

MC BENCHMARKS FOR LAR INSTRUMENTATION IN GERDA

Nuno Fiuza de Barros on behalf of the GERDA collaboration

Germanium **D**etector **A**rray **D**etector **d**esign

- Lock system.
- Water tank (steel).
- Muon veto (Čerenkov).
- Cryostat (steel + Cu).
- Liquid Argon.
- Detector array.

LAr as an active veto Plans for GERDA

- Instrument the LAr to detect scintillation light.
 - Veto backgrounds from coincidence between Ge and LAr events.
 - Principle already demonstrated in test facility (LArGe).
 - Efficiency dependent of type of background.
 - Aim implementation for GERDA phase II.
- Two major instrumentation designs (M. Heisel, T 116.1).
 - Optical fiber design.
 - PMT design.

Goals for the MC:

- Estimate background suppression (veto efficiency) of the design.
- Optimize the design to maximize background suppression.

LAr as an active veto

- Detect scintillation light in LAr to tag external background events.
- Very high light yield: ~ 4 × 10⁴ photons/MeV.
- Single re-emission peak ($\lambda = 128$ nm).
 - Not directly detectable.
 - Use wavelength shifter (eg. VM2000).
- Some challenges:
 - Properties strongly affected by impurities (eg.: Xe, N₂).
 - Short scattering length in emission range ($\sigma_{128nm} \approx 80$ cm).
- Some advantages:
 - Very distinctive short and long decay times ($\tau_{short} \sim 6$ ns, $\tau_{long} \sim 1200 1500$ ns).
 - Transparent in the visible range $(\sigma_{550nm} > 1 \text{km})$.

Gosjean, Phys. Rev. B 56(1997)

Types of studied backgrounds

- Internal backgrounds:
 - Mostly cosmic activations (⁶⁰Co).
- Backgrounds in LAr:
 - Backgrounds distributed in LAr (²¹⁴Bi, ⁴²K).
 - Backgrounds on the surface of crystals (mostly α : 210 Po).
- Bulk contamination of support structures:
 - ²⁰⁸Tl (²³²Th chain), ²¹⁴Bi (²²⁶Ra).
- Only background events that deposit $Q_{\beta\beta} \pm 50 keV$ in Ge are relevant.
- Different veto energy thresholds are tested.

Information for all simulated sources:

- Suppression factor $S_{eff} = \frac{N_{Ge}}{N_{Ge_{nv}}}$.
- ullet The estimated energy threshold of LAr readout in LArGe is \sim 100 keV.

Validation of the MC

- Several measurements with calibration sources performed in LArGe (M. Heisel, T 116.1).
 - Using both internal and external sources.
 - A single BEGe as the Germanium detector (T 116.4).
- Use these measurements as a base to validate the MC.
 - No measurements with GERDA and LAr veto.
 - Simpler geometry.
 - Smaller scale (LAr volume).
- Tune the MC (eg.: optical properties of Argon).

Validation of the MC Results with LArGe

228Th:

- Only ²⁰⁸Tl was simulated (major contributor)
- Some results:

Rate of backgrounds in $Q_{\beta\beta}$: 0.078 % w.r.t.

simulated events.

 S_{100keV} : 1507 S_{20keV} : 2748

 $S_{measured}$: 1180 \pm 250

²²⁶Ra:

Only ²¹⁴Bi was simulated.

Results:

Rate of backgrounds in $Q_{\beta\beta}$:

 7×10^{-3} % w.r.t.

simulated events

 S_{100keV} : 5.6 S_{20keV} : 8.1

 $S_{measured}$: 4.6 ± 0.2

Validation of the MC Results with LArGe

⁶⁰Co:

- Activation from cosmic rays.
- Some results:

Rate of backgrounds in $Q_{\beta\beta}$: 2.93 \times 10⁻³ %.

 S_{100keV} : 55 S_{20keV} : 73

 $S_{measured}$: 27 ± 1.7.

Summary of LArGe MC tests:

- MC consistent with the experimental measurements.
 - The MC is not yet fully tuned.
- Discrepancy in ⁶⁰Co simulation likely due to imprecise information:
 - Position of the source.
 - Design of the BEGe.
 - Design of the source.
 - Geometrical effects (shadows).

MC Status for GERDA Phase-I

- Principle similar to LArGe.
- Considerably more complex geometry.
 - Multiple Ge detectors instead of a single one.
 - Additional detector components (holders, cables).
- Simulations of major backgrounds estimated through the deposited energy:
 - These tests do not yet allow to properly compare designs.
 - It serves as an indication of the best possible scenario for the veto.

MC Status for GERDA Phase-I Bulk contamination (208Tl on crystal holders)

 S_{100keV} : 254 S_{10keV} : 354

• High efficiency due to multiple γ .

MC Status for GERDA Phase-I Bulk contamination (214Bi on crystal holders)

 S_{100keV} : 3.5 S_{10keV} : 4.4

• Single γ lowers veto efficiency.

MC Status for GERDA Phase-I Homogeneous distribution of (42 K in LAr)

 S_{100keV} : 6.0 S_{10keV} : 54.8

- Major background visible in GERDA.
- Distribution known to be not homogeneous.

MC Status for GERDA Phase-I Bulk contamination (42 K on crystal surface)

 S_{100keV} : 1.3 S_{10keV} : 1.4

- Major background visible in GERDA.
- Distribution known to be not homogeneous.

Summary of results so far

Isotope	Location	Suppression factor	
		100 keV	10 keV
²⁸⁰ Tl	Holders	254	354
²¹⁴ Bi	Holders	3.5	4.4
	Crystal surface	13.8	20.1
⁴² K	Homogeneous in LAr	6.0	54.8
	Surface of Crystal	1.3	1.4
⁶⁰ Co	Homogeneously in Crystals	57	68
²¹⁰ Po	Surface of Crystal	2.1	2.2

• Values serve as an optimistic indicator of efficiency.

Conclusion

- Currently MC for LAr veto designs is an ongoing project.
- MC being tuned using LArGe results as base.
 - Initial results are already promising.
- LAr veto instrumentation able to reduce background index by 2 orders of magnitude (on specific backgrounds).
 - Limited efficiency on most visible GERDA background (42 K).
 - Different approaches being followed in this case.
 - Will become a key component to achieve the background index aimed for phase II (10⁻³ counts/(kq·yr·keV)).
 - Present background index : ~ 10⁻² counts/(kg·vr·keV).
- LAr veto geometries finishing implementation.
- Further validations with LArGe source measurements undergoing.
- More complex background studies under preparation.
 - Inhomogeneous distributions.