MC BENCHMARKS FOR LAR INSTRUMENTATION IN GERDA

Nuno Fiuza de Barros
on behalf of the GERDA collaboration

DPG, Göttingen, 27 February - 2 March 2012
Germanium Detector Array

Detector design

- Clean room.
- Lock system.
- Water tank (steel).
- Muon veto (Čerenkov).
- Cryostat (steel + Cu).
- Liquid Argon.
- Detector array.
• Instrument the LAr to detect scintillation light.
 – Veto backgrounds from coincidence between Ge and LAr events.
 – Principle already demonstrated in test facility (LArGe).
 – Efficiency dependent of type of background.
 – Aim implementation for GERDA phase II.

• Two major instrumentation designs (M. Heisel, T 116.1).
 – Optical fiber design.
 – PMT design.

Goals for the MC:
• Estimate background suppression (veto efficiency) of the design.
• Optimize the design to maximize background suppression.
LAr as an active veto

- Detect scintillation light in LAr to tag external background events.
- Very high light yield: $\sim 4 \times 10^4$ photons/MeV.
- Single re-emission peak ($\lambda = 128$ nm).
 - Not directly detectable.
 - Use wavelength shifter (eg. VM2000).
- Some challenges:
 - Properties strongly affected by impurities (eg.: Xe, N$_2$).
 - Short scattering length in emission range ($\sigma_{128nm} \approx 80$ cm).
- Some advantages:
 - Very distinctive short and long decay times ($\tau_{short} \sim 6$ ns, $\tau_{long} \sim 1200 - 1500$ ns).
 - Transparent in the visible range ($\sigma_{550nm} > 1$ km).

Types of studied backgrounds

- **Internal backgrounds:**
 - Mostly cosmic activations (^{60}Co).

- **Backgrounds in LAr:**
 - Backgrounds distributed in LAr (^{214}Bi, ^{42}K).
 - Backgrounds on the surface of crystals (mostly α : ^{210}Po).

- **Bulk contamination of support structures:**
 - ^{208}Tl (^{232}Th chain), ^{214}Bi (^{226}Ra).

- **Only background events that deposit** $Q_{\beta\beta} \pm 50\text{keV}$ in Ge **are relevant.**

- Different veto energy thresholds are tested.

Information for all simulated sources:

- Suppression factor $S_{\text{eff}} = \frac{N_{\text{Ge}}}{N_{\text{Genv}}}.$

- The estimated energy threshold of LAr readout in LArGe is ~ 100 keV.
Validation of the MC

- Several measurements with calibration sources performed in LArGe (M. Heisel, T 116.1).
 - Using both internal and external sources.
 - A single BEGe as the Germanium detector (T 116.4).
- Use these measurements as a base to validate the MC.
 - No measurements with GERDA and LAr veto.
 - Simpler geometry.
 - Smaller scale (LAr volume).
- Tune the MC (e.g.: optical properties of Argon).
Validation of the MC Results with LArGe

228Th:
- Only 208Tl was simulated (major contributor).
- Some results:
 Rate of backgrounds in $Q_{\beta\beta}$: 0.078 % w.r.t. simulated events.
 - $S_{100\text{keV}}$: 1507
 - $S_{20\text{keV}}$: 2748
 - S_{measured}: 1180 ± 250

226Ra:
- Only 214Bi was simulated.
- Results:
 Rate of backgrounds in $Q_{\beta\beta}$: 7×10^{-3} % w.r.t. simulated events.
 - $S_{100\text{keV}}$: 5.6
 - $S_{20\text{keV}}$: 8.1
 - S_{measured}: 4.6 ± 0.2
Validation of the MC Results with LArGe

60Co:

- Activation from cosmic rays.
- Some results:

 Rate of backgrounds in $Q_{\beta\beta}$:

 $$2.93 \times 10^{-3} \%.$$

 - $S_{100\text{keV}}$: 55
 - $S_{20\text{keV}}$: 73
 - S_{measured}: 27 ± 1.7.

Summary of LArGe MC tests:

- MC consistent with the experimental measurements.
 - The MC is not yet fully tuned.
- Discrepancy in ^{60}Co simulation likely due to imprecise information:
 - Position of the source.
 - Design of the BEGe.
 - Design of the source.
 - Geometrical effects (shadows).
• Principle similar to LArGe.
• Considerably more complex geometry.
 – Multiple Ge detectors instead of a single one.
 – Additional detector components (holders, cables).
• Simulations of major backgrounds estimated through the deposited energy:
 – These tests do not yet allow to properly compare designs.
 – It serves as an indication of the best possible scenario for the veto.
Bulk contamination (^{208}Tl on crystal holders)

- $S_{100\text{keV}} : 254$
- $S_{10\text{keV}} : 354$

- High efficiency due to multiple γ.
Bulk contamination \(^{214}\text{Bi on crystal holders} \)

Energy spectra for different veto energy thresholds \(^{214}\text{Bi} \)

\[S_{100\text{keV}} : 3.5 \]
\[S_{10\text{keV}} : 4.4 \]

- Single \(\gamma \) lowers veto efficiency.
MC Status for GERDA Phase-I
Homogeneous distribution of 42K in LAr

- $S_{100\,\text{keV}} : 6.0$
- $S_{10\,\text{keV}} : 54.8$

- Major background visible in GERDA.
- Distribution known to be not homogeneous.
MC Status for GERDA Phase-I

Bulk contamination (42K on crystal surface)

Veto Efficiencies K_{42_surf}

- $S_{100\,keV} : 1.3$
- $S_{10\,keV} : 1.4$

- Major background visible in GERDA.
- Distribution known to be not homogeneous.
Summary of results so far

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Location</th>
<th>Suppression factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100 keV</td>
</tr>
<tr>
<td>280Tl</td>
<td>Holders</td>
<td>254</td>
</tr>
<tr>
<td>214Bi</td>
<td>Holders</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Crystal surface</td>
<td>13.8</td>
</tr>
<tr>
<td>42K</td>
<td>Homogeneous in LAr</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Surface of Crystal</td>
<td>1.3</td>
</tr>
<tr>
<td>60Co</td>
<td>Homogeneously in Crystals</td>
<td>57</td>
</tr>
<tr>
<td>210Po</td>
<td>Surface of Crystal</td>
<td>2.1</td>
</tr>
</tbody>
</table>

- Values serve as an optimistic indicator of efficiency.
• Currently MC for LAr veto designs is an ongoing project.
• MC being tuned using LArGe results as base.
 – Initial results are already promising.
• LAr veto instrumentation able to reduce background index by 2 orders of magnitude (on specific backgrounds).
 – Limited efficiency on most visible GERDA background (42K).
 – Different approaches being followed in this case.
 – Will become a key component to achieve the background index aimed for phase II (10^{-3} counts/(kg·yr·keV)).
 – Present background index: $\sim 10^{-2}$ counts/(kg·yr·keV).
• LAr veto geometries finishing implementation.
• Further validations with LArGe source measurements undergoing.
• More complex background studies under preparation.
 – Inhomogeneous distributions.