exposure as a function of time are presented in Fig. 9.1. Two trend lines
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Run | Start | Stop | Time | Live |Fraction| Exp | Quality
| | | days | days | % | kg y |

25 | 2011-11-09 17:50:10 | 2011-12-02 10:51:40 | 22.709 | 20.510 | 90.316 | 0.821 |
26 | 2011-12-02 14:13:43 | 2012-01-11 11:31:45 | 39.888 | 39.278 | 98.473 | 1.573 |
27 | 2012-01-11 11:40:09 | 2012-01-16 16:04:28 | 5.184 | 5.179 | 99.906 | 0.207 |
28 | 2012-01-16 17:26:37 | 2012-01-26 15:45:13 | 9.930 | 9.556 | 96.242 | 0.383 |
29 | 2012-01-26 15:49:37 | 2012-02-16 08:23:57 | 20.691 | 20.363 | 98.418 | 0.815 |
30 | 2012-02-17 12:30:49 | 2012-03-21 10:11:40 | 32.903 | 30.891 | 93.883 | 1.237 |
31 | 2012-03-24 12:54:09 | 2012-04-23 14:52:06 | 30.040 | 28.425 | 94.622 | 1.138 | BAD
32 | 2012-04-23 17:47:31 | 2012-05-22 09:44:09 | 28.664 | 26.559 | 92.655 | 1.064 |
33 | 2012-06-02 12:07:51 | 2012-06-15 09:52:29 | 12.906 | 11.195 | 86.740 | 0.448 | BAD
34 | 2012-06-15 12:08:35 | 2012-07-02 10:25:16 | 16.928 | 14.792 | 87.382 | 0.592 |
35 | 2012-07-08 15:30:21 | 2012-07-27 09:02:20 | 18.731 | 17.739 | 94.706 | 0.856 |
36 | 2012-07-27 09:02:56 | 2012-09-03 18:12:24 | 38.382 | 37.677 | 98.163 | 1.883 |
37 | 2012-09-03 20:11:43 | 2012-09-27 10:44:26 | 23.606 | 23.421 | 99.215 | 1.125 |
38 | 2012-09-27 12:18:59 | 2012-10-11 11:03:22 | 13.947 | 13.853 | 99.323 | 0.665 |

Table 9.1: List of the first Phase I runs. Columns are: run, start time, end time, total time
in days, livetime in days, livetime fraction, exposure of enriched detectors, run quality.

have been computed to describe the curve and it seems that the Phase I goal (an exposure
of 20 kg·y) will be reached in Spring 2013.

9.2 The energy spectrum

In Fig. 9.2, the sum energy spectrum obtained from the enriched detectors is presented.
It refers to single-detector, not induced by muons events, and Runs 25-32 without Run
31, for an exposure of 6.10 kg·yr. Pulse shape discrimination techniques have not been
applied.
The energy window could be divided into four parts:

• The 39Ar region. The fraction of 39Ar in natural Argon is described by an activity
of (1.01±0.08) Bq/kg [1]. The electron emitted in the 39Ar beta decay, could reach
a kinetic energy of 565 keV. If the decay happens near to a detector, it could cause a
signal. 39Ar decays dominate the continuum between 0 and 565 keV. Our estimates
of the 39Ar activity are fully compatible with [1].

• The 2νββ region. Between 565 keV and Qββ, the energy spectrum of enriched
detectors clearly shows the typical shape of 2νββ decays inside the detectors, which
I have presented in Fig. 2.2.

• The high-energy gamma continuum region.

• The α region. Alpha events are related to surface contaminations of the detectors.

The most promiment gamma lines have been identified. They are related to 40K, 42K,
214Bi and 208Tl decays.
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Figure 9.1: Duty cycle and exposure. In the upper plot, the livetime fraction is shown as a
function of time. The bin size is 1 day. The red line describes the acquired exposure. In the
lower plot, two trend lines of the exposure versus time curve are presented. Considering
all the Phase I period, the result is described by the red dashed line. Considering only
the last months, the result is described by the blue dashed line. Note that the blue line
is steeper, due to the higher deployed mass. In any case, GERDA will probably reach an
exposure of 20 kg·yr (the Phase I goal) in Spring 2013.
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Figure 9.2: Sum energy spectrum (single-detector spectra are summed). Anticoincidence
and muon veto cuts have been applied. Pulse shape discrimination techniques have not
been applied. In the upper plot, the full sum energy spectrum of the enriched detectors,
after an exposure of 6.10 kg·yr (Runs 25-32 without Run 31). In the lower plot, a zoom of
the region 1600-2700 keV. In this plot, both enriched (red bars) and natural (blue bars)
detectors are considered. The green bar describes the blinding window, Qββ±20 keV. The
background index, considering a window of Qββ± 100 keV (without the blinding window,
so the window size is 160 keV), is 0.020 cts/(keV kg yr).
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Figure 9.3: The GERDA background index compared to the background of IGEX and
HdM.

9.3 Background index

In the lower plot of Fig. 9.2, the background index after an enriched exposure of 6.10

kg·yr is presented.
In the window Qββ ± 100 keV minus the blinding window, 20 single-detectors non-muon-
induced events has been found. Thus the average background index is

B.I. =
20 counts

160 keV 6.10 kg · yr
= 0.020

counts
keV kg yr

.

In Fig. 9.3, the background index for natural and enriched detectors, in the Commission-
ing and in the Phase I, is compared to the one of the Heidelberg-Moscow [2] and IGEX
[3] experiments. GERDA shows the lowest background in 76Ge experiments.
It is quite important to emphasize the improvement obtained by surrounding the detector
strings with a thin copper shield (the mini-shroud, Fig. 4.4). The mini-shroud has been
developed because it helps in creating a field-free enviroment inside the cryostat. It seems
that, without the minishroud, the electric field could attract ions near the detectors, ex-
pecially 42K ions which result from 42Ar beta decay. The decays of 42K ions can release
a photon of 1524 keV, which is the most evident line that it is possible to see in the
GERDA energy spectrum, and the β emitted could reach a kinetic energy of 3525 keV. If
the decay takes place near the detector surface, it could release an energy around Qββ in
the detector. The observed intensity of the 1524 keV line correspond to an 42Ar activity
in natural argon above two times the upper limit in literature [4]. I will return on the
42Ar problem in chapter 11.



122 9.4

9.4 Conclusions

In this chapter I have given a quick summary of the present status of the GERDA exper-
iment. In the first 336 days of Phase I, the duty cycle is about 77%, and the collected
exposure is 11.2 kg·yr. It is probably possible to recover some data from two unstable
runs. GERDA features the lowest background index obtained in 76Ge experiments. An
exposure of 20 kg·yr should be reached in Spring 2013, and, with the present level of
background, will allow a strong statement about the validity of the Klapdor’s analysis.
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Chapter 10

Muon-induced background

Introduction

In this chapter I will analyze the performance of the GERDA muon veto. The goal is
to provide an estimate of the contribution of non-identified muon-induced events in the
Germanium detectors to the background around Qββ.

10.1 The muon veto

The Gran Sasso mean overburden of 3500 m.w.e. reduces the flux of cosmic muons
to about 1.2/(h · m2) and shifts the mean energy to 270 GeV. Muons penetrating the
detector will lose energy by both electromagnetic interactions and by inelastic reactions
with nuclei in which high energy neutrons can be produced. These neutrons will cause
inelastic interactions themselves and produce more isotopes and neutrons. Hence muons
are both a direct and indirect background source.
GERDA features a muon veto which relies on two components: the water tank, which is
equipped by photomultipliers and is able to detect the Cherenkov light, and an array of
plastic scintillators on the roof of the clean room. Signals from both detector systems are
combined and a logical signal is continuously sent to the Germanium DAQ.

10.2 Monte Carlo simulation

The observed rate and energy distribution of muon-induced events in the Germanium
detector (events which are flagged by the muon-veto) have been compared to the results
obtained from a Monte Carlo simulation.
The Monte Carlo simulation has been performed using the GEANT4-based [1] framework
MaGe [2], which is being developed jointly by the GERDA and Majorana Collaborations.
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The physics models, the generation of the initial state, and most of the basic settings
of the simulation are identical to what was used in [3]. In particular, the muons that
are used as the initial state are sampled according to the code MUSUN [4], which con-
tains a description of the overburden profile of the Gran Sasso mountain, and is hence
able to produce the appropriate energy-angular correlation. Primary muons are tracked
through a 1 meter thick layer of rock and through the experimental set-up, along with
the electromagnetic and hadronic showers originated by them. The Monte Carlo model
of the GERDA experiment used in [3] was a preliminary version of the design, featuring a
different cryostat and a different detector array. In the Monte Carlo work presented here,
the actually-built GERDA set-up has been taken into account; the simulation contains
the array of three natural HPGe detectors which had deployed in the first part of the
GERDA commissioning. The delayed radiation following the muon interaction (i.e. de-
cay of radioactive isotopes) is not taken into account, lacking the possibility to correlate
these events with the parent muon event detected by the veto.

10.3 Data and Monte Carlo comparison

A period of about 100 days has been considered (Runs 10-13. Previously, pulser events
were not tagged with a simultaneous logical signal, and the properties of muon-induced
events can be similar of those of test pulses: high energy, high detector multiplicity).
The rate of muon-induced events flagged by the muon veto has been compared with the
Monte Carlo prediction in Tab. 10.1. It is clear that there is a really good agreement
between Monte Carlo and data, and this can be seen as an indication that the efficiency
of the muon veto is quite close to 1. The distributions of energy releases in a detector
superimposed with the Monte Carlo prediction, for all the muon events and for single-
detector events, are presented in Fig. 10.1. Single detector events are clearly more
interesting, because they are not cut by an anticoincidence analysis.
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Events rate Events rate after a.c. Ratio
events/day events/day

Data 2.94± 0.17 2.04± 0.14 (69.4± 6.2)%

Monte Carlo 2.88± 0.43 2.02± 0.30 (70.1± 14.8)%

Table 10.1: Rate of muon-induced events in Ge detectors. Only events with at least
one energy deposit above 100 keV in a single detector have been considered, because the
sensitivity of the GELATIO energy reconstruction is not clear at lower energies. In the
first column, the event rate of all the muon-induced events is given. In the second column,
the event rate of muon-induced single-detector events is presented. The last column gives
the ratio between the latter and the former.

Figure 10.1: Energy spectrum of events in coincidence with the muon veto: sum of single-
detector spectra before and after anti-coincidence cut. Black = experimental data. Blue
= Monte Carlo prediction. Monte Carlo is scaled to the same exposure of the data.

In Fig. 10.1, the full energy spectrum above 100 keV has been considered. Now, I will
focus on the Qββ ± 200 keV region, which is one of our reference windows for background
estimates. A period of about 189.5 days has been considered (runs 1-13 except run 8,
when muon veto was disconnected from the DAQ. In this case, pulser events are not a
problem, because the equivalent energy is higher than Qββ). Rates and Monte Carlo
prediction are presented in Tab. 10.2. In Fig. 10.2, the distribution of energy releases in
a detector superimposed with the Monte Carlo prediction. As in the previous case, the
compatibility between data and Monte Carlo prediction is really good.
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Events Events after a.c. Ratio
Data 9± 3.0 3± 1.7 (33.3± 21.9)%

Monte Carlo 12.7± 1.9 5.0± 0.8 (39.3± 8.6)%

Table 10.2: Muon-induced events in Ge detectors, Runs 1-13 except Run 8, with and
without the anti-coincidence cut. Monte Carlo is scaled to the same exposure of the data.

Figure 10.2: Energy spectrum in the region of interest (ROI: Qββ ± 200 keV): sum of
single-detector spectra before and after anti-coincidence cut. Black = experimental data.
Blue = Monte Carlo prediction. Monte Carlo is scaled to the same exposure of the data.

10.4 Muon veto efficiency

Now, we can move to the Phase I data. The goal is an estimate of the muon veto efficiency.
In a rigorous sense, considering all the muons which traverse the veto, the muon veto
efficiency is the number of flagged muons divided by the total number of muons. But only
the information about the number of flagged muons is available.
How it is possible to estimate the “muon rejection efficiency”? The idea is to compare
the number of muon-induced events in the germanium array which are flagged by the
muon veto to the number of events which are not flagged by the muon veto, but which
are probably induced by muons [6].
How to select these events? We can consider two classes of events:

• events with total energy above 4 MeV (namely above the Q-value of the ordinary
β and γ-emitters) and at least two detectors fired. Notice that events due to α

emitters could have more than 4 MeV of released energy (up to about 8 MeV) but
this would be on a single detector
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• events with more than 8.5 MeV deposited on a single detector. Being the energy
above the Q-value of the natural α emitters, these events can be induced by cosmic
ray muons only.

In my analysis, I have considered all the working detectors in GERDA runs 25-34, without
runs 31, 33 (which were quite unstable).
The livetime is 167.129 days, and the total exposure is 10.57 kg yr (Tab. 10.3). I found
six events of the first class, but it is not clear if two of them are really “physical”. But, to
have a conservative estimate, I decided to keep these events in the statistics.
I have not found events of the second class.
In the same period, 1193 events were flagged by the muon veto.
Given N = 1193+6 genuine muon events, the probability to have n = 1193 vetoed events
out of N is given by the binomial distribution

f [n|N, ε] =
N !

(N − n)!n!
εn(1− ε)N−n

being ε the muon-veto rejection efficiency. Assuming a flat prior probability between 0 and
1 for the efficiency, one can use the Bayes’ theorem [5] to infer the posterior probability
density function (PDF) of ε

f [ε|N, n] =
(N + 1)!

n!(N − n)!
εn(1− ε)N−n.

This continuous distribution has been plotted in Fig. 10.3. Then, my final result is

ε = 0.9950+0.0017
−0.0023 ε > 0.9900 95% lower limit.

Detector | Exposure
| kg y

ANG1 | 0.2488
ANG2 | 1.2963
ANG3 | 1.0940
ANG4 | 1.0867
ANG5 | 1.2564

GTF112 | 1.3576
GTF32 | 0.9680
GTF45 | 0.9642

RG1 | 0.9668
RG2 | 0.9920
RG3 | 0.3416

Table 10.3: The considered statistics. Total exposure: 10.57 kg yr.
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Figure 10.3: Muon veto efficiency - probability distribution. The green line indicates the
best value, the yellow lines delimit the 68% minimal band, the red line is the 95% lower
limit.

10.5 Background due to muons

From the previous result, it is possible to estimate the background induced by non-flagged
muon events with a single-detector energy deposit between 1839 and 2239 keV (Qββ±200

keV.
During the considered period, I found 8 identified muon events with a single-detector
energy release in the region of interest (ROI).
Inverting the Poisson distribution using a flat prior with the Bayes theorem, it is possible
to obtain the probability distribution for the true rate of these events λid,1.
The idea is to obtain a probability distribution for the background index by using a
sampling Monte Carlo approach.
From the PDF for the efficiency and the PDF for λid,1 one can extract samples ε̂ and
λ̂id,1. In this way, using the definition of efficiency, in the hypothesis that the efficiency
for single detector muon events is the same that the general one, it is possible to obtain a
sample λ̂un,1 of the distribution of unidentified muon-induced single detector events with
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energy in the ROI

ε̂ =
λ̂id,1

λ̂id,1 + λ̂un,1
=⇒ λ̂un,1 = λ̂id,1

(1

ε̂
− 1
)
.

By repeating this step many times, one can obtain the PDF for λun,1. It is easy to obtain
the Background Index due to unindentified muons (Bµ) from the PDF for λun,1 because

Bµ =
λun,1

exposure · 360 keV
.

where the correct window size has been used: 400 keV minus the 40 keV of the blinding
window is equal to 360 keV. The plot of the final distribution is given in Fig. 10.4. Thus,
my final result is

Bµ = (1.0+0.7
−0.5)× 10−5 counts

keV kg yr
Bµ < 2.8× 10−5 counts

keV kg yr
95% upper limit.

10.6 Conclusions

Considering that the Phase I background goal is 10−2 counts
keV kg yr , and the Phase II background

goal is 10−3 counts
keV kg yr , non-flagged single-detector events in the region of interest are for sure

a very minor contribution to the total background: the muon veto is adequate for the
GERDA Phases I and II.
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lower limit.
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Chapter 11

Gamma background

Introduction

In this chapter I will describe an original approach to find gamma ray peaks in the energy
spectrum, without any other input. It is a fully blind approach. Peaks are modeled with
a gaussian shape, and the algorithm is able to provide their mean, standard deviation
and area, which is proportional to the gamma rate. I will compare my results with the
“official” GERDA results, and with the background of the Heidelberg-Moscow experiment.
At the end of the chapter, I will discuss the anomalous 42Ar related background.

11.1 Peak finder

It is important to find and identify gamma peaks in the energy spectrum, because they
can drive the decomposition of the continuum.
There are only few “eye-visible” peaks in the GERDA energy spectra. This was expected,
because GERDA is a low background experiment, and the exposure collected until now
is too low to provide gaussian-shape evidence for low-rates photopeaks.
I have developed an algorithm to scan the sum energy spectrum (sum of the energy
spectrum of each detector), to search for count excesses compared to a smooth model for
the continuum. The key idea is to fit the spectrum by using an uniform spline. Uniform
means that the distance between the connection points of the piecewise polynomial is
a constant, then the region sizes are constant. The spline should be characterized by
a region size very large compared to the typical peak size, which depends on detector
resolutions. Typically, the peak scale is on the order of a few keV.
In this way, it is obvious that peaked structures characterized by the typical line-scale are
fitted in a bad way by the spline. Thus, after the fit, it is possible to scan the spectrum
for count excesses compared to the fit result. When a count excess is identified, the small
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peak window is excluded from the next iteration of the algorithm. Then, in the next
iteration, the spline is unconstrained in these windows. The iterations will stop when the
scan converges: when no new count excesses are observed.
In my opinion, this approach is interesting especially for the modeling of the continuum.
When the peak problem is managed in a “local” way, the standard approach is to model
the background as a very simple polynomial (order 0 or 1) and to choose a window large
enough to constrain the background in a good way. Thus, the background model is “local”,
and different result could be obtained for different window widths. In my approach the
only scale involved is the region size, which is very large compared to the line size, and
the fit is a function of the whole spectrum.

11.1.1 m-spline fit of the energy spectrum

The model

It is possible to try an unbinned or a binned fit of the spectrum. We can model the
background index as

B[E] =
n∑
k=1

bkBk[E]

where the n functions Bk[E] are the spline basis for the region configuration. I have
chosen to work with cubic splines (three is usually the degree of choice, because it is
a good compromise between quality and risk of polynomial oscillations), but the spline
order is simply a parameter of the algorithm. {bk} should be non-negative, to ensure the
positivity of the model in the whole energy range considered. The trick to restrict spline
coefficients to positive values is called m-spline approach [1]. At a first glance, it seems
to limit the spline space in an excessive way, but in practice a minor spline quality can
be balanced by using more connection points (a lower region size).
Now it is time to provide expressions for the unbinned and binned likelihoods.

Unbinned fit

In an unbinned fit, the likelihood is given by

Lunbinned =
(∏

i

∑n
k=1 bkBk[Ei]∑n
k=1 bkQk

)(exp
[
−
(∑n

k=1 bkQkE
)]

(
∑n

k=1 bkQkE)N

N !

)
where E is the exposure, N is the number of counts in the full fit region, i is an event
index and

Qk =

∫
Bk[E]dE
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is the integral of the basis Bk[E] in the full fit region. Thus we need to find n parameters:
the bk coefficients. Note that an expression like

Lunbinned,simplified =
(∏

i

∑n
k=1 bkBk[Ei]∑n
k=1 bkQk

)
with a fixed value for one of the bk seems equally interesting. The number of parameters
decreases of 1. I have not preferred this expression, because it manages the coefficients
in an asymmetric way during the minimization: one is fixed (and pay attention to its
scale, a wrong choice could cause numerical problems), the others are free to move in the
parameters space.

Binned fit

In a binned fit, the likelihood is instead

Lbinned =
(∏

i

exp
[
−
∑n

k=1 bkMk,iE
]
(
∑n

k=1 bkMk,iE)ni

ni!

)
where i is the bin index, ni the number of events in the bin and

Mi,k =

∫
i−bin

Bk[E]dE

is the integral of the basis Bk[E] in the bin.

11.1.2 Automatic choice of the energy scale

What is a good energy scale (the size of the regions in the spline fit) for our purposes? We
need an energy scale higher than the peak structure, but low enough to have a good fit of
the continuum. The idea is to repeat a fit of the full energy spectrum for different energy
scales, and then choose the best model according to the usual model selection indexes
(the Bayesian Information Criteria (BIC) and the Akaike Information Criteria (AIC)) [2].
So, to have a first idea of the energy scale for the m-spline fit, I have fitted the energy
spectrum between 300 and 4000 keV with a cubic m-spline varying the number of regions
from 1 to 20.
From the left plot in Fig. 11.1, it is possible to understand that BIC and AIC indexes
have the same behaviour. The main features of the spectrum are not fitted with a num-
ber of regions less than 11. Between 11 and 12, the indexes worse a little, and it means
that main features have been detected, and now the fit is trying to describe second-order
features. Eleven regions corresponds to a energy scale of 336 keV, twelve regions to a
energy scale of 308 keV.
I finally decided to use a 300 keV region size, and to choose as fit region the range 250-3250
keV.
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Figure 11.1: Automatic choice of the energy scale.

11.1.3 Finding peaks in the energy spectrum

After the fit, the algorithm scans the full energy spectrum to search for rate excesses.
By default, the algorithm test window sizes between 2 and 10 keV, at steps of 0.25 keV.
It moves the window over the energy spectrum, at steps of 0.25 keV.
Given a window, if the number of observed counts is “very high” compared to the fit
expectation value, the window is excluded from the next iteration of the fit. Very high
means a p-value below a predefined value (I choose 10−4) in the window region. A gaussian
fit is done to obtain the parameters which describe the peak on the background described
by the m-spline model.
It is important to remind that, when fitting a wide energy range and examining small
bins, a count excess could be simply a statistical effect.
It means: given a definition of what is a line (p-value below 10−4) (note that this is a
local estimate), the algorithm could be improved to estimate for each line the probability
that it is a statistical effect (and this is a global estimate). Currently, the algorithm focus
only on peaks detection, so it is important to keep into account that false positives are
possible.

11.2 Peak finder results

The data set for this analysis is made of GERDA Runs 25-34, without 31 and 33. I have
considered only stable enriched detectors: ANG2, ANG3, ANG4, ANG5, RG1, RG2. The
livetime is 167.129 days, and the total exposure in the period is 6.6924 kg yr.
I have tested the line-finder algorithm using different region-size scales, from 75 keV to
300 keV. Despite the fits are cleary different, as it is possible to see in Fig. 11.2 the
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Region size: 75 keV. Region size: 300 keV.

Figure 11.2: Line finder results after ten iteration.

line selection agree in a stunning way between the most different scales. Few differences
appear in the line widths, but the line centers are really compatible! In Tab. 11.1 the
results obtained by using the suggested 300 keV window are presented, interpreted, and
compared with the official ones and with the background estimates of the Heidelberg-
Moscow experiment. The only clear difference between my results and the official ones is
in the rate of 351 keV 214Pb line. It is probably due to the fact that it is located on the
39Ar region, which is very sloped. Note that there are three regions which require further
investigation (around 828 keV, 884 keV, 999 keV) and that only one 60Co peak is clearly
visible.
Remember that I have summed all the detectors spectra, to manage the statistics in the
simplest way. But, if a line appear only in few detectors, this line could be missed by the
algorithm.
It is clear that improvements are possible. The most important is probably the ability to
fit one detector at time, and sharing the information between the channels for the peaks
identification.

11.2.1 GERDA and Heidelberg-Moscow background comparation

From Tab. 11.1 it is quite clear that our background is lower than the background of the
HdM experiment, at least above the 39Ar region.
This is a proof of the quality of our design: the GERDA concept is validated. The rates
for most evident gamma lines are visually compared in Fig. 11.3.
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Mean Sigma | Rate (my algo) | Isotope | Rate (official) | Rate (HdM) |
| counts/(kg yr) | | counts/(kg yr) | counts/(kg yr) |

351.80 2.50 | 23.5 - 5.2 + 5.3 | 214 Pb | 12.5 - 7.7 + 9.5 | 138.7 +- 4.8 |
513.69 1.67 | 6.7 - 2.1 + 2.2 | e^+ e^- 208 Tl | | |
609.46 1.79 | 7.5 - 2.1 + 2.2 | 214 Bi | 6.8 - 4.1 + 3.7 | 105 +- 1 |
828.68 0.62 | 4.2 - 1.3 + 1.4 | ?????????????? | | |
884.95 0.47 | 3.5 - 1.1 + 1.2 | ?????????????? | | |
912.63 0.35 | 3.1 - 1.0 + 1.1 | 228 Ac | < 5.8 | 29.8 +- 1.6 |
968.9 | | 228 Ac | 2.7 - 2.5 + 2.8 | 17.6 +- 1.1 |
999.79 0.65 | 3.8 - 1.2 + 1.3 | ?????????????? | | |

1172.54 0.47 | 2.5 - 0.9 + 1.0 | 60 Co | 4.8 - 2.8 + 2.8 | 55 +- 1 |
1460.88 2.88 | 13.6 - 1.7 + 1.8 | 40 K | 13.5 - 2.1 + 2.2 | 181 +- 2 |
1524.65 2.91 | 59.9 - 3.1 + 3.2 | 42 K | Dedicated work | |
1764.20 3.08 | 3.9 - 0.8 + 0.9 | 214 Bi | 3.6 - 0.8 + 0.9 | 30.7 +- 0.7 |
2203.50 1.52 | 0.8 - 0.3 + 0.4 | 214 Bi | 0.4 - 0.4 + 0.4 | 8.1 +- 0.5 |
2293.37 0.68 | 0.5 - 0.2 + 0.4 | 214 Bi | | |
2449.38 0.79 | 0.4 - 0.2 + 0.3 | 214 Bi | | |
2614.54 2.50 | 1.6 - 0.5 + 0.6 | 208 Tl | 1.5 - 0.5 + 2.6 | 16.5 +- 0.5 |

Table 11.1: Results of my line-search algorithm. The columns are: line position, resolu-
tion, rate, interpretation, official GERDA rate, HdM rate [3].

Figure 11.3: Rate of γ lines: comparison between GERDA and Heidelberg-Moscow.
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11.3 The 42Ar problem

As shown in Tab. 11.1, the most intense line that is observed in the GERDA background
arises from 42K β decay. A photon of 1524.7 keV is emitted with a branching ratio of
18.0%.
42K nuclei originate from 42Ar β decays. Like 39Ar, 42Ar is a radioactive component of
the natural argon. Its decay scheme is shown in Fig. 11.4.
It is possible to estimate the 42Ar activity in natural Argon required to obtain this line
rate.
By using Monte Carlo simulation, the number of counts/day expected at 1524 keV for an
42Ar activity of 1 µBq/kg (which has been named “efficiency”, Tab. 11.2) in an electric
field-free configuration has been computed for each detector.
109 decays of 42K have been simulated in the Liquid Argon Volume surrounding the
detectors. The initial states for the 42K decay are sampled by generator Decay0 [4], which
is able to produce the proper shape of the β decay spectrum, taking into account the fact
that the β-decay is not Fermi-allowed.
The total efficiency is 22.832×10−3(counts/day)/(µBq/kg). Considering the error on this
number minor than the error in the rate, it is possible to obtain for the activity

A =
59.9 counts/(kg · yr) · 6.962 kg · yr

22.832× 10−3 counts/day
µBq/kg · 167.129 days

= 105.0+5.6
−5.4

µBq
kg

The official result is at the limit of compatibility

A = 92.8+5.3
−5.1

µBq
kg

.

In any case, the key point is that our estimates are at least two times above an upper
limit in literature: 41 µBq/kg (90% C.L) [5].

Detector | Efficiency (counts/day)/(uBq/kg)
ANG2 | (4.538 +- 0.061) x 10^(-3)
ANG3 | (3.735 +- 0.054) x 10^(-3)
ANG4 | (3.936 +- 0.057) x 10^(-3)
ANG5 | (4.083 +- 0.052) x 10^(-3)
RG1 | (3.129 +- 0.050) x 10^(-3)
RG2 | (3.411 +- 0.052) x 10^(-3)

Table 11.2: Detector efficiencies for 42Ar decay.



138 11.4

Figure 11.4: 42Ar decay scheme.

11.4 Conclusions

I have developed an algorithm to search for peaks in the energy spectrum in an automatic
way. Result are consistent with the official ones.
The background in GERDA is lower than the background observed in the Heidelberg-
Moscow experiment.
A very high rate of 42K decays is observed. Their signature is a photon emitted at 1524.7
keV. 42K originates from 42Ar, and, to explain the line rate, it is required an 42Ar activity
in natural Argon more than two times above a 90% upper limit in literature [5].
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Chapter 12

Measurement of the half-life of the
2νββ decay

Introduction

Probably, the most important result obtained by the GERDA experiment up to now, is
a new estimate of the half-life for the two-neutrino ββ decay (2νββ) of 76Ge [1]

76Ge→ 76Se + 2e− + 2νe.

The 2νββ contribution is clearly visible in the sum energy spectrum of the enriched
detectors, as shown in Fig. 12.1.
In this chapter I will describe my approach to the estimation of the half-life of the decay,
which I have developed in a parallel way with the official one, to have a fundamental
cross-check of the analysis. At the end of the chapter I will move to the official result, to
discuss the systematics and to compare it with the previous experimental values.

12.1 The data set

My data set is made of GERDA runs 25-34, except Run 31 and Run 33 which were quite
unstable. I have considered the most stable enriched detectors: ANG2, ANG3, ANG4,
ANG5, RG1, RG2. Their exposures, degree of enrichment and active mass fraction are
summarized in Tab. 12.1. The livetime is 167.129 days; the total exposure is 6.6922 kg·yr
(my dataset is a bit wider compared to the 6.10 kg yr of the official analysis (Fig. 12.1)).
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Figure 12.1: Comparison between the sum energy spectrum of natural and enriched detec-
tors. The different weight of the 2νββ contribution is evident. This is an official GERDA
plot. It refers to an exposure of 6.10 kg yr.

Detector | Exposure | Enrichment | Active mass fraction
| kg yr | |

ANG2 | 1.2963 | 0.866 +- 0.025 | 0.871 +- 0.042
ANG3 | 1.0940 | 0.883 +- 0.026 | 0.866 +- 0.056
ANG4 | 1.0867 | 0.863 +- 0.013 | 0.899 +- 0.049
ANG5 | 1.2564 | 0.856 +- 0.013 | 0.831 +- 0.039
RG1 | 0.9668 | 0.855 +- 0.001 | 0.876 +- 0.050
RG2 | 0.9920 | 0.855 +- 0.001 | 0.865 +- 0.047

Table 12.1: Detectors summary table: the columns are: detector, exposure (kg·yr), degree
of enrichment (values from [2]), active mass fraction (values from [3]).
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12.2 The model

The idea is to obtain a decomposition of the energy spectrum for each detector. In my
model, I have considered four components:

• 2νββ

• 42K (decays in liquid argon)

• 214Bi (decays in the holders)

• 40K (decays in the holders).

The 2νββ is the component of interest, and 42K, 214Bi and 40K are evident in the energy
spectra, because of the lines at 1525 keV, 1764 keV and 1460 keV.
214Bi and 40K have been considered “close sources” (near the detectors). The ratio of
intensities of 214Bi γ lines is consistent with this hypothesis.
For sure, other components provide minor contributions. The effect of the missing com-
ponents is treated as a systematic error. I will discuss systematics in the following.
The energy spectrum of each component for each detector has been obtained from Monte
Carlo simulations. Thus, we need to fit the simulated spectra to the data.

12.3 The fit configuration

My fit region is the energy range 600-1800 keV, as shown in Fig. 12.2. Namely, it is above
the 39Ar region and wide enough to include the 214Bi line at 1764 keV, to better constrain
the fit for this component. My approach is a maximum likelihood binned fit, the bin size
is 30 keV.
My fits parameters for the 42K, 214Bi, 40K components are the total number of counts
expected in the fit region. One parameter is used for each component for each detector.
Considering the 2νββ component, the number of expected 2νββ counts in the fit energy
region, for each detector, is given by (3.2)

Nexp,2νββ,det = η
NA

A
(aMt)

ln[2]

T 2νββ
1/2

f2νββ,det

where f2νββ,det is the fraction of events in the fit energy region to the total number of
2νββ events in the full energy spectrum.
To describe this component, I have chosen the product of the degree of enrichment and
the active mass fraction a · η for each detector, and the global parameter T 2νββ

1/2 .
I have also chosen a flat priors for all the parameters, except for {(a · η)det}, for which I
have provided gaussian priors using the values in Tab. 12.1.
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Figure 12.2: The fit region.

Thus, the total number of fit parameters is 6 · 4 + 1 = 25: 24 nuisance parameters and
T 2νββ

1/2 .

12.4 Bayesian approach

To lighten the notation we can define

edbc ≡ expected counts[detector, bin, component]

edb ≡ expected counts[detector, bin] =
∑
c

edbc odb ≡ observed counts[detector, bin].

From the Bayes theorem it is possible to write

pr[T 2νββ
1/2 , ~v] =

pr[ ~odb|T 2νββ
1/2 , ~v]pr[T 2νββ

1/2 , ~v]

pr[ ~odb]
∝ pr[ ~odb‖T 2νββ

1/2 , ~v]pr[T 2νββ
1/2 , ~v]

where pr refers to a probability density, ~odb represents the data and ~v is the vector of the
24 nuisance fit parameters. pr[ ~odb|T 2νββ

1/2 , ~v] is the likelihood

pr[ ~odb|T 2νββ
1/2 , ~v] =

∏
det

∏
bin

exp[edb]e
odb
db

odb!

and pr[T 2νββ
1/2 , ~v] is the global prior, which is the product of a gaussian prior for aη for

each detector. pr[T 2νββ
1/2 , ~v] is the posterior probability, and a simple T 2νββ

1/2 estimate can
be obtained by maximizing it. It is the maximum a posteriori (MAP) approach.
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12.5 Maximum a posteriori results

The MAP results are summarized in Tab. 12.2. The decomposition of the sum energy
spectrum is shown in Fig. 12.3. The obtained half-life is

T 2νββ
1/2 = (1.866± 0.073)× 1021 yr.

Detector | Counts | 2nuBB 42K 214BI 40K | Total
ANG2 | 2197 | 1766.41 337.14 64.44 39.43 | 2207.43
ANG3 | 2055 | 1655.76 261.04 120.75 5.15 | 2042.70
ANG4 | 1872 | 1565.60 213.88 60.77 33.94 | 1874.19
ANG5 | 2250 | 1704.53 325.79 137.25 74.15 | 2241.72
RG1 | 1760 | 1356.83 302.26 67.23 33.00 | 1759.31
RG2 | 1715 | 1335.77 287.46 55.48 44.94 | 1723.65

Table 12.2: Maximum a posteriori results. The p-value of the fit is 0.415.

Figure 12.3: Experimental data (markers) superimposed with the best-fit model (black
histogram). Individual contributions from 2νββ (red), 42K (blue), 214Bi (green) and 40K
(purple) are shown separately. Linear and log scale are shown.

12.6 Marginalization

To obtain a more precise estimate of T 2νββ
1/2 it is necessary to integrate the posterior over

all the nuisance parameters.

pr[T 2νββ
1/2 ] =

∫
pr[T 2νββ

1/2 , ~v]d~v.

In the official analysis, this integral is evaluated by using a Markov Chain Monte Carlo
(MCMC) approach, in particular a random walk Metropolis algorithm which is part of
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the BAT toolkit [4]. MCMC approaches are very useful, but it is important to cross-check
their results, because, for example, their convergence could be slow.
I tried to choose something different. Common numerical approaches fail because the
number of parameters is too high.
Thus, I decided to solve the integral by using the Laplace approximation: the idea is to
approximate the posterior distribution with a Multivariate Gaussian around its maximum.
Given T1 and T2 (possible values for T 2νββ

1/2 ), defining

f ≡ − log[pr[T,~v]] ~v1 ≡ min f [T1, ~v] ~v2 ≡ min f [T2, ~v]

it is possible to write

pr[T1]

pr[T2]
=

∫
exp

[
− f [T1, ~v]

]
d~v∫

exp
[
− f [T2, ~v]

]
d~v
'

exp
[
− f [T1, ~v1]

] ∫
exp

[
− 1

2
(~v − ~v1)TH[~v1](~v − ~v1)

]
d~v

exp
[
− f [T2, ~v2]

] ∫
exp

[
− 1

2
(~v − ~v2)TH[~v2](~v − ~v2)

]
d~v

=
pr[T1, ~v1](2π)n/2|H[~v1]|−1/2

pr[T2, ~v2](2π)n/2|H[~v2]|−1/2
=

pr[T1, ~v1]|H[~v2]|1/2

pr[T2, ~v2]|H[~v1]|1/2

where H is the Hessian Matrix of f respect to the parameters ~v and n is the number of
nuisance parameters.
In this way it is possible to analyze a set of values T1...Tn, and then construct the proba-
bility distribution which is presented in Fig. 12.4.
My final result is

T 2νββ
1/2 = (1.881+0.053

−0.052)× 1021 yr. (12.1)

Using the official GERDA code and a similar fit configuration (using the parameters in
Tab. 12.1), the obtained result is

T 2νββ
1/2 = (1.877+0.057

−0.050)× 1021 yr

so my result and the MCMC integration validate each other.

12.7 Single detector test

A final check: I have tried a separate fit for each detector. One detector at time. One
T 2νββ

1/2 estimate for each detector. The results are presented in Tab. 12.3. Single-detector
estimates are mutually compatible, and are also compatible with the global estimate
(12.1).



12.8 145

 yr)21 (101/2T
1.6 1.8 2 2.2 2.4

1/
2

dP
/d

T

0

0.5

1

1.5

2

2.5

3

Figure 12.4: T 2νββ
1/2 - Final probability distribution. In green: the mode. The yellow lines

are the boundaries of the 68% minimal band.

ANG2 | 1.955 +- 0.182 | 0.858 | 1.970 - 0.127 + 0.133
ANG3 | 1.736 +- 0.194 | 0.708 | 1.751 - 0.135 + 0.142
ANG4 | 1.884 +- 0.176 | 0.209 | 1.898 - 0.123 + 0.129
ANG5 | 1.810 +- 0.156 | 0.417 | 1.821 - 0.109 + 0.114
RG1 | 1.860 +- 0.183 | 0.170 | 1.877 - 0.130 + 0.134
RG2 | 1.944 +- 0.188 | 0.468 | 1.961 - 0.131 + 0.140

Table 12.3: Single detector fits: the columns are detector, MAP estimate, p-value of the
MAP estimate and marginalization result (T 2νββ

1/2 estimates are written in units of 1021

yr).

12.8 GERDA official results

The present GERDA official result is

T 2νββ
1/2 = (1.84+0.09

−0.08 fit
+0.11
−0.06 syst)× 1021 yr.

The fit configuration in the GERDA official analysis is nearly the same of my approach.
The marginalization is done by MCMC integration. The key difference is due to new
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Missing components in the background model +5.3%
Energy spectra from 42K, 40K and 214Bi 2.1%
Shape of the 2νββ decay spectrum 1.0%
Subtotal fit model +5.8%

−2.3%

Precision of the Monte Carlo geometry model 1%
Accuracy of the Monte Carlo tracking 2%
Subtotal Monte Carlo 2.2%
Data acquisition and selection 0.5%
Grand Total +6.2

−3.3%

Table 12.4: Summary table of the systematic uncertainties on T 2νββ
1/2 which are taken into

account for this work and which are not included in the fitting procedure.

estimates for the active mass fraction of the detectors. In these estimates, the error is
splitted between the random and systematic components, and the code has been improved
to implement this.
The systematic uncertainties are described in Tab. 12.4. The most important is due to
the additional background components which are not accounted in the fit model. Due to
the limited exposure these background components cannot be identified unambiguously.
The uncertainty arising from such possible contributions is estimated to be 5.3%. Since
any further background component would lead to a longer T 2νββ

1/2 , this uncertainty is
asymmetric. It has been estimated by performing a fit with the contributions from 60Co,
228Ac and a flat background added to the model.
In Fig. 12.5, the official result is compared with the estimates from previous experiments.

12.9 Conclusions

I have developed a procedure to estimate the 2νββ half-life of 76Ge. The result is

T 2νββ
1/2 = (1.881+0.053

−0.052 fit
+0.11
−0.06 syst)× 1021 yr.

The present GERDA official result is

T 2νββ
1/2 = (1.84+0.09

−0.08 fit
+0.11
−0.06 syst)× 1021 yr.

The official analysis features a more advanced approach to the uncertainties in the active
mass of the detectors.
GERDA and Heidelberg-Moscow results are compatible.
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Figure 12.5: Experimental results for T 2νββ
1/2 of 76Ge vs. publication year. The plot includes

results from the experiments ITEP-YPI [5], PNL-USC [6], PNL-USC-ITEP-YPI [7] [8],
Heidelberg-Moscow (HdM) [9] [10] and IGEX [11], as well as the re-analysis of the HdM
data by Klapdor-Kleingrothaus et al. [12] (HdM-K) and by Bakalyarow et al. [13] (HdM-
B). The NNDC-recommended value [14] and the global weighted average evaluated by
Barabash [15] are also shown.
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Conclusions

In this thesis I have described my work in the GERDA Collaboration during my Ph.D.
The GERDA experiment is searching for the Neutrinoless Double Beta Decay of 76Ge [1]
[2]. The most important features of the experiment have been presented in chapter 4.
The data taking is ongoing. I cannot provide the first 0νββ results in this work, because
presently we are not looking at the events around Qββ. A small energy window is blinded:
events are stored but not analyzed by the Collaboration. The idea is to provide a back-
ground model before the opening of the window. As I have explained in chapter 9,
according to the duty cycle, an exposure of 20 kg·yr, which is the Phase I goal, is ex-
pected to be reached in spring 2013.
I have divided the description of my work in GERDA in many chapters.

• In chapter 5 I have presented GELATIO [3] [4], [5], the Digital Signal Processing soft-
ware which has been developed for the experiment. It is able to extract the condensed
parameters (e.g. energy and risetime) which describe the digitized signals. GELATIO
is able to manage different input sources (e.g. Germanium data, Monte Carlo simula-
tions, photomultipliers of the muon veto), because its modular approach is very versatile.
GELATIO features a complex Graphical User Interface, designed by using the ROOT
toolkit, which I have developed to provide an easy way to configure all the parameters of
the modules.

• In chapter 6 I have described an original procedure to obtain parametrizations of the
impulse response function of the electronic chain from the calibration data. Different
models of the response function are supported. It is clear that an improved model for
the response function is fundamental to obtain a perfect reconstruction of the input of
the electronic chain, which is the current induced by the physical signals in the detectors.
The fact that my analysis relies on the calibration data make it also interesting for mon-
itoring purposes, because a calibration is a standard GERDA procedure which is done
once per week. I have tested my approach to four different calibrations, and results are
very consistent.
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• In chapter 7 I have applied my best model of the impulse response function to the
energy reconstruction and to the current reconstruction of the acquired signal. I have
tested my procedure to three recent calibrations. About the energy reconstruction, I have
obtained a similar quality of the official one. About the current reconstruction, it is one
of the most advanced available in GERDA at the moment. I have also started a study of
a parameter which could be interesting for the pulse shape discrimination: Q40/Q, which
is the maximum charge induced in the feedback capacitor of the preamplifier in a period
of 40 ns compared to the total charge. The distribution of this parameter at the Double
Escape Peak of the 2614 keV 208Tl line in BEGe detectors is characterized by a ratio
between the standard deviation and the mean value of about 1.3%. This resolution is
enough to mark as multi-site all the three events observed in the window Qββ ± 200 keV
in Bege detectors in the examined period.

• In chapter 8 I have presented the database application which I have developed for the
data management of the experiment [6]. It is able to generate a wide set of reports, which
are very useful for the off-line data quality monitoring. The off-line monitoring provided a
measure of the quality acquisition (e.g. noise levels, leakage current and rate monitoring)
and it is complementary to the slow control system, to ensure that everything is running
in the proper way.

• In chapter 10 I have described an approach to estimate the efficiency of the muon veto.
The muon veto efficiency has been estimated in

ε > 0.99 95% lower limit.

It is important to estimate the muon veto efficiency to obtain an estimate of muon-
induced single-detector background due to non-identified events with an energy release
around Qββ. My final result is

Bµ < 2.8× 10−5 counts
keV kg yr

95% upper limit.

The Phase I background goal is 10−2 counts
keV kg yr and the Phase II background goal is 10−3 counts

keV kg yr ,
so the muon veto is able to satisfate the GERDA needs.

• In chapter 11 I have presented an original algorithm which I have developed to search
for gamma ray peaks in the energy spectrum without any other input. It is a full blind
approach. The key idea is to model the background using a positive-definite continuous
function (a positive definite spline), which is characterized by a wider scale (the distance
between the knots) compared to the typical peak scale (a few keV). The scale can be
automatically estimated minimizing the AIC model index. Small structures are not well
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fitted, so it is easy to scan the spectrum for them. The advantages of this approach are
non-biased results, which are useful for example to detect calibration problems (a the
peak center different than real value) or to search for unexpected lines. I have compared
my result with the official ones, and they are fully compatible. The gamma background in
GERDA is really lower than the one of Heidelberg-Moscow. From the rate of the 1524.7

keV line of the 42K decay, I have provided an estimate of the 42Ar activity in natural argon

A = 105.0+5.6
−5.4

µBq
kg

.

The result is an activity two times above a 90% upper limit provided by V.D. Ashitkov

A < 41
µBq
kg

(arXiv:nucl-ex/0309001).

• In chapter 12, the last one, I have described my procedure for the measurement of the
half-live of the 2νββ decay of 76Ge [7]. My bayesian analysis is characterized by a different
approach to the posterior marginalization compared to the GERDA official one. I have
used a gaussian approximation at the point of maximum of the posterior, while the official
analysis relies on a Markov Chain Monte Carlo approach. Having different procedures is
clearly fundamental for a cross-check of the results. My final result is

T 2νββ
1/2 = (1.881+0.053

−0.052
+0.11
−0.06 syst)× 1021 yr.

Recently, new estimates of the active masses of the detectors have been done, so the
official GERDA result is a little different

T 2νββ
1/2 = (1.84+0.09

−0.08 fit
+0.11
−0.06 syst)× 1021 yr.

The GERDA and Heidelberg-Moscow results are fully compatible.



152

Publication list

[1] K. H. Ackermann et al., The GERDA experiment for the search of 0νββ decay in 76Ge (2012), available
at arXiv:1212.4067[physics.ins-det].

[2] P. Zavarise, The GERDA experiment: status and future plan, Acta Polytechnica Vol. 53 N. 1 (2013),
Vulcano Workshop 2012.

[3] M. Agostini, L. Pandola, P. Zavarise, and O. Volynets, GELATIO: A General framework for modular
digital analysis of high-purity Ge detector signals, JINST 6 (2011), P08013, available at arXiv:1106.
1780[physics.data-an].

[4] M. Agostini, J.A. Detwiler, P. Finnerty, K. Kroninger, D. Lenz, et al., The MGDO software library for
data analysis in Ge neutrinoless double-beta decay experiments, J.Phys.Conf.Ser. 375 (2012), 042027,
available at arXiv:1111.7260[physics.data-an].

[5] M. Agostini, L. Pandola, and P. Zavarise, Off-line data processing and analysis for the GERDA
experiment, J.Phys.Conf.Ser. 368 (2012), 012047, available at arXiv:1111.3582[physics.data-an].

[6] P. Zavarise, M. Agostini, A.A. Machado, L. Pandola, and O. Volynets, Off-line data quality moni-
toring for the GERDA experiment, J.Phys.Conf.Ser. 375 (2012), 042028, available at arXiv:1111.

7200[physics.data-an].

[7] M. Agostini et al., Measurement of the half-life of the two-neutrino double beta decay of Ge-76 with
the Gerda experiment, in press on J.Phys.G (2012), available at arXiv:1212.3210[nucl-ex].


