MC BENCHMARKS FOR LAR INSTRUMENTATION IN GERDA Nuno Fiuza de Barros on behalf of the GERDA collaboration ## **Ger**manium **D**etector **A**rray **D**etector **d**esign - Lock system. - Water tank (steel). - Muon veto (Čerenkov). - Cryostat (steel + Cu). - Liquid Argon. - Detector array. ## LAr as an active veto Plans for GERDA - Instrument the LAr to detect scintillation light. - Veto backgrounds from coincidence between Ge and LAr events. - Principle already demonstrated in test facility (LArGe). - Efficiency dependent of type of background. - Aim implementation for GERDA phase II. - Two major instrumentation designs (M. Heisel, T 116.1). - Optical fiber design. - PMT design. #### Goals for the MC: - Estimate background suppression (veto efficiency) of the design. - Optimize the design to maximize background suppression. ### LAr as an active veto - Detect scintillation light in LAr to tag external background events. - Very high light yield: ~ 4 × 10⁴ photons/MeV. - Single re-emission peak ($\lambda = 128$ nm). - Not directly detectable. - Use wavelength shifter (eg. VM2000). - Some challenges: - Properties strongly affected by impurities (eg.: Xe, N₂). - Short scattering length in emission range ($\sigma_{128nm} \approx 80$ cm). - Some advantages: - Very distinctive short and long decay times ($\tau_{short} \sim 6$ ns, $\tau_{long} \sim 1200 1500$ ns). - Transparent in the visible range $(\sigma_{550nm} > 1 \text{km})$. Gosjean, Phys. Rev. B 56(1997) ### Types of studied backgrounds - Internal backgrounds: - Mostly cosmic activations (⁶⁰Co). - Backgrounds in LAr: - Backgrounds distributed in LAr (²¹⁴Bi, ⁴²K). - Backgrounds on the surface of crystals (mostly α : 210 Po). - Bulk contamination of support structures: - ²⁰⁸Tl (²³²Th chain), ²¹⁴Bi (²²⁶Ra). - Only background events that deposit $Q_{\beta\beta} \pm 50 keV$ in Ge are relevant. - Different veto energy thresholds are tested. ### Information for all simulated sources: - Suppression factor $S_{eff} = \frac{N_{Ge}}{N_{Ge_{nv}}}$. - ullet The estimated energy threshold of LAr readout in LArGe is \sim 100 keV. ### Validation of the MC - Several measurements with calibration sources performed in LArGe (M. Heisel, T 116.1). - Using both internal and external sources. - A single BEGe as the Germanium detector (T 116.4). - Use these measurements as a base to validate the MC. - No measurements with GERDA and LAr veto. - Simpler geometry. - Smaller scale (LAr volume). - Tune the MC (eg.: optical properties of Argon). #### Validation of the MC Results with LArGe ### 228Th: - Only ²⁰⁸Tl was simulated (major contributor) - Some results: Rate of backgrounds in $Q_{\beta\beta}$: 0.078 % w.r.t. simulated events. S_{100keV} : 1507 S_{20keV} : 2748 $S_{measured}$: 1180 \pm 250 ²²⁶Ra: Only ²¹⁴Bi was simulated. Results: Rate of backgrounds in $Q_{\beta\beta}$: 7×10^{-3} % w.r.t. simulated events S_{100keV} : 5.6 S_{20keV} : 8.1 $S_{measured}$: 4.6 ± 0.2 ## Validation of the MC Results with LArGe ### ⁶⁰Co: - Activation from cosmic rays. - Some results: Rate of backgrounds in $Q_{\beta\beta}$: 2.93 \times 10⁻³ %. S_{100keV} : 55 S_{20keV} : 73 $S_{measured}$: 27 ± 1.7. ### Summary of LArGe MC tests: - MC consistent with the experimental measurements. - The MC is not yet fully tuned. - Discrepancy in ⁶⁰Co simulation likely due to imprecise information: - Position of the source. - Design of the BEGe. - Design of the source. - Geometrical effects (shadows). ### MC Status for GERDA Phase-I - Principle similar to LArGe. - Considerably more complex geometry. - Multiple Ge detectors instead of a single one. - Additional detector components (holders, cables). - Simulations of major backgrounds estimated through the deposited energy: - These tests do not yet allow to properly compare designs. - It serves as an indication of the best possible scenario for the veto. # MC Status for GERDA Phase-I Bulk contamination (208Tl on crystal holders) S_{100keV} : 254 S_{10keV} : 354 • High efficiency due to multiple γ . ## MC Status for GERDA Phase-I Bulk contamination (214Bi on crystal holders) S_{100keV} : 3.5 S_{10keV} : 4.4 • Single γ lowers veto efficiency. # MC Status for GERDA Phase-I Homogeneous distribution of (42 K in LAr) S_{100keV} : 6.0 S_{10keV} : 54.8 - Major background visible in GERDA. - Distribution known to be not homogeneous. ## MC Status for GERDA Phase-I Bulk contamination (42 K on crystal surface) S_{100keV} : 1.3 S_{10keV} : 1.4 - Major background visible in GERDA. - Distribution known to be not homogeneous. ### Summary of results so far | Isotope | Location | Suppression factor | | |-------------------|---------------------------|--------------------|--------| | | | 100 keV | 10 keV | | ²⁸⁰ Tl | Holders | 254 | 354 | | ²¹⁴ Bi | Holders | 3.5 | 4.4 | | | Crystal surface | 13.8 | 20.1 | | ⁴² K | Homogeneous in LAr | 6.0 | 54.8 | | | Surface of Crystal | 1.3 | 1.4 | | ⁶⁰ Co | Homogeneously in Crystals | 57 | 68 | | ²¹⁰ Po | Surface of Crystal | 2.1 | 2.2 | • Values serve as an optimistic indicator of efficiency. ### Conclusion - Currently MC for LAr veto designs is an ongoing project. - MC being tuned using LArGe results as base. - Initial results are already promising. - LAr veto instrumentation able to reduce background index by 2 orders of magnitude (on specific backgrounds). - Limited efficiency on most visible GERDA background (42 K). - Different approaches being followed in this case. - Will become a key component to achieve the background index aimed for phase II (10⁻³ counts/(kq·yr·keV)). - Present background index : ~ 10⁻² counts/(kg·vr·keV). - LAr veto geometries finishing implementation. - Further validations with LArGe source measurements undergoing. - More complex background studies under preparation. - Inhomogeneous distributions.